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ABSTRACT

Motivation: The proportion of non-differentially expressed genes (π0)
is an important quantity in microarray data analysis. Although many
statistical methods have been proposed for its estimation, it is still
necessary to develop more efficient methods.
Methods: Our approach for improving π0 estimation is to modify
an existing simple method by introducing artificial censoring to
P-values. In a comprehensive simulation study and the applications
to experimental datasets, we compare our method with eight existing
estimation methods.
Results: The simulation study confirms that our method can
clearly improve the estimation performance. Compared with the
existing methods, our method can generally provide a relatively
accurate estimate with relatively small variance. Using experimental
microarray datasets, we also demonstrate that our method can
generally provide satisfactory estimates in practice.
Availability: The R code is freely available at http://home.gwu
.edu/~ylai/research/CBpi0/.
Contact: ylai@gwu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Microarray technology is a powerful tool for studying complex
diseases (Mootha et al., 2003) and for assessing the effects of
drugs (Salvatore et al., 2008) at the molecular level. It is an
experimental method by which thousands of genes can be printed on
a small chip and their expression can be measured simultaneously
(Lockhart et al., 1996; Schena et al., 1995). It can be used to detect
changes in gene expression between normal and abnormal cells,
which enables scientists to detect novel disease-related genes (Singh
et al., 2002). Many statistical methods have been developed for
this purpose (Cui and Churchill, 2003). Although other advanced
genomics technologies, such as RNA sequencing (Nagalakshmi
et al., 2008; Wilhelm et al., 2008), have been developed, microarrays
have been continuously used for broad biomedical studies (Cancer
Genome Atlas Research Network, 2008). Furthermore, since the
structures of data from different genomics technologies are basically
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similar, methods for analyzing microarray data can also be useful
for analyzing other similar genomics data.

Performing statistical tests for a large number of genes raises
the need for an adjustment for multiple hypothesis testing (MHT).
A widely used method to address this issue is the false discovery
rate (FDR; Benjamini and Hochberg, 1995) that evaluates the
proportion of false positives among claimed positives. FDR control
is less stringent than the traditional family-wise error rate (FWER)
control such as the Bonferroni correction, and provides more
power for discovering differentially expressed genes. However,
estimating FDR involves the estimation of π0, the proportion of
non-differentially expressed (null) genes [(1−π0) corresponds to
the proportion of differentially expressed genes]. A reliable estimate
of π0 is also of great importance to the sample size calculation for
microarray experiment design (Jung, 2005; Wang and Chen, 2004).

Avariety of methods have been proposed for estimating π0. Storey
and Tibshirani (2003) proposed qvalue. This method uses the ordered
P-values and a cubic spline, and estimates π0 as the value of the fitted
spline at a value close to 1. Pounds and Morris (2003) suggested
BUM, a ‘beta-uniform’ mixture model with the estimate of π0 being
the value of the fitted model at 1. convest, a method introduced by
Langaas et al. (2005), utilizes a non-parametric convex decreasing
density estimation method and gives the value of the density at 1 as
an estimate of π0. A histogram-based method has also been proposed
(Mossig et al., 2001; Nettleton et al., 2006). The above methods
usually provide conservative estimates of π0; in other words, they
are expected to give positively biased π0 estimates. This has been
considered an advantage, since it protects against overestimating the
number of differentially expressed genes.

Many other methods have also been proposed for estimating π0.
Lai (2007) proposed a non-parametric moment-based method
coupled with sample-splitting to achieve the identifiability and
obtained a closed-form formula for π0. Scheid and Spang
(2004) presented the successive exclusion procedure (SEP),
which successively excludes genes until the remaining u-values
(transformed P-values) are sufficiently close to a uniform
distribution U[0,1]. SEP estimates π0 by J/m, where J is the
estimated number of null genes, and m is the total number of genes.
Guan et al. (2008) estimated the marginal density of P-values using
a Bernstein polynomial density estimation, and gave a closed-form
expression for their π0 estimator. Liao et al. (2004) obtained an
estimate of π0 through Bayesian inference from a mixture model,
which requires the distribution of P-values from non-null genes to
be stochastically smaller than that from null genes. In addition to
the above methods, there are still many other proposed methods
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for estimating π0 (Broberg, 2005; Dalmasso et al., 2005; Jiang
and Doerge, 2008; Lu and Perkins, 2007; Pounds and Cheng,
2004, 2006). Furthermore, π0 can also be estimated through a
normal mixture model based on the z-scores obtained from P-values
(McLachlan et al., 2006).

In this study, to improve π0 estimation, we propose a simple
method, which is a modification of BUM. The novelty of our
method is the introduction of artificial censoring to P-values so that
an improved estimation can be achieved. Our motivation is based
on the observation that a well-fitted BUM curve for the empirical
P-value distribution may not be optimized for estimating π0. In the
following sections, we first introduce the statistical background and
our method; then, we present the evaluation and comparison results
from our simulation and application studies. Finally, we give some
brief discussion to conclude our study.

2 METHODS

2.1 Detection of differential expression
In a typical microarray experiment, the gene expression in two groups of
cells can be compared. On a microarray chip, a large number of genes can
be monitored simultaneously, which provides researchers with measurement
for each gene in each group. For example, to assess genes’ involvement in
tumor growth, the expression of tens of thousands of genes can be measured
in normal and cancerous cells. Depending on the number of microarray
chips available, multiple measurements for the expression of each gene are
obtained.

For each gene, let µ1 and µ2 be the true mean intensities, in groups 1 and 2,
respectively. To determine whether the gene is differentially expressed, the
null and alternative hypotheses are:

H0 :µ1 =µ2 versus Ha :µ1 �=µ2.

A commonly used test statistic is the Student’s t-test (assuming equal
variances). A positive is claimed when H0 is rejected in favor of Ha, and a
negative when H0 is not rejected. A positive means that the gene is declared
differentially expressed; a negative means that the gene is declared non-
differentially expressed.

If we knew the true state of each gene (i.e. whether it is truly differentially
expressed or not), then the results of testing m genes simultaneously could
be classified into four categories (each denoted by the random variable in
parentheses): true positives (S), false positives (V ), true negatives (U) and
false negatives (T ). Table 1 gives an illustration. Ideally, one would like to
minimize V and T , and maximize S and U.

The probability Pr
(
V >0

)
is called the FWER. In MHT, strong control is

defined as maintaining the FWER below a specified level α. The traditional
strong-control method is the Bonferroni procedure; that is, rejecting each H0

corresponding to a P-value less than α/m. However, in microarray studies,
α/m is typically so small that it is unlikely that many null hypotheses will
be rejected. A widely used alternative is to control the FDR, the expected
proportion of false positives (V ) among the claimed positives (R=V +S)

Table 1. Numbers of true/false null hypotheses and negatives/positives in
the situation of MHT

True null False null Total

Negative U T m−R
Positive V S R
Total m0 m−m0 m

(Benjamini and Hochberg, 1995):

FDR =E(Q), where Q= V

R
when R>0, and Q=0 otherwise.

Other versions of FDR have also been proposed: Tsai et al. (2003)
considers the estimation of four other FDR versions. In general, controlling
FDR provides higher statistical power for discovering differentially
expressed genes. Let m0 =U +V denote the total number of true null
hypotheses, and π0 =m0/m denote the proportion of true null hypotheses
(i.e. the proportion of non-differentially expressed genes; so the proportion
of differentially expressed genes is 1−π0). Suppose that a researcher rejects
H0 for each gene with a P-value less than a prespecified level α. To estimate
the corresponding FDR in this situation, Storey (2002) proposed

F̂DR(α)= mπ̂0α

r(α)
,

where π̂0 is an estimate of π0, and r(α) is the observed number of positives.
From this equation, it is clear that the accuracy of an FDR estimate depends
on the estimation of π0, which is the parameter of interest in this study.

2.2 The beta-uniform mixture model
Pounds and Morris (2003) have proposed the beta-uniform mixture (BUM)
model. It assumes the following model for the marginal distribution of
P-values:

f (p)=γ+(1−γ)αpα−1,

where 0<p≤1, 0<γ<1 and 0<α<1.
Based on this simple model, Pounds and Morris (2003) have proposed the

following estimate of π0:

f̂ (1)= γ̂+(1− γ̂)α̂,

where γ̂ and α̂ are the MLE estimates.

2.3 Our approach
To represent the marginal distribution of P-values, BUM uses a mixture
of the uniform distribution U[0,1] (also Beta(1,1)) and a Beta distribution
Beta(α,1) with 0<α<1. However, BUM is too simplistic to achieve a robust
performance in practice. Let p={p1,p2,...,pm} be the observed P-values.
Under the independence assumption, the log-likelihood is given by

L(γ,α|p)=
m∑

i=1

log[f (pi)]=
m∑

i=1

log[γ+(1−γ)αpα−1
i ].

BUM estimates the fitted model curve by maximizing this log-likelihood.
As p→0, f (p)→∞. Clearly, the smaller a pi is, the larger its contribution
will be to the log-likelihood. Therefore, to optimize the fitted curve, BUM
places more weight on smaller P-values. However, π0 is our focus and is
estimated by f̂ (1), which depends more on the P-values close to 1. To solve
this problem, we propose the following censored beta mixture model.

2.3.1 A censored beta mixture model To improve BUM, we artificially
censor the P-values that are less than a cut-off point λ. These P-values
are considered ‘indistinguishable’. In other words, even though the actual
P-values less than λ are available, we do not use those values; our model
only uses the number of such P-values. (We do not consider P-values< λ as
missing data). In this way, we aim to reduce the effect of very small P-values.
Then, we have the mixture model:

f (p)=γg1(p)+(1−γ)g2(p),

where

g1 =
{

censored 0≤p<λ

1 λ≤p≤1

is a left-censored uniform distribution U[0,1] and,

g2 =
{

censored 0≤p<λ

αpα−1 λ≤p≤1

is a left-censored Beta(α,1) distribution (0 < α < 1). Figure 1 provides an
illustration of this model.
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Fig. 1. (A) Graph of g1, a censored uniform distribution U[0,1]. (B) Graph
of g2, a censored beta distribution Beta(α,1).

Remark 1. Note that although we do not assume a specific form for the
density of f (p) in [0,λ), we know that Pr(0 ≤ p < λ|g1)=λ and Pr(0 ≤ p
< λ|g2)=λα. The marginal probability is Pr(0 ≤ p < λ) = γλ+ (1−γ)λα.

Remark 2. In this study, we assume that λ is given as 0.05, which
is conventionally considered small (e.g. a threshold value for declaring
statistical significance in practice). It is theoretically true that selecting a
λ less than the minimum P-value is equivalent to using BUM. Furthermore,
as pointed out by a reviewer, selecting a large λ is very similar to using
qvalue or the histogram methods.

2.3.2 Estimating model parameters Our model is a special case of the
two-component mixture model in Ji et al. (2005). It consists of a censored
Beta(1,1) (equivalent to U[0,1]), and a censored Beta(α,1). Therefore, we
can use the Expectation–Maximization (EM) algorithm (McLachlan and
Krishnan, 2008) to estimate the parameters γ and α. Following Ji et al.
(2005), we augment the data by introducing the latent indicator variables zi,
1≤ i≤m (where m is the total number of genes) defined as:

zi =
{

0 if pi belongs to the component g1,

1 if pi belongs to the component g2.

Let z={z1,z2,...,zm}. The log-likelihood of our model given the
‘complete’ data {p,z}, is:

L(γ,α|p,z)= log

{
m∏

i=1

[(γg1)1−zi ((1−γ)g2)zi ]
}

To maximize the log-likelihood with respect to γ and α, given the
‘complete’ data, we take the partial derivative of the above equation with
respect to γ and set it equal to zero, and then do the same for α. Solving
these two equations, we obtain the following maximum likelihood estimates
of γ and α to be used in the M-step of the EM algorithm:

γ̂ =
∑m

i=1 (1−zi)

m
;

α̂ = −
∑

i:λ≤pi≤1 zi

log(λ)
∑

i:0≤pi<λ zi +∑
i:λ≤pi≤1 zi log(pi)

.

In the E-step of the EM algorithm, we need to update the expected values
of the {zi}. Given the current estimates of γ and α, we can compute z�

i =
E(zi|p,γ̂,α̂). Since each zi is an indicator variable, z�

i is the conditional
probability (at each iteration of the algorithm) that pi belongs to component
g2. Hence, we have the following formulas:

• For each censored P-value, that is, if 0≤pi <λ,

z�
i = [(1− γ̂)λα̂]

[γ̂λ+(1− γ̂)λα̂] ,

• For each non-censored P-value, that is, if λ≤pi ≤1,

z�
i = [(1− γ̂)α̂pα̂−1

i ]
[γ̂+(1− γ̂)α̂pα̂−1

i ] ,

To start the EM algorithm, we select an initial value for γ; in general,
we can use γ (0) =0.5, unless we have some empirical estimate of π0 to use
instead. Then, we initialize {zi} by setting z(0)

i =1−γ (0) for 1≤ i≤m. With

{z(0)
i }, we can obtain γ (1) and α(1), the estimates of γ and α after the first

iteration. The convergence of EM algorithm is declared when

|γ (k) −γ (k−1)|<δ,

where γ (k) is the estimate of γ at the end of the k-th iteration, and δ is a
prespecified threshold (δ=1×10−6 in this study). When the EM algorithm
converges, let γ̂ and α̂ be the estimates of γ and α, respectively. Then, the
estimate of π0 is given by:

π̂0 = f̂ (1)= γ̂+(1− γ̂)α̂.

Remark 3. As suggested by a reviewer, it is necessary to consider multiple
initial values for BUM. In our simulation study, for BUM’s parameters
(a and λ), we use a = λ = min(2 × mean of all P-values, 0.9) and 5 pairs of
randomly simulated numbers from U[0,1]. Although our method is robust to
different initial values in this study, we still suggest that multiple initial values
may be necessary to achieve a reliable estimate of π0 in certain situations
(e.g. π0 ≈1). Furthermore, although the required computing time of our
method is much longer than that of BUM (and several of other methods), it
is still affordable with a general computer.

2.3.3 Confidence interval Since the above EM algorithm does not provide
us with any closed formulas of estimates, it is difficult to derive the theoretical
confidence interval (CI) for the estimated π0. Therefore, we use the bootstrap
procedure (Efron, 1979) to obtain a CI for π0 (we set B=500 for both
application studies):

(1) Select a random sample of m P-values from {p1,p2,...,pm} with
replacement and equal probabilities;

(2) Apply the EM algorithm to the sample generated in Step 1 and obtain
a resampling estimate of π0;

(3) Repeat Steps 1 and 2 B times to obtain the resampling distribution
of π̂0;

(4) For a 100(1−α)% CI for π0, find the (α/2)-th and (1−α/2)-th
quantiles of the resampling distribution.

Remark 4. A key assumption for bootstrapping P-values in the construction
of CIs is that the observed P-values are independent. However, since genes
are correlated in a expression dataset, a bootstrapped CI for π0 should be
considered as an approximation in practice. This issue has been discussed
in Allison et al. (2002).

3 RESULTS

3.1 Simulation studies
3.1.1 Simulation configuration We simulate gene expression data
to evaluate the performance of our method. We also select several
existing methods for a comparison study. BUM (Pounds and Morris,
2003) has to be included since it is the foundation of our method.
Based on the consideration of the popularity and research history of
the statistical methods for estimating π0, the following methods are
selected (notation in parentheses): (CB) our method; (BUM) Pounds
and Morris (2003); (H) the histogram-based method (Mosig et al.,
2001; Nettleton et al., 2006); (Q) qvalue (Storey and Tibshirani,
2003); (L) the method proposed by Liao et al. (2004); (S) the
method proposed by Scheid et al. (2004); (C) convest (Langaas et al.
2005); (RDM) the method proposed by Lai (2007); (G) the method
proposed by Guan et al. (2008). The notations defined above are
used in Figure 2. (We have actually performed a simulation study
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Fig. 2. Simulation results: gene expression data are simulated based on a independence structure. RMSE in log-scale of the estimates from different methods
with different sample sizes considered: n1 =n2 =6 (A), 18 (B) and 30 (C).

to compare many more methods. However, due to the page limit, it
is difficult to present all the results. The exclusion of other methods
does not change our conclusion.)

For each dataset, we simulate expression observations for 5000
genes. In reality, genes work together in complicated gene networks.
To study the impact of correlation among genes on different
methods, we generate data with the assumption that genes interact in
blocks (‘networks’) of equal size. We also assume that within each
block, the correlation among any pair of genes is the same, and equal
to ρ. We perform simulations for different sample sizes (n1,n2 =
6,10,18,30 and 50); correlation strength (ρ=0,0.3,0.5,0.7 and
0.9); and number of blocks (b=100,200 and 500) [or, equivalently,
number of genes per block (gb =50,25 and 10)].

Remark 5. It is well-known that the sample size has an important
impact on the estimation of π0. As pointed out by one reviewer, the
power of an α level test is the cumulative distribution function of
the P-value evaluated at α. Since the power depends on the sample
size, so does the distribution of P-values. Therefore, any non-trivial
transformation of P-values (including π0 estimators) depends on the
sample size. For example, Pounds and Cheng (2005) have showed
that when an estimate of the minimum of the assumed marginal
distribution of P-values [e.g. f (1) for BUM] is used for estimating
π0, the estimator can be expressed as a function of the sample size.

Given a value of π0 (0.1,0.2,...,0.9), a corresponding number of
blocks are set to consist entirely of differentially expressed genes,
with the remaining blocks consisting entirely of non-differentially
expressed genes. For example, to generate a dataset with π0 =0.7
for the {b=100,gb =50} configuration, we simulate 30 blocks with
differentially expressed genes, and 70 blocks with non-differentially
expressed genes. For each block, we use the covariance matrix
�= (1−ρ)I+ρE of size gb ×gb, where I is the identity matrix and
E is a matrix of ones. (Note that � is also the correlation matrix
since all genes have unit variances.) Then, for each configuration
mentioned above, we perform the following:

(1) Simulate a gene expression dataset with 5000 genes.

(a) For a block of non-differentially expressed genes,
generate observations from a multivariate normal
distribution N(0,�) for both sample groups.

(b) For a block of differentially expressed genes, generate
observations from a multivariate normal distribution
N(0,�) for one sample group. Then, generate
observations from a multivariate normal distribution
N(µ,�) for the other group (where µ is a random vector,
with elements coming from a uniform distribution
U[0.5,1.5]).

(2) Apply the two-sample Student’s t-test to the profile of each
gene and obtain 5000 theoretical P-values.

(3) Use different methods to estimate π0.

3.1.2 Criteria for evaluation and comparison We repeat
the above steps B=100 times for different values of π0
(0.1,0.2,...,0.9). For each value of π0 and each method, we compute
the bias, standard deviation (SD) and root mean squared error
(RMSE) as follows:

• Bias=∑B
i=1(π̂0i

−π0)/B,

• SD=
√∑B

i=1(π̂0i
−∑B

i=1 π̂0i
/B)2/(B−1),

• RMSE=
√

Bias2 +SD2,

where π̂0i
is the i-th estimate of π0. These criteria are used to

evaluate the estimation performance of different methods and the
impact of different λ.

3.1.3 Comparison of different methods In all the results, the
patterns in RMSE, bias and SD are very similar for all cases sharing
the same sample size and correlation strength. In other words, the
block size gb in our configuration does not substantially affect the
patterns in RMSE, bias and SD. In the Supplementary Materials,
we present the simulation results based on 200 blocks with 25
genes in each block and different correlation values (ρ). In the
following, we discuss the simulation results based on the simple
independence structure (ρ=0), which is representative of the other
results. The simulation results are presented for samples sizes 6+6,
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18+18 and 30+30. [In order to show a clear comparison among
different methods, we use a log-scale for the y-axis in RMSE and
SD graphs (with the option ‘log = “y” ’ in the R-function ‘plot’),
and the cube root of Bias is actually used as the y-axis in the Bias
graphs. All these comparison plots are given in the Supplementary
Materials. However, in the following, we only give the RMSE-based
comparison plots due to the page limit.]

When n1 =n2 =6 (Fig. 2A), all the π0 estimation methods show
an overall decreasing pattern of RMSE as the value of π0 increases.
BUM gives the lowest RMSE when π0 >0.4; but its RMSE is among
the worst when π0 <0.3, where RDM gives the lowest RMSE. Our
method always gives a competitive low RMSE when π0 >0.1.

When the sample size increases to n1 =n2 =18 (Fig. 2B), BUM
shows an unstable performance: it gives a relatively high RMSE for
all the values of π0, except at π0 =0.2 and 0.9. The benefit of using
our method is more apparent: its RMSE is lower than those of all the
other methods, for all the values of π0 except for π0 =0.2 (where
BUM’s RMSE is the lowest).

For n1 =n2 =30 (Fig. 2C), BUM’s RMSE displays a concave
parabola pattern, and is always relatively high. Our method has the
lowest RMSE for all π0.

The figures in the Supplementary Materials also confirm a
satisfactory performance in Bias and SD from our method. In
general, most methods’ bias decreases as the sample sizes and the
value of π0 increase. However, BUM quickly becomes the most
negatively biased (which explains the observed large RMSE of BUM
although the SD of BUM is among the smallest). A strongly negative
bias leads to an undesirable overestimation of the number of truly
differentially expressed genes. On the other hand, our method’s bias
becomes negligible as the sample sizes increase. Most methods’ SD
increases as the value of π0 increases and decreases as the sample
sizes increase.

In general, when the simulation results based on different
dependent structure (independent, weakly/strongly dependent) are
compared (Supplementary Materials), the higher the correlation, the
higher becomes the SD. (The bias, on the other hand, remains mostly
unaffected by the increase in correlation.) However, our results
show that the increase in SD induced by positive correlation among
test statistics does not render the existing π0 estimation methods
inappropriate.

3.1.4 Choice of λ The above reported simulation configuration
can also be used to understand the effect of λ. We simulate data with
different sample sizes 6+6, 18+18 and 30+30 and compare the
performance of our model for λ in the set {0.01,0.03,0.05,...,0.25}.
The figures in the Supplementary Materials shows that no single
value of λ can be identified to minimize RMSE in a wide range of
π0. Furthermore, the RMSE patterns can change significantly when
the sample sizes are changed. It is clear that a relatively large λ

(e.g. λ=0.25) is not a good choice. However, a relatively small λ

(e.g. λ=0.01) is also not an appropriate choice. In our simulation
study, we have observed that λ=0.05 is always a reasonable choice
to achieve an overall satisfactory performance.

3.2 Applications to experimental data
We first consider the following two published experimental
microarray datasets for our applications. The first dataset contains
22 283 gene expression profiles from kidney biopsies of 19 kidney

transplant subjects with cyclosporine-based immuno-suppression
and 22 kidney transplant subjects with sirolimus-based immuno-
suppression. The second dataset consists of 12 488 gene expression
profiles from pancreatic T regulatory (three subjects) and T effector
cells (five subjects). Both datasets are publicly available in the Gene
Expression Omnibus (GEO) database (Barrett et al., 2007) with
accession numbers GSE1743 (Flechner et al., 2004) for the first
(renal) dataset and GSE1419 (Chen et al., 2005) for the second
(T cell) dataset.

Theoretical P-values based on the corresponding t-distributions
are calculated for each dataset (two-sample Student’s t-test is
used for detecting differential expression). The true value of π0
is unknown in the applications. Therefore, to compare different
methods in each application, we obtain B=500 bootstrap estimates
of π0 (see Section 2.3.3 for details) and construct a boxplot for the
estimate from each method. Such a boxplot is useful to understand
general CIs for an estimate.

Based on our simulation study, convest has consistently showed
a relatively low RMSE. BUM should be considered since it is the
foundation of our method. Therefore, for simplicity, we use boxplots
to compare our method with BUM and convest. (The exclusion of
other methods does not change our conclusion.) Figure 3 shows
the P-value histograms and the estimates from these three different
methods. For both datasets, the P-value distribution curves fitted
by our method are close to the corresponding P-value histograms.
Theoretically, π0 cannot be higher than the marginal P-value
distribution. This has been briefly discussed in one of our previous
publications (Lai, 2007).

For the renal dataset, our method gives an estimate of π0 0.256
with a relatively tight CI (95% CI: 0.252–0.261). convest gives
a higher estimate 0.278 with a wider CI (95% CI: 0.263–0.293),
whereas BUM gives the highest estimate 0.321 although a slightly
tighter CI (95% CI: 0.318–0.325). Notice that only the estimate from
our method is under the whole P-value histogram. For the T-cell
dataset, our method gives an estimate of π0 0.605 with relatively
tight CI (95% CI: 0.586–0.626), whereas BUM gives a slightly
lower estimate 0.598 and slightly tighter CI (95% CI: 0.583–0.616).
Both estimates are under the whole P-value histogram. However,
convest still gives a higher estimate 0.638 and wider CI (95% CI:
0.609–0.671).

We also use another experimental dataset to illustrate that our
method (also BUM) does not always yield satisfactory estimation
results. The third application is based on a dataset with 22 283 gene
expression profiles from small airway tissues (five non-smokers
versus six smokers). This dataset is also publicly available in
GEO with accession number GSE3320 (Harvey et al., 2007). The
estimation results are also given in Figure 3. A clear ‘bumped’
shape can be observed in the P-value range [0.15, 0.35], which
causes the problematic estimation results from our method and BUM
(these beta distribution based models do not allow any ‘bumped’
shapes). Our fitted model curve is not close to the P-value histogram.
Although the CI from our method (95% CI: 0.899–0.921) and BUM
(95% CI: 0.897–0.935) are clearly tighter (the one from our method
is the tightest) than that from convest (95% CI: 0.850–0.902), both
estimates from our method (0.909) and BUM (0.907) are clearly
higher than the right end portion of P-value histogram. convest
provides a more reasonable estimate 0.878 for this application,
although the difference among the estimates from different methods
is quite small.
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Fig. 3. Application results: histograms of P-values and boxplots of bootstrap estimates of π0. The P-values are calculated based on three experimental
datasets: the renal data (upper panel), the T-cell data (middle panel) and the smoke data (lower panel). In the histograms (left panel), the gray curves represent
the fitted censored beta mixture models (the dashed parts are artificially censored). The zoomed-in histograms (middle panel) are also shown to compare the
estimate of π0 from different methods. The gray solid, dashed and dotted lines represent the estimates from our method, BUM and convest, respectively. In
the boxplots (right panel), N = our method, B = BUM and C = convest. The numbers in gray color are the estimates of π0 based on the original data.

Therefore, in practice, we suggest to check the histogram shape
before applying any statistical methods for estimating π0. If the
histogram shape is roughly decreasing, then we expect satisfactory
estimation performance from our method (and BUM in certain
situations). If the histogram shape is not regular, then we may
consider some non-parametric method like convest or the moment-
based method (Lai, 2007).

4 DISCUSSION
Microarrays have been widely used in biological and medical
studies. An accurate estimate of the proportion of differentially
expressed genes is important in false positive control and experiment
design. Therefore, the improvement of existing estimation methods
still remains important.

Our proposed method for estimating π0 provides an effective
solution. Although it is arbitrary, the choice of λ=0.05 provides

an overall satisfactory performance. In our simulation study, the
advantage of using our method is clear in the cases of moderate
and large sample size (18+18 and 30+30). In these cases, our
method outperforms (w.r.t. RMSE) the other methods considered
in this study. In the case of small sample, BUM has a satisfactory
performance. Our method may be improved if an efficient method
for the automatic selection of λ can be developed. This issue will be
pursued in our future research.

Although none of the π0 estimation methods mentioned above
considers the effect of gene networks and interactions, dependence
among genes is still a difficult issue in microarray data analysis
(Efron, 2007). However, as investigated by Benjamini and
Yekutieli (2001), methods that are based on the independence
assumption perform quite well in general situations of weak positive
dependence, and a positive dependency structure is common in
many situations. A satisfactory performance under weak positive
dependence has also been confirmed in our simulation studies.
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