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Abstract
Social network data often involve transitivity, homophily on observed attributes, clustering, and
heterogeneity of actor degrees. We propose a latent cluster random effects model to represent all of
these features, and we describe a Bayesian estimation method for it. The model is applicable to both
binary and non-binary network data. We illustrate the model using two real datasets. We also apply
it to two simulated network datasets with the same, highly skewed, degree distribution, but very
different network behavior: one unstructured and the other with transitivity and clustering. Models
based on degree distributions, such as scale-free, preferential attachment and power-law models,
cannot distinguish between these very different situations, but our model does.

1 Introduction
Social network data consist of data about pairs of actors or nodes. Often these data represent
the presence, absence or value of a relationship between pairs of actors, such as liking, respect,
familial relationship, shared membership in a group of individuals, or volume of trade for
collectivities such as countries or companies. In this article we primarily consider binary social
network data, representing presence or absence of a relationship, and count data, representing
the number of times a relationship between a pair of actors was observed. The methods we
develop can also be extended to accomodate other types of relational data.

Much social network data share a number of features. One of these is transitivity, for example
the fact that if actor A relates to actor B and actor B relates to actor C, then actor A is more
likely to relate to actor C. Another is homophily on observed attributes, according to which
actors with similar characteristics are more likely to relate. A third feature is clustering, in
which actors cluster into groups such that ties are more dense within groups than between them.
This can be due to social self-organization or to homophily on unobserved attributes, such as
interest in the same sport, about which the analyst might not have information. A fourth feature
is degree heterogeneity, namely the tendency of some actors to send and/or receive links more
than others.

Hoff, Raftery, and Handcock (2002) proposed the latent space model for social networks. This
postulates an unobserved Euclidean social space in which each actor has a position. The
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probability of a link between pairs of actors depends on the distance between them in the space
and on their observed characteristics. Estimation of the model involves estimating both the
latent positions and the parameters of the model specifying how the probability of a link
depends on distance and observed attributes. This accounts for transitivity automatically
through the latent space and is flexible enough to include the other common features of social
network data also. This model was extended by Handcock, Raftery, and Tantrum (2007) —
hereafter HRT — to include model-based clustering of the latent space positions, giving a way
to detect groups of actors. Hoff (2005) added random sender and receiver effects to model
inhomogeneity of the actors, similar to those in the p2 model (van Duijn, Snijders, and Zijlstra,
2004), and described its generalized linear model formulation, applying it to non-binary data.

No model so far proposed has modeled all the four common features of social network data
that we mentioned above. In this paper, we propose the Latent Cluster Random Effects Model,
which explicitly models all four features by adding the random sender and receiver or sociality
effects as proposed by Hoff (2005) to HRT's latent position cluster model. We apply it to count
data as well as binary network data.

In Section 2, we introduce the latent cluster random effects model. In Section 3, we describe
our Bayesian method for estimating it using Markov chain Monte Carlo, as well as heuristics
for prior and starting value selection. In Section 4 we illustrate the model using two real network
datasets, one binary and the other consisting of counts. We also apply our method to two
simulated networks with the same, highly skewed degree distribution, but very different
network behaviors: one unstructured and the other exhibiting transitivity and clustering.
Currently popular methods based on degree distributions cannot distinguish between these
situations, but our model does.

2 The Latent Cluster Random Effects Model for Social Networks
We first review the latent position cluster model of HRT and then expand it to allow for actor-
specific random effects. The data we model consist of yi,j, the value of the relation from actor
i to actor j for each dyad consisting of two of the n actors. These form the elements of the n ×
n sociomatrix Y. There may also be dyadic-level covariate information represented by p
matrices . Both directed and undirected relations can be analyzed with our
methods, although the models are slightly different in the two cases.

The model posits that each actor i has an unobserved position, Zi, in a d-dimensional Euclidean
latent social space, as in Hoff et al. (2002) and HRT. We then assume that the tie values are
stochastically independent given the distances between the actors' positions. Specifically, for
binary data,

(1)

where logit(p) = log(p/(1 – p)) and β denotes a vector of regression parameters to be estimated.
The model accounts for transitivity, homophily on the observed attributes x, as well potential
homophily on unobserved attributes via the latent space. As in HRT, we allow for clustering
in the Zi via a finite spherical multivariate normal mixture:
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(2)

where λg is the probability that an actor belongs to the g-th group, so that λg ≥ 0 (g = 1,…, G)

and , and Id is the d × d identity matrix. Thus the position of each actor is drawn
from one of G groups, where each group is centered on a different mean and dispersed with a
different variance.

To represent heterogeneity in the propensity for actors to form ties not captured by the dyad-
level covariates or actor positions, we introduce actor-specific random effects. The nature of
the effects differs for directed and undirected relationships. For an undirected relationship,
each actor i has a latent “sociality” denoted by δi, representing his or her propensity to form
ties with other actors. The effect of these random effects on the propensity to form ties is
modeled as follows:

(3)

The sociality δi is then the conditional log-odds ratio of an actor i having a tie with another
actor compared to an actor with similar position and covariates but having δ = 0.

This model can also be used for directed relationships. In that case we define both sender and
receiver random effects, δi and γi, representing actor i's propensity to send and receive links,
respectively. The model then becomes:

(4)

where

and the variances  and  measure heterogeneity in the propensity to send and receive links.
The use of random effects in the latent space model was proposed by Hoff (2003), and van
Duijn et al. (2004) who made a similar proposal for the p2 model.

3 Estimation
3.1 Bayesian Estimation and Prior Distributions

We propose a Bayesian approach to estimate the latent cluster random effects model given by
(1), (2), and either (3) or (4). The approach estimates the latent positions, the clustering model
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and the actor-specific effects simultaneously. We implement the methods computationally
using a Markov chain Monte Carlo (MCMC) algorithm.

We introduce the new variables Ki, equal to g if the i-th actor belongs to the g-th group, as is
standard in Bayesian estimation of mixture models (Diebolt and Robert, 1994). We specify
prior distributions as follows:

where ξ, ψ, ν = (ν1,…, νG), , αZ, , αδ, , αγ, and ω2 are hyperparameters to be specified
by the user.

We set νg equal to the smallest group size we are willing to consider for the network of interest,
and ξ = 0 and Ψ = 9I, which allows a wide range of values of β. The other hyperparameters are
not so clear-cut. Heuristically, networks with larger clusters call for greater prior variances,
and it is helpful to have slightly stronger priors for larger clusters, but as a network gets larger,
the role of the prior variances in determining the posterior variances should decline. The
hyperparameter choices we use reflect these intuitions. This is discussed in more detail by
Krivitsky and Handcock (2008a), and we use the hyperparameters

, and .

3.2 Markov chain Monte Carlo algorithm
Our MCMC algorithm iterates over the model parameters with the priors given above, the
latent positions Zi, the random effects δi and γi the group memberships Ki. We update variables
in turn, and block-update those we expect to be highly correlated. For those variables for which
a conjugate prior was specified, full conditional updates are used. The others are updated using
Metropolis-Hastings. We describe these in turn.

We first describe the full conditional updates. Let ellipsis (“…”) represent those variables
which the variable being sampled is conditionally independent of, and thus do not figure in its
full conditional distribution. The relevant priors being conjugate, the full conditionals for those
variables that can be Gibbs-sampled are as follows:
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where , the sum of squared deviations of the latent

positions in cluster g from their cluster's mean, and , the number of actors
assigned to cluster g during a particular iteration.

We now describe the Metropolis-Hastings updates. Two kinds of Metropolis-Hastings
proposals are used. First, actor-specific parameters (latent space positions and random effects)
are updated one actor at a time, in a random order. Second, covariate coefficients are block-
updated with the scale of latent space positions and a shift in random effects.

An independent d-variate normal jump is proposed for each actor (in random order). For a
particular actor i, the proposal

is made. At the same time, an independent proposal is made for the sender and receiver effects
of that actor:

The parameters , , and  are then accepted or rejected as a block. The reason for this block-
updating is that parameters pertaining to a particular node are likely to have strong dependence:
for example, a jump that moves an actor away from others would be associated with an increase
in its random effect, to compensate.

This proposal is symmetric. Because each actor is assigned to one cluster at each MCMC
iteration, the acceptance probability is

Once per MCMC iteration, a correlated proposal is used to jointly update β, Z, μ, σ, δ, and γ.
Jumps hβ ∈ ℝp, hZ ∈ ℝ, hδ ∈ ℝ, and hγ ∈ ℝ are generated from a correlated multivariate
normal distribution:

and updates are proposed as follows:
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This proposal accommodates expected posterior dependencies. The proposals to scale latent
space positions, means, and variances are not symmetric in the Metropolis sense, but can be
viewed as symmetric proposals on the log of the magnitudes of these variables expressed in
polar coordinates. It can be shown that the acceptance ratio should be multiplied by  for
latent space positions,  for latent cluster means, and  for latent cluster variances.

The acceptance probability is thus

where

and

3.3 Identifiability of Parameters and Initialization
The likelihood is a function of the latent positions only through their distances, and so it is
invariant to reflections, rotations and translations of the latent positions. The likelihood is also
invariant to relabelling of the clusters, in the sense that permuting the cluster labels does not
change the likelihood (Stephens, 2000).

We use the approach of HRT to resolve these near nonidentifiabilities by postprocessing the
MCMC output. The approach is to find a configuration of cluster labels and positions with
implied distribution close to the corresponding “true” distribution in terms of Bayes risk. This
is done by minimizing the Kullback-Leibler divergence between the distribution of networks
predicted by the configuration of positions and the posterior predicted distribution of networks.
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These are called Minimum Kullback-Leibler (MKL) positions. The post-processed actor
positions are denoted by ZMKL.

A further source of non-identifiability is that adding a constant to all of the actors' sender,
receiver, or sociality effects and subtracting it from β0, the density covariate coefficient,
preserves the likelihood. While the prior distributions resolve this non-identifiability, we found
that it resulted in slow mixing in our MCMC sampling, and addressed it using the correlated
proposal described above.

For visualization purposes, posterior cluster means and variances corresponding to chosen
positions are also needed. We use the full conditionals for μg,  λ, and K given in Section 3.2
to Gibbs-sample, μ, σ2, λ, K|ZMKL, and we use the posterior means of μ|ZMKL and σ2|ZMKL as
point estimates to go with ZMKL.

The proposal distribution variance parameters, τz, τγ, τδ, τβ,Z,δ, γ, are set by the user to achieve
good performance of the algorithm. In practice, adaptive sampling is used (Krivitsky and
Handcock, 2008a).

To speed convergence, we start the algorithm at an approximation to the posterior mode.
Specifically:

1. Multidimensional scaling is performed on geodesic distances between the graph
vertices to get initial latent space positions ZMDS (Breiger, Boorman, and Arabie,
1975). These are then centered at the origin.

2. Model-based clustering is used to get a hard clustering KMDS of ZMDS (Fraley and
Raftery, 2002). To improve robustness, the first time through, locations with
Mahalanobis distances from the origin greater than 20 are excluded. This threshold
value was found experimentally to exclude small graph components and isolates but
still provide a good margin of safety for vertices containing useful information about
structure. For the excluded points, KMDS is arbitrarily assigned to the largest cluster.

3. Numerical optimization is used to find the posterior mode conditional on KMDS.

4. Steps 2 and 3 are repeated to convergence.

We implemented the algorithms described in an R (R Development Core Team, 2008) package,
latentnet (Krivitsky and Handcock, 2008b), which was used to analyze the following
examples.

4 Examples
We consider four datasets, summarized in Table 1. The first, liking among monks in a
monastery, has previously been analyzed using latent position and latent position cluster
models, and we compare the model fit to those previously obtained. The second and third
datasets are simulated. Both have the same degree distribution, but one has both transitivity
and clustering, while the other has neither. The last dataset is a network of Slovenian
newspapers and magazines, with each pair of magazines having a count of Slovenians surveyed
who reported reading both of them. This allows us to apply this family of models to non-binary
data, and provides an example of a situation where heterogeneity of actors is better modeled
using fixed effects.

4.1 Example 1: Liking between Monks
Our first example is the Sampson's Monks dataset: relations of “liking” among 18 monks in a
monastery (Sampson, 1969). The network analyzed has a directed edge between two monks if
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the sender monk ranked the receiver monk in the top three monks for positive affection in any
of the three interviews given over a twelve month period. The sociogram of this dataset is
shown in Figure 1.

The measurement process for these data imposed constraints on the monk-specific sender
effects. In particular, the sender effects are limited: Sampson asked each monk to name the
three others that he liked most, three times over the period of the study, so the out-degree of
each monk is bounded. The dataset pools these nominations, so a tie between one monk and
another exists if the first monk nominated the second as one of his top three most liked at least
once. Thus, the number of out-ties a monk has is less a measure of the monk's sociality and
more a measure of how often the monk changes his friends. On the other hand, the in-ties were
not constrained, so a monk's receiver effect can be interpreted as the popularity of the monk,
to the extent that it is reflected by how many others nominate him as a friend.

Sampson (1969) identified three main groups of monks: the Young Turks (7 members), the
Loyal Opposition (5 members) and the Outcasts (3 members). The other three monks wavered
between the Loyal Opposition and the Young Turks, which he described as being in intense
conflict (Sampson 1969, p. 370; White, Boorman, and Breiger 1976, p. 752–753).

We fit two versions of our clustering model: a two-dimensional, three-cluster, latent space
model without random effects, and one with receiver effects. In accordance with the heuristic
described in Section 3.1, the hyperparameter values used were v1 = v2 = v3 ≈ 2.45,  = 0.75,

αz ≈ 2.54,  = 1.0, αδ = 3,  = 1.0, αγ = 3, and ω2 = 4.5. The MCMC algorithm described
was run, with 10,000 burn-in iterations that were discarded, and a further 40,000 iterations, of
which we kept every 10th value. Visual inspection of trace plots and more formal assessments
of convergence (e.g. Raftery and Lewis 1996), indicated that the sampling converged and that
the number of iterations we used was sufficient.

The fits are summarized in Figure 2. From the plots, the monks are well separated into the three
groups and our model assigns each monk to the same group that Sampson did: all monks of
Loyal Opposition (and two of the Waverers) are reliably assigned to the “Red” cluster, all the
Young Turks to the “Blue” cluster, and all the Outcasts (and one Waverer) to the “Green”
cluster. The Young Turks are also more tightly clustered than the Loyal Opposition. (The
posterior means of the variances for their clusters are, respectively, 0.716 and 1.09 for the
model without receiver effects and 0.716 and 0.968 for the model with receiver effects.)

An interesting contrast between models with and without receiver effects is Monk #1 (Ramauld,
a Waverer). This monk is relatively unpopular: he has out-ties to 4 of the 6 members of Loyal
Opposition (as identified in Sampson's original paper), but few in-ties from anyone. In the
model without receiver effects (Fig. 2a), this monk is thus pushed to the edge of the Loyal
Opposition group. When the receiver effects are added (Fig. 2b), this monk moves toward the
center of the Loyal Opposition group because of his out-ties to them and has a small receiver
effect to compensate. Thus, his position is more determined by his relations to other monks
than his overall unpopularity, which is accounted for by the receiver effect.

4.1.1 Simulation Study—We use the results from fitting the latent cluster receiver effects
model to verify that the model and our implementation of it are able to recover the latent
positions. Among the 18 monks, there are only 18 × 17 = 306 directed dyads — binary
observations — and the latent cluster receiver effects model of dimension 2 has 55 continuous
parameters in the likelihood, so in order to test whether the model is able to recover latent space
positions with any accuracy, we must artificially increase the precision of the estimates. To do
this, we simulated 200 networks based on 200 draws of parameter configurations from the
posterior distribution of the latent cluster random effects model, and, for every ordered pair of
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monks, counted the number of simulated networks in which a tie on that pair was observed.
We then fit a latent cluster receiver effects model with binomial response with 200 trials.

The results are summarized in Figure 3. The latent space positions from the fit based on the
summed network are very close to those from the original fit (average Eucledian distance
between their MKL estimates for each actor is 0.18) as are the receiver effects.

4.2 Example 2: Simulated Networks With and Without Transitivity and Clustering
We now give results for two simulated network datasets with the same degree distribution. The
first one does not exhibit either transitivity or clustering, while the second one has both.

There has been a focus in the literature on scale-free, preferential attachment and power-law
models for networks, especially in the physics literature (Newman, 2003). These models
assume that all networks with the same degree distribution are equally likely. As a result,
methods based on these models cannot distinguish between networks that have the same degree
distribution but network behavior that differs in other ways. The purpose of this simulated
example is to show that our methods can make these distinctions.

Each of our simulated networks has 150 actors and an undirected relationship between them.
They are sparse networks with density 0.022. The first network was simulated from the
preferential attachment model of Handcock and Jones (2004) using the methods of Handcock
and Morris (2007). In this model the degree sequences follow a Yule probability distribution,
with ρ = 2.5, and the actors form ties independently given this sequence. The network
generating process exhibits power-law behavior with scaling exponent 2.5. It is thus a scale-
free network with a very right-skewed degree distribution, and exhibits no transitivity or
clustering. The degree sequence is generated from the Yule distribution and the network
generated using an exponential-family random graph model conditional on that degree
sequence using statnet (Handcock, Hunter, Butts, Goodreau, and Morris, 2003b). The
network is visualized in Figure 4(a). Note how the high-degree actors act as “hubs” for the
other actors.

The second network has the same degree distribution as the first but with latent positions drawn
from the model (2) with G = 3 groups in d = 2 dimensions. The clusters are dispersed with
μ1 = (0,0), μ2 = (−1.5, 1.5), μ3 = (1.5,1.5) The intra-cluster standard deviation in positions is
σg = 0.2. The network is a random draw from the Latent Cluster Model conditional on the
degree sequence of the first network. This network also has a power-law degree distribution.
Unlike the first network, it exhibits transitivity and has clustered latent positions that lead to
highly clustered pattern of links.

The two networks are shown in Figure 4. They look very different, but they have the same
degree distribution, shown in Figure 4(c). Note the extreme right tail that is characteristic of
scale-free distributions.

We now report the results of fitting the Latent Cluster Random Effects Model to these networks.
In each case, we fit two models: a latent 3-cluster model with no random effects, and a latent
3-cluster model with random sociality effects, both of these with 2-dimensional latent spaces

(Zi ∈ ℝ2). We used the hyperparameters  = 6.25, ω2 = 37.5, and v1 = v2 = v3 = 7.07, based
on the heuristic in Section 3.1.

The fits of the two models (without and with random sociality effects) to the unstructured Yule
network are shown in Figure 5. The estimated latent space positions vary very little for either
model, and the estimated cluster distributions overlap almost completely. Thus, neither of the

Krivitsky et al. Page 9

Soc Networks. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



two latent space models that we fit finds much evidence of structure or distinct groups. And
in fact there are no groups in the data, so both models reach the right conclusion in this case.

The fits of the two models to the clustered network are shown in Figure 6. Both models were
able to detect the distinct groups that are present in the data — the “Red” cluster is mostly
group 1, “Green” is group 2, and “Blue” is group 3.

To evaluate the quality of the clustering, we use a pairwise metric similar to the Fowlkes-
Mallows Index (Fowlkes and Mallows, 1983): given that two nodes drawn at random are from
the same true cluster, what is the probability that the clustering algorithm assigned them to the
same cluster? When using hard clustering (by assigning a node to the cluster to which the
plurality of MCMC iterations assign it) this probability is 79% for the model with random
sociality effects, and 78% for the model without. However, looking at the soft clustering, where
the metric defined above is averaged over the posterior distribution, the difference is more
pronounced: 73% for the model with sociality effects and 65% without. Both models identified
the clusters of actors in the data quite well, but the random effects model did so more robustly.

Also of note is the difference in the patterns of estimated latent positions. The model without
random effects gives the “Red” and “Blue” clusters a hub-and-spokes shape: a few high-degree
nodes in the middle, with many low-degree nodes in a ring around them, attracted by their ties
to the “hub” nodes, but repelled by their lack of ties to each other. On the other hand, the model
with random sociality effects addresses this by giving the high-degree nodes a high sociality
effect, low degree nodes low sociality effects, and allowing them to be positioned together,
reflecting structure adjusted for degree.

This example illustrates that networks with the same degree distribution can have very different
network behavior. Methods based on degree distributions, such as those based on scale-free,
preferential attachment and power-law models (Newman, 2003), cannot detect these
differences. However, our model clearly distinguished between networks with and without
transitivity and clustering behavior.

4.3 Example 3: Slovenian magazine and journal coreaderships
In 1999 and 2000, CATI Center Ljubljana conducted a survey, asking over 100,000 people
which magazines and journals they read, producing a 2-mode, or affiliation network
representing which readers read which magazines. These data were then compiled into a 1-
mode, undirected network of magazines as follows: for a pair of magazines, the number of
respondents who read both was counted, producing a weighted network of “coreaderships”.
The dataset also breaks the magazines down into 14 groups by type, topic, and audience: daily
newspapers, weekly news and analysis, computers, business, home and gardening, fashion,
men's interest, women's interest, special interest, women's, TV guides, regional, teen, and free.
For each magazine, the total number of respondents who reported reading it was also recorded.
These data are available as a Pajek dataset “Revije” or “Journals” (Batagelj and Mrvar,
2006).

We analyze this network to illustrate the application of our model to non-binary data, as well
as an example of a situation where a fixed covariate effect can be used in conjunction with a
latent cluster model.

The coreadership for each pair of magazines is a count of events (i.e. the respondent reporting
that he or she reads that pair of magazines) with a huge number of potential events (over
100,000). Those events (respondents) are independent, so it would be reasonable to
approximate the distribution of counts as Poisson. The model is as follows:
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(5)

(6)

Here, the latent position Zi of a magazine i can be interpreted as its position in a space of
magazine appeal types and interest groups, with clusters becoming those of magazine and target
audience types.

Magazine-specific random sociality effects (i.e. δi and δj in ηi,j = β0− ‖Zi− Zj‖ + δi + δj) could
represent the overall popularity of the magazine: a more popular magazine would have more
coreaderships. However, the overall popularity of the magazine was observed directly: the
number of readers of each magazine was tallied. Thus, rather than using random sociality
effects, we use fixed readership effects:

where x1,i,j is a function of the number of magazine readers. We would expect the number of
coreaderships of a given pair of magazines to be approximately proportional to their
readerships, so we use x1,i,j = log(ri) + log(rj), where r is a vector of magazine total reader
counts, and set the prior mean of β1 (which we called ξ1) to 1 to reflect this prior information.

This resembles somewhat the association model of Goodman (1985) but the specification of
the model is not the same. The idea of scores for the categories that are estimated from the data
is also present in Goodman's approach. However, this network cannot be considered as a
contingency table, because each respondent in the original survey could name as many
publications as he or she wanted, incrementing multiple coreadership counts at once.

We found that a two-dimensional latent space could not adequately represent the structure in
the data, and produced no clusters. However, using three dimensions allowed the model to
detect a fairly consistent clustering with up to 5 clusters, which successfully separates those
magazine categories that had within-category homophily, such that magazines within that
category had greater-than-expected coreader counts with each other.

In order to find which categories have this property, we fit a non-latent-space quasi-
independence model of the following form:

where ηi,j are defined as in (5) and ci and cj are defined as the categories of magazines i and
j, respectively. Under this model, if two magazines both belong to category k, their expected
coreadership is multiplied by eβk+1, so a positive βk+1 indicates that magazines in category k
have disproportionately high coreadership, and a negative βk+1 indicates that they have a
disproportionately low coreadership.
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We show the maximum likelihood estimates in Table 2. The estimated coefficient of log(ri) +
log(rj) is very close to 1, confirming our expectation that the coreaderships are approximately
proportional to the readerships of the magazines involved. The signs and magnitudes of the
coefficients of the homophily terms can inform our expectations of what categories will be
successfully clustered.

The most informative fit in 3 dimensions was obtained using a 6-cluster model. One of the
clusters did not have the plurality of MCMC draws assign any magazines to it, after dealing
with label-switching as recommended by Stephens (2000), but including it seemed to facilitate
mixing, as fitting a model with 5 clusters resulted in 4 non-empty clusters. The estimated
positions (or, rather, their principal components) and their clustering are given in Figure 7. The
clustering is not very strong, in the sense that for many of the magazines, no single cluster has
a clear majority of iterations assign the magazine to it. However, it does detect some of the
categories.

The cross-tabulation between clustering and known categories is given in Table 3. All the
magazines in each of the categories with very high homophily coefficients (Computers and
Fashion) were assigned to the same clusters, and most of the time the MCMC sampling process
put them in the same cluster. Men's Interest and Teen magazines also had high coefficients,
and tended to be sorted into the same clusters, though not as consistently. On the other hand,
Women's Interest magazines were not sorted into the same clusters to the same extent, despite
their high coefficient. Groups of magazines with small or negative homophily coefficients
tended to be spread out across clusters. All this suggests that the clustering model is successfully
detecting classes of magazines and target audiences.

In this example actor degree effects are observed directly rather than being inferred, and are
modeled as fixed rather than random. This example shows the usefulness of this class of models
for detecting clusters in networks with weighted edges. This network's clusters, while
meaningful, are not as clear-cut as in the other examples. We found that in this situation, the
sampling algorithm may effectively use one of the clusters to facilitate detecting the others.

5 Discussion
We have introduced an extension to the latent space model of Hoff et al. (2002) and the latent
position clustering model of HRT that also models heterogeneity in actor sociality levels by
including random effects, or with fixed covariates. We found this to give satisfactory fits to
two real network datasets, one with binary data consisting of the presence or absence of
relationships, and one with count data. We also applied our method to two simulated networks
with the same, highly skewed degree distribution, but very different network behavior: one
with transitivity and clustering and other without. Currently popular methods based on the
degree distribution only could not distinguish between such very different kinds of networks,
but our model was able to do so.

For directed data we have limited ourselves to modeling the two random effects of each
individual as uncorrelated. Hoff (2005) and van Duijn et al. (2004) modeled the sender and
receiver effects for the same individual as correlated, using a bivariate normal with a Wishart
prior. This would be an obvious further extension to the latent cluster random effects model.

One problem we have not addressed here is that of choosing the number of groups and the
latent space dimension. This can be done by recasting the problem as one of statistical model
selection and using Bayesian model selection to solve it. HRT did this for choosing the number
of groups in their latent position cluster model, Oh and Raftery (2001) did so for choosing the
dimension of the latent space for a related Bayesian multidimensional scaling model, and Oh
and Raftery (2007) did this for choosing both the number of groups and the latent space
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dimension simultaneously in model-based clustering for dissimilarities. This work could be
adapted and extended to the latent cluster random effects model.

We have used a Euclidean distance for our latent social space, but this is not the only possible
measure on which to base the model. In particular, Hoff, Raftery, and Handcock (2002) and
Hoff (2005) used an inner product, which has certain advantages. Schweinberger and Snijders
(2003) proposed using an ultrametric distance.

While we provide a reasonable heuristic for our choice of hyperparameters, the heuristic itself
is a result of experimentation, and it would be desirable to have a more principled way of
choosing the hyperparameters. One possibility would be to fit a logit model with node-specific
effects, and then use the variances of these effects to obtain an empirical-Bayes-type prior.
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Fig. 1.
Relationships among monks within a monastery and their affiliations as identified by Sampson:
Young (T)urks, (L)oyal Opposition, (O)utcasts, and (W)averers.
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Fig. 2.
Minimum Kullback-Leibler estimates of positions in the social space of monks within a
monastery. Panel (a) gives estimates from a latent cluster model without monk-specific random
effects; panel (b) adds receiver random effects. For the latter, the area of the pie chart is
proportional to the conditional odds ratio of a nomination for the monk due to his receiver
effect (also estimated using MKL), and the pie chart represents the proportions of the MCMC
draws assigning each monk to each cluster. The radii of the unfilled circles are equal to the
cluster standard deviations, σg, conditional on the MKL point estimates.
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Fig. 3.
Recovery of latent space positions and receiver effects from data simulated from the posterior
of the latent cluster random effects model fit to Sampson's Monks. Panel (a) gives the change
from the MKL estimates of latent space positions based on the original Sampson's Monks
dataset to the MKL latent space positions based on the simulated data (rotated and centered).
Panel (b) shows an actor's MKL receiver effect based on the Sampson's Monks fit plotted
against the MKL receiver effect based on the simulated data.
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Fig. 4.
Two simulated networks, each with 150 actors and the same degree distribution shown in (c).
(a) Yule network (with no transitivity or clustering); (b) Latent Cluster network, where the
labels 1–3 give the true cluster memberships.
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Fig. 5.
Minimum Kullback-Leibler locations from the models for the unclustered network in Figure
4(a). In plot (b), the area of the plotting symbol is proportional to the conditional odds ratio of
a tie for its vertex, due to its random sociality effect.
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Fig. 6.
Minimum Kullback-Leibler locations from the models for the clustered network in Figure 4
(b). In plot (b), the area of the plotting symbol is proportional to the conditional odds ratio of
a tie for its vertex, due to its random sociality effect. The numbers 1–3 give the original cluster
assignments.
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Fig. 7.
Positions and estimated clusters of magazine coreaderships. The first two principal components
of the 3-dimensional fit are plotted. Only those edges with the highest coreadership after
adjusting for readership are plotted.
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Table 1

Characteristics of Example Networks

Sampson's Monks Unclustered simulated network Clustered simulated network Slovenian publications

directed Yes No No No

data Binary Binary Binary Count

actors 18 150 150 124

density/mean 0.29 0.022 0.022 85.74

(non-0 edges) (88) (244) (244) (5972)
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Table 2

Coreadership network: differential homophily on categories

Term Coef. Estimate Std. Err.

edges β0 −11.480 0.014

log(readership) β1 1.008 0.001

Both magazines categorized…

 Business β2 +0.863 0.014

 Computers β3 +2.226 0.019

 Fashion β4 +3.325 0.053

 Free β5 +0.798 0.248

 Home and Gardening β6 −0.072 0.043

 Men's Interest β7 +1.310 0.031

 Regional β8 −2.331 0.107

 Special Interest β9 +0.559 0.022

 Teen β10 +1.554 0.022

 TV Guides β11 −0.281 0.013

 Weekly News β12 +0.152 0.011

 Women's β13 +0.416 0.006

 Women's Interest β14 +1.540 0.030

 Daily News β15 −0.696 0.008
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