
[15:21 5/2/2010 Bioinformatics-btq007.tex] Page: 689 689–691

BIOINFORMATICS APPLICATIONS NOTE Vol. 26 no. 5 2010, pages 689–691
doi:10.1093/bioinformatics/btq007

Structural bioinformatics Advance Access publication January 7, 2010

PyRosetta: a script-based interface for implementing molecular
modeling algorithms using Rosetta
Sidhartha Chaudhury1, Sergey Lyskov2 and Jeffrey J. Gray1,2,3,∗
1Program in Molecular Biophysics, 2Department of Chemical and Biomolecular Engineering and 3Institute of
NanoBioTechnology, Sidney Kimmel Comprehensive Cancer Center and Institute of Computational Medicine,
Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Associate Editor: Anna Tramontano

ABSTRACT

Summary: PyRosetta is a stand-alone Python-based imple-
mentation of the Rosetta molecular modeling package that allows
users to write custom structure prediction and design algorithms
using the major Rosetta sampling and scoring functions. PyRosetta
contains Python bindings to libraries that define Rosetta functions
including those for accessing and manipulating protein structure,
calculating energies and running Monte Carlo-based simulations.
PyRosetta can be used in two ways: (i) interactively, using iPython
and (ii) script-based, using Python scripting. Interactive mode
contains a number of help features and is ideal for beginners while
script-mode is best suited for algorithm development. PyRosetta has
similar computational performance to Rosetta, can be easily scaled
up for cluster applications and has been implemented for algorithms
demonstrating protein docking, protein folding, loop modeling and
design.
Availability: PyRosetta is a stand-alone package available at
http://www.pyrosetta.org under the Rosetta license which is free for
academic and non-profit users. A tutorial, user’s manual and sample
scripts demonstrating usage are also available on the web site.
Contact: pyrosetta@graylab.jhu.edu

Received on November 12, 2009; revised on January 4, 2010;
accepted on January 5, 2010

1 INTRODUCTION
Recent advances in molecular modeling have lead to its increasing
use in structural biology research for a wide range of applications.
The Rosetta biomolecular modeling suite, in particular, has proved
effective in many diverse tasks including ab initio structure
prediction and homology modeling (Raman et al., 2009), protein
and small-molecule docking (Chaudhury and Gray, 2007; Davis
and Baker, 2009), loop modeling (Mandell et al., 2009) and
design (Kuhlman et al., 2003). To make these protocols more
accessible, a number of web-based servers have been constructed,
such as Robetta (Chivian et al., 2004), RosettaDock (Lyskov and
Gray, 2008) and RosettaAntibody (Sivasubramanian et al., 2008).
However, many modeling problems do not fit cleanly into one
of the standard Rosetta protocols, and algorithms that combine
elements from different methods within Rosetta are often required to

∗To whom correspondence should be addressed.

adequately model a particular system. Developing such algorithms
requires extensive experience in both C++ programming and Rosetta
software development, severely limiting its accessibility.

To make custom molecular modeling using Rosetta accessible
to a broader community of structural biologists, we developed
PyRosetta, a Python-based implementation of the Rosetta molecular
modeling suite. Our goal was to enable users to define a molecular
modeling problem, design an algorithm to solve it and implement
that algorithm on the computer using preexisting Rosetta objects
and functions. PyRosetta takes advantage of the object-oriented
architecture of the new Rosetta release v3.1 to provide users
with easy access to all the major functions and objects used by
Rosetta developers (Leaver-Fay,A. et al., manuscript in preparation).
PyRosetta can be run in two modes: interactive-mode, which
contains tab-completion and help features which are ideal for
beginners, and script-mode, which is better suited for algorithm
development. We chose Python as the scripting language because
it is a sophisticated programming language that enjoys widespread
use in the biology community and allows PyRosetta to be compatible
with other Python-based packages such as PyMol (DeLano,
2002) and Bio-Python (Cock et al., 2009). Our hope is that the
extensive online communities of users of the many Python-based
bioinformatics tools will help develop and share interfaces with
PyRosetta. Since familiarity with Rosetta objects and functions is
essential for new users, a tutorial, user’s manual and sample scripts
demonstrating usage are available on the web site.

We used a number of tools to convert the classes and functions
in the Rosetta C++ source code into a Python-accessible form.
GCC-XML (Kitware Inc., 2007) parses the classes and functions
of the Rosetta C++ code into an XML representation using the GCC
compiler. The Py++ package (Language Binding Project, 2009) uses
the GCC-XML objects and generates Python bindings using the
Boost.Python library (Boost, 2009). To make this process feasible
for over 2000 Rosetta objects, this entire process is automated. The
scripts are portable and tested on Mac OSX, Linux and Windows
platforms. The building process requires 4–6 h depending on the
platform and the pregenerated binary libraries are provided for
download for all three platforms. A version of PyRosetta will
be made available with each new release of Rosetta along with
intermediate versions that add additional features, fix bugs, improve
accessibility or expand documentation. In terms of computational
cost, PyRosetta performs almost identically to the C++ build of
Rosetta with performance benchmarks indicating a <5% difference
in speed.

© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 689

http://www.pyrosetta.org


[15:21 5/2/2010 Bioinformatics-btq007.tex] Page: 690 689–691

S.Chaudhury et al.

2 ROSETTA APPROACH
Molecular modeling in Rosetta for structure prediction and design
relies on the thermodynamic principle that the configuration of a
biomolecular system at equilibrium tends toward that which is the
lowest in free energy. The free energy of a given configuration
(structure and sequence) is approximated using a score function that
uses mathematical models of the major biophysical forces (Van der
Waals energies, hydrogen bonding, electrostatics, solvation energies
etc.) as a function of the configuration. Since it is impossible to
exhaustively sample the entire configurational space accessible to
the system because of its size and complexity, the starting structures
and sampling strategies vary across different modeling applications.
Furthermore, different energy scoring components carry different
degrees of importance in different modeling applications. The
necessity of tailored sampling and scoring strategies underscores the
need for a generalized approach to implementing custom molecular
modeling algorithms.

Rosetta protocols generally sample the relevant configurational
space for a given modeling application by running a large number
of relatively short Monte Carlo trajectories starting from random
or semi-random starting configurations, storing the lowest energy
structures from each trajectory (called decoys), and then selecting
lowest energy decoys as predictions. To tackle a wide range of
biomolecular modeling problems, it is necessary to precisely define
the relevant configurational space for sampling, the search strategy
and the score function used for both sampling and identifying the
lowest energy structures.

3 PYROSETTA FEATURES
In PyRosetta, a biomolecular system is represented by an object
called the Pose. The Pose contains all the structure and sequence
information necessary to completely define the system in both
Cartesian and internal coordinates. The internal coordinates used
for proteins include the backbone torsion angles, φ, ψ and ω; the
side chain torsion angles χ; and ‘jumps’ which define the relative
position and orientation of multiple continuous polypeptide chains
in the system. Nucleic acids and other molecules (ligands, post-
translational modifications, etc.) are similarly built using internal
coordinates; solvent is typically treated implicitly. The spatial and
internal coordinates are synchronized within the Pose. A starting
structure is read into a Pose from a Protein Data Bank file and
its conformation is altered by perturbing its internal coordinates
(Fig. 1).

The energy of a structure, or Pose, can be calculated using the
ScoreFunction. The ScoreFunction represents an energy
function that is the sum of weighted independent energy terms.
Over 20 energy terms are available including Van der Waals
attractive and repulsive components, hydrogen bonding, solvation
and electrostatics energies. The user can create a custom scoring
function by setting the weights of the desired components to non-
zero values (Fig. 1). The energy of a structure is calculated by passing
a pose into the scoring function, which returns the score.

Sampling functions are written as Mover objects in Rosetta. As
a general form, a Mover.apply(pose) function carries out that
particular perturbation on that Pose. Examples of movers include
those that perturb backbone torsion angles, such as SmallMover,
or minimize the structure using a given energy function, such as

Fig. 1. A Monte Carlo peptide folding simulation using PyRosetta.

a MinMover. The conformational search space can be limited
and controlled using the MoveMap and FoldTree objects. The
MoveMap specifies which internal coordinates are to be held rigid
during sampling. The FoldTree instructs the Pose on how to
convert its internal coordinates into Cartesian coordinates (Bradley
and Baker, 2006) and provides a framework for controlling how
local perturbations propagate through the global structure (e.g. in
loop modeling). Finally, the MonteCarlo object performs the
bookkeeping for a Monte Carlo simulation, including storing the
current structure and energy, calculating the change in energy caused
by a perturbation and applying the Metropolis Criterion using the
MonteCarlo.boltzmann(Pose) function (Fig. 1).

In addition to the basic movers, there are movers that
execute standard Rosetta protocols. Examples include
DockingLowRes() for the low-resolution phase of protein
docking, LoopMover_RefineCCD, for the high-resolution
refinement phase of loop modeling, and the versatile
PackRotamersMover, which carries out side chain packing and
design using a rotamer library. Finally, the PyJobDistributor
object manages multiple simulation trajectories simultaneously
while storing all the decoys and tabulating a score file. Scripts
demonstrating molecular modeling protocols such as alanine
scanning (Kortemme and Baker, 2002), protein and small-molecule
docking (Chaudhury and Gray, 2007; Davis and Baker, 2009),
protein design (Kuhlman and Baker, 2000) and all-atom relaxation
(Bradley et al., 2005) can be found on the PyRosetta web site.

4 OUTLOOK
PyRosetta is a Python-based implementation of the Rosetta
molecular modeling package that enables users to implement
molecular modeling algorithms using preexisting Rosetta objects
and functions for a range of purposes from simple scripts to
sophisticated modeling protocols and run them on the user’s

690



[15:21 5/2/2010 Bioinformatics-btq007.tex] Page: 691 689–691

PyRosetta

own computational resources. PyRosetta is stand-alone package
requiring only Python 2.5 to be installed and is currently available for
download from the web site (www.pyrosetta.org), along with a user’s
manual and sample scripts that demonstrate usage. For new users, we
have written a set of interactive educational modules available both
electronically and in a bound form (Gray et al., 2009). The modules
use PyRosetta to lead users from the fundamentals of biomolecular
structure and energetics through algorithm creation for applications
in structure prediction and design.

In the future, both Rosetta developers and outside users will be
able to upload and share scripts with the PyRosetta community
through the web site. The features described here are only a small
subset of those available. Potential users are referred to the web site
for more information.

ACKNOWLEDGEMENTS
We acknowledge William Sheffler for developing the first Python-
bindings to Rosetta. John D. Bagert and Julian N. Rosenberg assisted
in the early development through a Technology Fellowship from
the Johns Hopkins University Center for Educational Resources.
Finally, we acknowledge the efforts of all the Rosetta developers
within RosettaCommons (www.rosettacommons.org) who have
contributed the scientific research and software development to
Rosetta that has made PyRosetta possible.

Funding: PyRosetta was funded through National Institute of
Health (R01-GM73151 and R01-GM078221); National Science
Foundation CAREER Grant CBET (0846324).

Conflict of Interest: none declared.

REFERENCES
Berrondo,M. et al. (2008) Structure prediction of domain insertion proteins from

structures of individual domains. Structure, 16, 513–527.

Boost (2009) Boost C++ libraries. Available at http://www.boost.org
Bradley,P. and Baker,D. (2006) Improved beta-protein structure prediction by multilevel

optimization of nonlocal strand pairings and local backbone conformation. Proteins,
65, 922–929.

Bradley,P. et al. (2005) Toward high-resolution de novo structure prediction for small
proteins,.Science, 309, 1868–1871.

Chaudhury,S. and Gray,J.J. (2008) Conformer selection and induced fit in flexible
backbone protein-protein docking using computational and NMR ensembles. J.
Mol. Biol., 381, 1068–1087.

Cock,P.J. et al. (2009) Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.

Davis,I.W. and Baker,D. (2009) RosettaLigand docking with full ligand and receptor
flexibility. J. Mol. Biol., 385, 381–392.

DeLano,W.L. (2002) PyMOL molecular graphics system. Available at
http://www.pymol.org/

Gray,J.J. et al. (2009) The PyRosetta Interactive Platform for Protein Structure
Prediction and Design: A Set of Educational Modules.

Hecht,H.J. et al. (1992) Three-dimensional structure of a recombinant variant of human
pancreatic secretory trypsin inhibitor (Kazal type). J. Mol. Biol., 225, 1095–1103.

Kim,D.E. et al. (2004) Protein structure prediction and analysis using the Robetta server,
32, 526–531.

Kitware Inc. (2007) GCC-XML. Available at http://www.gccxml.org
Kortemme,T. and Baker,D. (2002) A simple physical model for binding energy hot spots

in protein-protein complexes. Proc. Natl Acad. Sci. USA, 99, 14116–14121.
Kuhlman,B. and Baker,D. (2000) Native protein sequences are close to optimal for their

structures. Proc. Natl Acad. Sci. USA, 97, 10383–10388.
Kuhlman,B. et al. (2003) Design of a novel globular protein fold with atomic-level

accuracy. Science, 302, 1364–1368.
Language Binding Project (2009) C/C++ Python language binding. Available at

http://www.language-binding.net
Lyskov,S. and Gray,J.J. (2008) The RosettaDock server for local protein-protein

docking. Nucl. Acids Res., 36, 233–238.
Mandell,D.J. et al. (2009) Sub-angstrom accuracy in protein loop reconstruction by

robotics-inspired conformational sampling. Nat. Methods, 6, 551–552.
Raman,S. et al. (2009) Structure prediction for CASP8 with all-atom refinement using

Rosetta. Proteins, 77, 89–99.
Sivasubramanian,A. et al. (2008) High-resolution homology modeling of antibody Fv

regions using knowledge-based techniques, de novo loop modeling and docking.
Proteins, 74, 497–514.

691

http://www.boost.org
http://www.pymol.org/
http://www.gccxml.org
http://www.language-binding.net

