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The morphological feature of tight junctions (TJs) fits well with their functions. The core of
TJs is a fibril-like proteinaceous structure within the lipid bilayer, the so-called TJ strands.
TJ strands in apposing plasma membranes associate with each other to eliminate the
intercellular space. A network of paired TJ strands generates a continuous belt that circum-
scribes each cell to establish the diffusion barrier to the solutes in the paracellular
pathway throughout the cellular sheet. Identification and characterization of TJ-associated
proteins during the last two decades has unveiled the nature of TJ strands and how they are
spatially organized. The interplay between integral membrane proteins, claudins, and
cytoplasmic plaque proteins, ZO-1/ZO-2, is critical for TJ formation and function.

Tight junctions (TJs) are fascinating struc-
tures in terms of their function and

morphology. In 1963, using ultrathin-section
electron microscopy, Farquhar and Palade
described the fine structure of TJs together
with adherens junctions (AJs) and desmosomes
at the most luminal side of the lateral membrane
(Farquhar and Palade 1963). In addition, they
demonstrated insightfully that TJs function
as permeability seals for mass tracers. Indeed,
the structure of TJs observed in electron
microscopy indicates that TJs could physically
restrict the leak of solutes through the inter-
cellular space. However, physiological studies
at the same time revealed that solute transport
occurred via the intercellular space in a variety
of epithelial cells. A resolution of these different
views of TJ function comprises the current

concept that the TJ regulates the diffusion of
solutes with size and charge selectivity and
that it is functionally different in physiologi-
cally diverse epithelial cell types (Powell 1981;
Anderson and Cereijido 2001). To understand
the molecular mechanism controlling TJ struc-
ture and function, it is important to determine
their molecular composition and organization.

Although purification of TJs is difficult,
Stevenson and Goodenough developed an
isolation method for a TJ-enriched plasma
membrane fraction from rodent liver. They dis-
covered the first TJ-associated protein, ZO-1, in
1986 by generating monoclonal antibodies
against this fraction (Stevenson et al. 1986).
Since then, many molecular components of
TJs have been identified using immunological
approaches or searches for binding proteins
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with known molecules, which have enabled
detailed molecular cell biological analyses of
TJs. Among the TJ-associated proteins, the
claudin family of membrane proteins identified
in 1998 by the Tsukita group are key molecules
in the architecture and barrier function of
TJs (Furuse et al. 1998a). Functional analyses
of claudins have allowed remarkable progress
in the development of a comprehensive under-
standing of the molecular basis of the ultra-
structure and physiological characteristics of
TJs (Van Itallie and Anderson 2006; Furuse
and Tsukita 2006; Angelow et al. 2008). In
addition, the cytoplasmic plaque proteins asso-
ciated with TJs are important in regulating TJ
architecture (Guillemot et al. 2008).

In this article, we present the molecular
basis for the core structure of TJs based
on recent progress in functional analyses of
TJ-associated proteins. The current molecular
basis of TJ physiology is covered in detail in
Anderson and Van Itallie (2009).

MORPHOLOGY OF TJS

Electron Microscopic Observations of TJs

TJs occur in epithelial cell types, including
epithelial and endothelial cells, in vertebrate
species and tunicates (Lane 2001). TJs are
located at the most apical part of junctional
complexes, next to AJs in epithelial cells. In con-
trast, TJs and AJs are spatially intermingled
in endothelial cells (Schulze and Firth 1993).
TJs are also located in myelin sheaths formed
by oligodendrocytes (Dermietzel 1974) and
Schwann cells (Tetzlaff 1978).

In ultrathin-section electron microscopy,
TJs are visualized as a zone in which adjacent
plasma membranes are closely apposed, that
circumscribes the cell as a belt together with
AJs. At high magnification, TJs are character-
ized as focal attachments of adjacent cell
membranes that exclude the intercellular
gap (Fig. 1). This appearance of TJs suggests
their function as rate-limiting barriers to the
diffusion of solutes, and this idea has been
supported by electron microscopic observa-
tions using electron-opaque tracers (Farquhar

and Palade 1963; Brightman and Reese 1969;
Goodenough and Revel 1970).

TJs have been intensely analyzed by freeze-
fracture electron microscopy, in which the
morphology of the central hydrophobic plane
of the lipid bilayer, including the particles
and pits, can be observed. In general, TJs in
glutaraldehyde-fixed epithelial cells appear as
anastomosing linear fibrils (TJ strands) on the
cytoplasmic leaflet (P-face) and grooves on
the exoplasmic leaflet (E-face) surrounding
the cell (Fig. 2) (Staehelin 1973, 1974). In some
cell types, however, TJs exhibit discontinuous
particle strands on the P-face and grooves

Figure 1. Thin section of TJs of mouse epididymis
epithelial cells. TJs are defined as close contacts
between plasma membranes of adjacent cells. Bar,
100 nm.

Figure 2. Freeze-fracture replica of TJs of mouse in-
testinal epithelial cells. TJs appear as anastomosing
fibrils, namely, TJ strands, on P-face (arrow) or
complementary grooves on E-face (arrowhead) in
glutaraldehyde-fixed specimens. Bar, 200 nm.
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containing many particles on the E-face
(Simionescu et al. 1975; van Deurs and
Koehler 1979). Furthermore, specimens that
are not fixed with glutaraldehyde before freez-
ing also reveal particle strands on the E-face
(Staehelin 1973). Detailed analyses of double
replicas have revealed that these strands
and grooves are complementary between the
P- and E-face (Chalcroft and Bullivant
1970; van Deurs and Koehler 1979). It is
widely accepted that TJ strands correspond to
the focal attachments of adjacent plasma
membranes observed in ultrathin sections.
Freeze-fracture electron microscopy has also
revealed that the number and network pattern
of TJ strands varies between cell types (Friend
and Gilula 1972; Claude and Goodenough
1973). By combining morphological obser-
vations and physiological measurements in
various epithelial cell types, the correlation
between the structure and barrier function of
TJs has been discussed (Claude 1978). In
several cases, however, the correlation was not
perfect. At that time, there was no information
about the molecular nature of TJs, and they
hypothesized that each TJ strand in various
cell types was equal. Currently, we know that
the combination of caudin types is an impor-
tant factor to determine the barrier property
of TJs.

Two models have been proposed for the
structural nature of the TJ strand based on
morphological analyses using electron micro-
scopy. The most plausible model is the protein
model, in which proteinaceous attachment
elements, i.e., adhesion molecules, hold
the apposing plasma membranes together
(Staehelin 1973). Detailed characterization of
TJ-associated integral membrane proteins,
including claudins as described in the following
section, strongly support this model. The other
model, proposed in the 1980s, is the lipid
model in which TJ strands are cylindrical
inverted lipid micelles formed by the fusion of
apposed plasma membranes, resulting in the
continuity of outer leaflets of plasma mem-
branes between adjacent cells (Pinto da Silva
and Kachar 1982). The observations that a
fluorescent-labeled lipid that was introduced

in the outer leaflet of the apical membrane of
an epithelial cell never moved to the next cell
(van Meer et al. 1986) and TJ strands are deter-
gent resistant (Stevenson and Goodenough
1984) do not conform to this model, although
specific lipids may contribute to the formation
of TJs.

Tricellular TJs: Specialized TJs at
Tricellular Corners

Considering that TJs function as continuous
barriers throughout the cellular sheet, it is
interesting to understand how tricellular con-
tacts formed by the joining of three cells are
sealed. Because TJs are thought to be zipper-
like structures formed between two adjacent
cells, it is not simple to see how they could
exclude the extracellular space between three
plasma membranes. Specialized structures,
namely tricellular TJs (tTJs), are observed
in these regions by freeze-fracture electron
microscopy (Staehelin et al. 1969; Friend
and Gilula 1972; Staehelin 1973; Wade and
Karnovsky 1974). At tTJs, the most apical
elements of the horizontal TJ strands from
both sides attach and turn together to extend
vertically in the basal direction (Fig. 3). These
vertical TJ strands link to several short hori-
zontal TJ strands that connect with the main
portion of the TJ strands. As a result, three
sets of parallel and closely spaced TJ strands
extend vertically to form a narrow tube at the
extracellular space of the tricellular contact
region. This tube is thought to reduce to a neg-
ligible amount the free diffusion of solutes
through the intercellular space (Staehelin 1973).

MOLECULAR ORGANIZATION OF THE
CORE STRUCTURE OF TJS

Overview of TJ-associated Proteins

Many molecular components of TJs have been
identified and characterized. Like other inter-
cellular junctions, TJs are protein complexes
composed of integral membrane proteins,
cytoplasmic plaque proteins, and cytoskeletal
proteins. Among these, the claudin family
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membrane proteins are key components for the
structure and function of TJs (Van Itallie and
Anderson 2006; Furuse and Tsukita 2006;
Angelow et al. 2008). Claudin molecules inter-
act with each other between cells and probably
polymerize within the plasma membrane as
fibrils to generate TJ strands. Occludin and
tricellulin, comprising other types of four trans-
membrane domain-containing proteins with
related amino acid sequences, are incorporated
into or localized very close to claudin-based
TJ strands (Furuse et al. 1993; Fujimoto 1995;
Ikenouchi et al. 2005). In addition, immuno-
globulin superfamily membrane proteins with
two extracellular Ig-like domains, including
JAM-A, JAM4, coxsackie adenovirus receptor
(CAR), and endothelial cell-selective adhesion
molecule (ESAM), are also localized at TJs
(Martin-Padura et al. 1998; Hirabayashi et al.
2003; Cohen et al. 2001; Nasdala et al. 2002).

On the cytoplasmic side of TJ strands,
the membrane-associated guanylate kinase

(MAGUK) family proteins ZO-1, ZO-2, and
ZO-3 (Stevenson et al. 1986; Gumbiner et al.
1991; Haskins et al. 1998) bind to the
C-terminal cytoplasmic domain of claudins,
occludin, tricellulin, and JAM-A. In addition,
MAGI-1, MAGI-3, MUPP1, and PATJ are
known to be PDZ (PSD-95, discs-large, ZO-1)
domain-containing proteins that directly bind
to claudins or other TJ-associated membrane
proteins (Ide et al. 1999; Laura et al. 2002;
Hamazaki et al. 2002; Lemmers et al. 2002;
Roh et al. 2002; Jeansonne et al. 2003). Other
cytoplasmic proteins with coiled-coil domains,
such as cingulin and JACOP/paracingulin, are
concentrated relatively far from the plasma
membrane of TJs (Citi et al. 1988; Ohnishi
et al. 2004). Of these proteins, at least the ZO
family of proteins and cingulin interact with
F-actin (Itoh et al. 1997, 1999b; Fanning et al.
1998, 2002; Wittchen et al. 1999; D’Atri and
Citi. 2001), which is present on the cytoplasmic
side of TJs (Madara 1987). Signaling molecules,
including the aPKC-Par3-Par6 complex, which
is involved in epithelial polarity formation, are
also localized on the cytoplasmic side of TJs
and regulate mature TJ formation (Izumi et al.
1998; Suzuki and Ohno 2006; Ebnet et al.
2008). Furthermore, ZONAB, a transcription
factor involved in cell growth, has been reported
to be localized at TJs (Balda et al. 2003).

Among these TJ-associated proteins, clau-
dins and ZO proteins are directly involved
in the formation of TJ strands in epithelial
cells. Two other membrane proteins with four
transmembrane domains, occludin and tricel-
lulin, appear to have intimate relationships
with claudins and modulate TJ strand for-
mation. These proteins are highlighted in this
section as constituents of the core structure
of TJs.

Claudins

Claudin Family

Claudins were originally identified as mem-
brane proteins that cofractionated with oc-
cludin, the first identified integral membrane
protein of TJs, by sucrose density gradient

Figure 3. Freeze-fracture replica of tTJs in MDCK
cells. At tricellular corners, the most apical elements
of the horizontal TJ strands from both sides
(arrowheads) attach to form the central seal and
extend vertically in the basal direction. Short,
horizontal strands connect with the central seal.
Bar, 100 nm.
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centrifugation of a sonicated TJ/AJ-enriched
membrane fraction isolated from chick liver
(Furuse et al. 1998a). Claudins comprise a
multigene family with approximately 24
members in humans and mice (Van Itallie
and Anderson 2006; Furuse and Tsukita 2006;
Angelow et al. 2008). Claudins are 21–28-kD
proteins and consist of four transmembrane
domains, two extracellular loops, amino- and
carboxy-terminal cytoplasmic domains, and a
short cytoplasmic turn. Most claudins have
the conserved motif GLWxxC(8-10 aa)C in
the first extracellular loop, and a PDZ domain-
binding motif at the carboxy-terminal, which

binds to the TJ-associated PDZ domain-
containing plaque proteins ZO-1, ZO-2, and
ZO-3 (Fig. 4) (Itoh et al. 1999a). Claudins are
key components for the structure and function
of TJs. To investigate the roles of claudins in the
barrier/channel property of TJs, overexpression
and RNAi-mediated suppression of particular
claudins in epithelial cell lines followed by
physiological measurements have been carried
out (see Anderson and Van Itallie 2009). In
addition, many claudin knockout mice have
been generated and analyzed to clarify the
roles of the individual claudins in vivo (Furuse
2009).
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Figure 4. The membrane-spanning model of claudins and the domain organization of claudin-binding plaque
proteins. Claudins contain four transmembrane domains. The conserved amino acid residues in the first
extracellular loop are indicated. The PDZ domain binding motif is located at the carboxyl terminus, which is
known to bind to PDZ-domains in ZO-1, ZO-2, ZO-3, MUPP1, and PATJ (stars). (GUK) guanylate kinase
domain; (L27) LIN2, 7 homology domain; (U5) unique 5 region; (U6) unique 6 region. U6 contains the
acidic region.
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TJ Strand Formation by Claudins

The most obvious function of claudins is
to generate TJ strands, the structural and
functional core of TJs within the plasma
membrane. When claudins are overexpressed
in mouse L fibroblasts lacking endogenous
TJs, the exogenous claudins concentrate into
cell–cell contacts between adjacent cells and
generate TJ strands with the induction of cell
adhesive activity (Furuse et al. 1998b; Kubota
et al. 1999). Immunoelectron and immuno-
fluorescence microscopy analyses revealed that
claudins themselves generate TJ strands as
structural components (Furuse et al. 1998b;
Sasaki et al. 2003). Importantly, addition to
the culture medium of the carboxy-terminal
of Clostridium perfringens enterotoxin, which
binds to the second extracellular loop of some
claudin types and functions as an inhibitor of
these claudins, results in the removal of some
claudin types from TJs accompanied by a
reduction in the number of TJ strands and
loss-of-barrier function (Sonoda et al. 1999).
Furthermore, in claudin-11-deficient mice,
TJ strands disappear in Sertoli cells, oligo-
dendrocytes (Gow et al. 1999), and marginal
cells of the inner ear (Gow et al. 2004; Kitajiri
et al. 2004), where claudin-11 is the only
known claudin type to be expressed. These
observations from gain-of-function and
loss-of-function studies confirm that claudins
are involved in the structure of TJ strands.
Deletion of the carboxy-terminal cytoplasmic
region of claudin-1 did not abolish TJ strand
reconstitution in L cells (Furuse et al. 1998b),
also indicating that the ability to form TJ
strands is mediated by claudins. In epithelial
cells, however, the TJ-associated plaque proteins
ZO-1 or ZO-2 are required for TJ strand
formation by claudins (Umeda et al. 2006)
(see Section ZO-1, ZO-2, and ZO-3).

TJ Strand as a Mosaic of Multiple
Claudin Types

Most cell types coexpress multiple claudin
subtypes in vivo in combinations and pro-
portions that vary among different cell types.

This complex expression pattern of claudins
creates diversity in the barrier/channel prop-
erty of TJs, depending on each epithelium (see
Anderson and Van Itallie 2009 for details).
The manner in which multiple claudins gener-
ate TJs between cells has been analyzed using
L cells overexpressing various claudin types
(Furuse et al. 1999). Coculture of L cells ex-
pressing claudin-1, -2, or -3 revealed that the
combinations of claudin-1/-3 and claudin-
2/-3, but not claudin-1/-2, could form hetero-
typic TJ strands. Furthermore, coexpression of
two of these three claudins in L cells revealed
that these claudins could copolymerize into
single TJ strands in a heteromeric manner in
individual cells. In other analyses using HeLa
cells, claudin-3 and claudin-4 were unable
to assemble heterotypically between cells, but
their heteromeric assembly is possible
(Daugherty et al. 2007). These experiments
suggest that TJ strands are generally comprised
of mosaics of different claudins that form
homotypic and heterotypic interactions
between cells and homomeric and heteromeric
complexes in individual cells, although their
compatibility is dependent on the right
claudin combination. It is important to remem-
ber this complex architecture of claudin-based
TJ strands when the barrier property of TJs is
considered in terms of claudin content. Note,
however, that claudin types may also be separ-
ated within TJs in the same cell surface in
vivo. For example, TJ strands can be divided
into two subdomains between outer hair cells
and supporting Deiter cells in the organ of
Corti in the inner ear; claudin-14 is concen-
trated in the apical TJ strands, whereas
claudin-6 and claudin-9 are localized at lateral
TJ strands (Nunes et al. 2006).

Structural Units of TJ Strands

Freeze-fracture replica electron microscopy
studies with glutaraldehyde-fixed samples re-
vealed that the E-face/P-face distributions of
the intramembrane particles of TJ strands vary
among different cell types. This variation
appears to depend on the claudin types
forming the TJ strands. For instance, TJ
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strands generated in L cells with claudin-1 and
fixed with glutaraldehyde exhibit continuous
rod-shaped strands on the P-face, whereas
those in L cells with claudin-5 show thin and
shallow grooves on the P-face and many
particles on the E-face (Furuse et al. 1998b;
Morita et al. 1999). An attractive hypothesis is
that the P-face distribution of TJ strands is
because of the interaction of the intramem-
brane components of TJs with cytoplasmic
components (Balda and Anderson 1993).
This does not appear to be the case because
carboxy-terminal-deleted claudin-1, which can-
not associate with cytoplasmic plaque proteins,
still exhibits a P-face distribution (Furuse et al.
1999).

Because quick-freeze samples show chains
of E-face-associated particles, it is reasonable
to think that this is the unit particle structure
of TJ strands. However, it remains unclear
how this unit particle is constituted from
claudin molecules. Interestingly, an intramem-
brane particle of TJs is similar to the diameter
of a connexon, the basic unit of gap junctions
consisting of the hexamer of connexins
(Tsukita and Furuse 1999; Kumar and Gilula
1996). Both claudins and connexins have four
transmembrane domains. Therefore, each
E-face-associated particle of TJs may be com-
posed of a claudin oligomer, similar to the
hexamer of connexins, rather than claudin
monomer. So far, there is no direct evidence
to demonstrate this idea, although a crosslink-
ing experiment indirectly implied the possi-
bility of claudin oligomer formation in
claudin-4-overexpressing insect cells (Mitic
et al. 2003).

Modification of Claudins

Claudins are posttranslationally modified by
palmitoylation and phosphorylation. All clau-
dins have membrane proximal CxxC motifs
near the ends of the second and fourth trans-
membrane domains. Both of these regions in
claudin-14 are palmitoylated (Van Itallie et al.
2005). Site-directed mutagenesis revealed that
this modification of claudin-14 is required for
its efficient localization at TJs, but not the

stability of claudin-14 protein or the assembly
of TJ strands.

Ser or Thr residues in the carboxy-terminal
cytoplasmic regions of several claudins, in-
cluding claudin-3, -4, -5, and -16, are phos-
phorylated (D’souza et al. 2005; Aono and
Hirai. 2008; Ishizaki et al. 2003; Ikari et al.
2006). This modification seems to regulate the
localization of claudins and the barrier prop-
erty of TJs, but the molecular mechanisms
remain unknown.

Occludin

Occludin, the first-reported integral membrane
protein of TJs, was identified by screening
with monoclonal antibodies raised against an
AJ/TJ-enriched plasma membrane fraction
isolated from chick liver (Furuse et al. 1993).
Occludin is an approximately 65-kD pro-
tein with four transmembrane domains, two
extracellular loops, an intracellular turn, and
carboxy- and amino-terminal cytoplasmic
domains, but does not exhibit any sequence
similarities with claudins. The first extracellular
loop has a characteristic amino acid content
(�60% of the amino acids are glycine and tyro-
sine residues), whose physiological significance
remains elusive. The carboxy-terminal cyto-
plasmic region of occludin binds to ZO-1,
ZO-2, and ZO-3, comprising the MAGUK
family plaque proteins of TJs (Furuse et al.
1994; Fanning et al. 1998; Itoh et al. 1999a;
Haskins et al. 1998). Multiple Ser and Thr resi-
dues in this region are phosphorylated, and
highly-phoshorylated occludin is selectively
concentrated at TJs (Sakakibara et al. 1997).

Overexpression studies in cultured cells
revealed some activities of occludin in TJ for-
mation and cell adhesion, although these activi-
ties are much weaker than those of claudins.
When overexpressed in mouse L fibroblasts,
which lack TJs as well as cadherin-mediated
cell–cell adhesion, exogenous mouse occludin
assembles into cell–cell contacts formed by
adjacent cells as dots observed by immuno-
fluorescence microscopy (Furuse et al. 1998b).
Short TJ strandlike structures containing
occludin are observed in these regions by
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freeze-fracture electron microscopy. When
human occludin is expressed in fibroblasts, the
cells acquire weak cell–cell adhesive activity
(Van Itallie and Anderson 1997). In these cells,
addition of synthetic peptides corresponding
to the first extracellular loop inhibits cell–cell
adhesion. Overexpression of chicken occludin
in MDCK cells increased the number of
TJ strands (McCarthy et al. 1996), whereas
overexpression of human occludin induced
side-to-side aggregation of TJ strands (Medina
et al. 2000). Furthermore, overexpression of
occludin affected the transepithelial electric
resistance as well as the paracellular flux in
various epithelial cell lines (McCarthy et al.
1996; Balda et al. 1996; Bamforth et al. 1999).
These observations suggest that occludin has
some accessory functions in TJ formation.
However, occludin-deficient epithelial cells
exhibit no significant abnormalities in the
morphology and physiology of their TJs,
and occludin-deficient mice are viable (Saitou
et al. 1998; Saitou et al. 2000). Occludin-
related proteins, such as tricellulin, may have
redundant functions, thereby obscuring the
function of occludin.

Tricellulin

Tricellulin is the only known protein that
is highly concentrated at tTJs, the vertically
oriented TJ strands at tricellular contacts.
Tricellulin was originally identified as an
epithelium-specific transcript in a screening
for putative targets of the Snail transcription
repressor, which determines epithelial–
mesenchymal transition (Ikenouchi et al.
2005). Tricellulin gene was also identified as
a causative gene for recessive, nonsyndromic
deafness DFNB49 (Riazuddin et al. 2006).
Tricellulin contains four transmembrane dom-
ains and has sequence similarity with occludin
in the carboxy-terminal cytoplasmic domain
of approximately 130 amino acids. This region
of occludin is responsible for its association
with ZO-1, and tricellulin also binds ZO-1
(Riazuddin et al. 2006). RNAi-mediated
suppression of tricellulin in epithelial cells
results in abnormal organization of tTJs and

impairment of epithelial barrier function
(Ikenouchi et al. 2005). Furthermore, tricellulin
knockdown also appears to affect bicellular TJ
formation, as evaluated by immunostaining of
occludin. Interestingly, occludin knockdown
in cultured epithelial cells causes mislocaliza-
tion of tricellulin to bicellular TJs, indicating
a role of occludin in the concentration of
tricellulin at tTJs (Ikenouchi et al. 2008).

When tricellulin is expressed in claudin-1-
overexpressing L cells, it is colocalized with
claudin-1-based reconstituted TJ strands and
induces their crosslinking (Ikenouchi et al.
2008), suggesting that tricellulin influences the
morphology of TJ strands. Although tricellulin
is highly concentrated at tTJs, it is also detected
at bicellular TJs and the extent of the bicellular
distribution of tricellulin depends on the
epithelial cell type (Ikenouchi et al. 2005).
Therefore, it will be of interest to analyze the
relationship between the amount of tricellulin
within bicellular TJs and the morphology of
TJ strand branching in different cell-types.
Despite the critical role of tricellulin in tTJ
formation, the function of tricellulin in the
organization of tTJs together with claudins
remains largely unknown.

ZO-1, ZO-2, and ZO-3

TJ MAGUKs

Just beneath the plasma membrane of TJs,
PDZ domain-containing cytoplasmic proteins
directly interact with TJ-associated integral
membrane proteins and form cytoplasmic
plaques, which function as scaffolds to recruit
other structural proteins, signaling proteins,
and the actin cytoskeleton to the underlying
surface of TJs. Three structurally related pro-
teins, ZO-1, ZO-2, and ZO-3, are included in
these cytoplasmic plaques. ZO-1 was the first
reported TJ-associated molecule. It was iden-
tified by generating monoclonal antibodies
against a TJ-enriched membrane fraction iso-
lated from mouse liver (Stevenson et al. 1986).
ZO-2 and ZO-3 were later identified as copre-
cipitated proteins with ZO-1 from extracts of
cultured epithelial cells (Gumbiner et al. 1991;
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Haskins et al. 1998). All of these proteins belong
to the MAGUK family and consist of three PDZ
domains, a SH3 domain, and a guanylate kinase
(GUK) domain from their amino-termini
(Guillemot et al. 2008). ZO-1 and ZO-2 have
acidic domains next to their GUK domains
(Fig. 4). Multiple domains of ZO-1, ZO-2,
and ZO-3 are involved in complex interactions
with other TJ-associated molecules. The first
PDZ domains of ZO-1, ZO-2, and ZO-3
directly bind to the carboxy-termini of claudins
in vitro (Itoh et al. 1999b). ZO-1 also binds to
the TJ-associated integral membrane proteins
occludin and JAM-A (Furuse et al. 1994;
Fanning et al. 1998; Bazzoni et al. 2000; Itoh
et al. 2001; Li et al. 2005), and the cytoplasmic
proteins cingulin and ZONAB (Corndenonsi
et al. 1999; Balda et al. 2003). ZO-1, ZO-2,
and ZO3 can interact with actin filaments
(Itoh et al. 1997, 1999b; Fanning et al. 1998,
2002; Wittchen et al. 1999). ZO-1 and ZO-2
form heterodimers through their second PDZ
domains (Utepbergenov et al. 2006). ZO-1
and ZO-3 also form heterodimers, but trimer
formation between ZO-1, ZO-2, and ZO-3 has
not been detected (Wittchen et al. 1999).

Roles of ZO-1 and ZO-2 in TJ Formation

Among the three TJ MAGUK proteins, ZO-1
and ZO-2 have been shown to be indispensable
for TJ formation in epithelial cells. Targeted dis-
ruption of the ZO-1 gene and RNAi-mediated
depletion of ZO-2 protein in mouse epithe-
lial cells without ZO-3 expression results in
deficient TJ formation (Umeda et al. 2006).
Using these cells, the role of TJ MAGUKs in
TJ strand formation was further characterized.
Re-expression of either ZO-1 or ZO-2 recovered
normal TJ formation in these cells, whereas the
introduction of ZO-3 did not. A deletion con-
struct of ZO-1 containing only three PDZ
domains did not rescue the phenotype, but a
longer construct containing the three PDZ
domains, SH3 domain, GUK domain, and the
following acidic domain induced normal TJ
formation. However, a slightly shorter construct
without the acidic domain induced aberrant TJ
strand formation on lateral membranes.

These observations indicate that the
SH3þGUKþacidic domains of ZO-1 play
important roles in the correct localization
of ZO-1 as well as the induction of claudin
polymerization into TJ strands. Indeed, this
region containing the SH3þunique-5 (U5)þ
GUKþunique-6 (U6) domains is highlighted
as the entire SH3-GUK module in terms of
the function in TJ formation (Fanning et al.
2007). U5 is the domain that links the SH3
domain and the GUK domain, whereas the
U6 domain is immediately adjacent to the
GUK domain. The GUKþU6 domains can
bind to the SH3 domain, suggesting that the
SH3-GUK module forms intramolecular inter-
actions. A ZO-1 mutant lacking the U5 domain
expressed in cultured epithelial cells was unable
to localize to TJs and was distributed in the
cytoplasm. On the other hand, a ZO-1 mutant
lacking the U6 domain induced ectopically
extended TJ strands to the lateral plasma
membrane (Fanning et al. 2007).

Despite critical roles of the SH3-GUK
module containing U5 and U6 domains, it
remains unclear how ZO-1 is recruited to the
correct region of the lateral membrane to
induce TJ strand formation. The interaction
of the SH3-GUK module of ZO-1 with
AJ-associated molecules such as a-catenin and
afadin might be implicated in this recruitement
(Itoh et al. 1997; Yokoyama et al. 2001).
Interestingly, in ZO-1/ZO-2/ZO-3-depleted
epithelial cells, artificial anchoring of the three
PDZ domains of ZO-1 to the plasma membrane
by myristylation at the amino terminus did not
induce TJ formation, whereas dimerization of
this construct induced TJ formation through-
out the lateral membrane (Umeda et al.
2006). Therefore, dimerization of ZO-1 (or
ZO-2) just beneath the plasma membrane
may trigger TJ formation, for instance by induc-
ing claudin polymerization. The SH3-GUK
module of ZO-1 may be involved in this dimer-
ization, as proposed for the other MAGUK
proteins hDlg and hCASK (Nix et al. 2000).

The roles of ZO-1 and ZO-2 are not limited
to TJ formation. In calcium switch assays,
ZO-1/ZO-2/ZO-3-depleted epithelial cells
exhibit a delay in the transition from spotlike
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AJs to beltlike AJs with linear actin cables.
Depletion of ZO-1 in epithelial cells causes a
delay in TJ formation (Umeda et al. 2004;
McNeil et al. 2006), but this phenotype may
also be because of a delay in AJ formation.
ZO-1 and ZO-2 are required for Rac1 activation
and myosin II recruitment during linear AJ for-
mation (Ikenouchi et al. 2007; Yamazaki et al.
2008). Therefore, ZO-1 and ZO-2 appear to
be involved in sequential steps in the assembly
of AJ and TJ as well as their physical segregation
in the membrane.

CONCLUDING REMARKS

The major molecular components of the core
structure of TJs have been identified and charac-
terized. Claudins are the main constituent of TJ
strands, and cytoplasmic plaque proteins ZO-1
and ZO-2 directly regulate TJ strand formation
and location in epithelial cells. However, many
issues concerning the detailed structure of TJ
strands remain unsolved.

A more complete understanding of the fine
structure of TJ strands will require analysis by
structural biological approaches, which may
also provide important information about the
size and charge selectivity of TJs (see review by
Anderson and Van Itallie 2009). Furthermore,
little is known about the mechanism of
the ZO-1/ZO-2-mediated control of claudin
polymerization within membranes. Recent
studies indicate that dimerization of the
claudin-interacting domains of ZO-1 and
ZO-2 triggers claudin polymerization. On the
other hand, it is unlikely that all claudins in
the TJ bind to ZO-1 and ZO-2. Further research
into the SH3-GUK module (the regulatory
domains for TJ MAGUKs) of ZO family
members will be key to understanding this
problem. Interestingly, claudins lacking the
carboxy-terminal cytoplasmic region, which
interacts with ZO-1 and ZO-2, reconstitute TJ
strands in mouse L fibroblasts, whereas TJs are
not formed in epithelial cells lacking ZO-1
and ZO-2. Clarification of the molecular
mechanisms behind this discrepancy in
claudin-based TJ formation between epithelial
cells and fibroblasts will provide important

information about the polymerization of clau-
dins within the plasma membrane.

A new research area of TJs is how tTJs are
formed. Although tricellulin is required for
the formation of normal tTJs and the epithelial
barrier function, it is unknown how tricellulin
functions in tTJs and how it is recruited there.
Further functional analyses of tricellulin as
well as the identification of novel components
associated with tTJs will lead to better under-
standing of the molecular mechanism of tTJ
formation and biological significance for tTJ
sealing.

Finally, the function of occludin, the first
identified TJ-associated integral membrane
protein, is still not well understood although it
was identified more than 15 years ago. It must
have an important function because occludin-
deficient mice cannot produce offspring
(Saitou et al. 2000). Because occludin exhibits
structural similarity with tricellulin, these
two proteins may share redundant functions,
although it is still unknown whether they are
incorporated into or localized very closed to
claudin-based TJ strands. Further investigation
of the relationship between occludin and tri-
cellulin may clarify the common role of these
molecules in TJ formation and regulation.
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