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ABSTRACT

Motivation: /n silico methods to classify compounds as potential
drugs that bind to a specific target become increasingly important
for drug design. To build classification devices training sets of drugs
with known activities are needed. For many such classification
problems, not only qualitative but also quantitative information of
a specific property (e.g. binding affinity) is available. The latter can
be used to build a regression scheme to predict this property for new
compounds. Predicting a compound property explicitly is generally
more difficult than classifying that the property lies below or above a
given threshold value. Hence, an indirect classification that is based
on regression may lead to poorer results than a direct classification
scheme. In fact, initially researchers are only interested to classify
compounds as potential drugs. The activities of these compounds
are subsequently measured in wet lab.

Results: We propose a novel approach that uses available
quantitative information directly for classification rather than first
using a regression scheme. It uses a new type of loss function
called weighted biased regression. Application of this method to
four widely studied datasets of the CoEPrA contest (Comparative
Evaluation of Prediction Algorithms, http://coepra.org) shows that it
can outperform simple classification methods that do not make use
of this additional quantitative information.

Availability: A stand alone application is available at the webpage
http://agknapp.chemie.fu-berlin.de/agknapp/index.php?menu=
software&page=PeptideClassifier that can be used to build a model
for a peptide training set to be submitted.
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Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Molecular classification problems are common in many fields of
chemistry, biochemistry, pharmacy, medicinal diagnostics and other
applications in modern life sciences. In an empirical regression or
classification problem, one considers objects that possess a specific
common relationship characterized by object-specific target values.
For drug molecules, these target values may relate to a property
that characterizes binding. In a regression problem, these target
values vary continuously in an interval. These can for instance be
binding affinities of drugs that bind to the same receptor. For a
classification problem, the objects are labeled according to the group
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they belong to using discrete target values. To solve a classification
or regression problem, we need to correlate the individual objects
with their respective target values. Target values for a two-class
classification problem are for instance £ =41/ —1 that can be used
to characterize objects of the positive/negative class. To construct an
empirical device (regressor or classifier) to predict unknown target
values one needs a training set of related objects with known target
values. Such molecular regression and classification problems are
addressed in the Comparative Evaluation of Prediction Algorithms
(CoEPrA) 2006 competition (http://www.coepra.org/). The CoEPrA
competition can be seen in analogy to CASP (Critical Assessment
of Techniques for Protein Structure Prediction) (Dunbrack et al.,
1997) that focuses on protein structure prediction, while CoEPrA
deals with regression and classification problems of biological active
molecules.

On an average, 15 research groups participated in the four
CoEPrA 2006 classification contests. To solve the classification tasks
different approaches were used by the participating groups ranging
from applications of support vector machine (SVM) (Boser et al.,
1992; Vapnik, 1995), artificial neural networks (Haykin, 1998),
naive Bayesian decision theory (Duda et al., 2005; Minsky, 1961),
least-square optimization (Fisher, 1936), decision trees (Breiman
et al., 1984), random forest methods (Breiman, 2001) and new
classification methods such as kScore (Oloff and Muegge, 2007).

CoEPrA considers exclusively oligopeptides from which
the sequences and alternatively physico-chemical descriptors
comprising many different features were provided at the CoEPrA
webpage. In a way a classifier (regressor), ‘observes’ the objects
(molecules) through eyes that are defined by the features used
as descriptor. Other sets of features considering global physico-
chemical and sterical properties of the whole peptide (such as
volume, molecular weight, or solvent accessible surface area) or
evolutionary residue similarities such as Blosum Matrices (Henikoff
and Henikoff, 1992) can be used alternatively.

Since the number of peptides for each classification and regression
task of CoEPrA is very small, the number of descriptors has to
be small as well to avoid over parameterization. This was solved
by the participants in different ways. Some used small feature
sets like the peptide sequence-based features, others massively
reduced the number of physico-chemical features by applying
principal component analysis (Jackson, 1991; Pearson, 1901),
genetic algorithms (Vafaie and Jong, 1992), ant colony optimization
(Al-Ani, 2005) or simple filters (Guyon and Elisseeff, 2003). This
wide range of methods applied by different groups makes the
CoEPrA contest an ideal test ground to explore different training
and prediction schemes.

When predicting a certain property of a molecule, researchers are
often just interested whether the value of this property is below
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or above a certain threshold. Thus, one can classify candidate
molecules from a large set of molecules. For the most interesting
molecules, the property values are subsequently measured in wet
lab. However, when building predictors the exact property (or target)
values are often available. This information is routinely used when
building a regressor, which tries to predict the property values for
new molecules. But, predicting property values is more demanding
than to predict just the classes to which the molecules belong to.
Hence, predicting a property value by regression with subsequent
classification is expected to introduce larger uncertainties than
solving the classification problem directly. But, the additional
information of the specific property values could be of use to solve
the classification problem more reliably. The classification methods
used in this study consider such quantitative information of the
target value directly that is normally only used for regression. Thus,
improving classification results considerably.

2 METHODS
2.1 CoEPrA data sets of oligo-peptides

CoEPrA 2006 offered four classification and four regression tasks. Each
classification task consists of two independent data sets of oligo-peptides
(octo-peptides for task 2 and nona-peptides for the other three tasks) one for
training with known binding affinity and one for prediction with unknown
binding characteristics. The latter were revealed after the contest. After the
contest, it became evident that all oligo-peptides used for classification
and regression tasks of CoEPrA 2006 are ligand peptides of the major
histocompatibility complex (MHC) (Krogsgaard and Davis, 2005; Kuhns
et al., 1999), an important player of immune response in mammals. The
classification tasks of the oligo-peptides presented by CoEPrA are based on
experimentally measured binding constants or the related pIC50 values. For
the CoEPrA regression tasks, the pIC50 values are the target values. The
classification tasks 1, 2, 3 consist of symmetric data sets, i.e. the number
of binding and non-binding ligands are for training and prediction sets
essentially equal, while the dataset of task 4 is asymmetric possessing more
non-binding than binding ligands. Table 1 contains a summary of the four
CoEPrA data sets for classification.

For three CoEPrA classification tasks (tasks 1, 2, 3), the joint sets of
binding and non-binding oligo-peptides are for prediction and training the
same as for the corresponding CoEPrA regression tasks. In contrast to
regression, classification requires to separate the sets into two groups. In
order to do so, the organizers of CoEPrA 2006 used pIC50 threshold values
Tyics0 to assign the oligo-peptides to the binding (t =+1) or non-binding
(t=—1) class (Doytchinova and Flower, 2001, 2002).

Table 1. The four CoEPrA data sets for classification

Tasks Training® Prediction” L¢
# (literature with pIC50 values) Pos Neg Pos Neg
19(Doytchinova et al., 2005) 45 44 44 44 9
24 (Hattotuwagama et al., 2004) 37 39 38 38 8
3d(D0ytchinova and Flower, 2002) 67 66 67 66 9
4 (Source unknown) 19 92 19 92 9

4Number of ligands in training set with known classification of binding (pos) and non-
binding (neg) oligo-peptides.

bNumber of ligands in prediction set; classification of binding (pos) and non-binding
(neg) oligo-peptides was unraveled only after termination of contest.

¢Lengths of oligo-peptides for the four classification tasks.

deCSO value available.

Although these threshold values were not published, it is possible to extract
them approximately from the pIC50 values given for the CoEPrA regression
tasks 1, 2, 3. These threshold values are 5.3900, 7.7810 and 7.0725 pIC50 for
the CoEPrA classification task 1, 2, 3, respectively. In Figure 1, the pIC50
values are displayed for each set of oligo-peptides sorted by rising values.
Thus, the non-binding peptides are displayed in the lower left while the
binding peptides appear in the upper right of this diagram. Histograms of the
binding affinities are given in the Supplementary Material (Supplementary
Fig. S1). For all three sets, the distributions of pIC50 values are very similar
for the training and the prediction set, which is a prerequisite to perform
predictions successfully. However, there are differences in the distributions
of the three tasks. For task 1, the pIC50 values vary from 3 to more than 8,
while these intervals are smaller for task 2 and 3, where the pIC50 values
vary only from 5 to 8 and 5 to 9, respectively. Near to the threshold (solid
horizontal line in Fig. 1) discriminating between binding and non-binding
peptides the slope of the pIC50 values is much smaller for task 2 than for the
other two CoEPrA tasks. Furthermore, task 1 and 3 exhibit for training and
prediction approximately a point symmetry with respect to the distributions
of binding and non-binding peptides, which is absent for task 2. This all
indicates that prediction might be easier for the first task than for the second
and third task, which roughly correlates with the success of the participants
in the CoEPrA contest.

2.2 Features used for the CoEPrA datasets

Training a prediction device for classification requires to correlate features
describing the data points (objects) of the training set with their
corresponding class-specific target values (41, —1). Since CoEPrA 2006
provides the sequences of the oligo-peptides one can use these directly or
generate own features, which was done by several groups participating in
the contest. Alternatively one can use the physico-chemical features given
by CoEPrA to describe the oligo-peptides. Those physico-chemical features
are amino acid specific features taken from the literature (Kawashima and
Kanehisa, 2000; Kawashima et al., 1999). The physico-chemical features
of CoEPrA describe each amino acid by 643 features whose values are
given by real numbers resulting in a total number of 5787 or 5144 features
for nona- or octo-peptides, respectively. Each of these features describes a
physico-chemical property of a single amino acid.

A training set B prediction set
_ gl ,:' 8 I
Lo
8 24| ~— | gl

I v

A 20 40 60 80 2 20 40 60 80
- 8 e 8 —
<o - g
ane | 6 #
wo W
8 a4t 14

4

5l 20 0 60 2 20 40 60
= a- _/ 8 _/
<o |
§8e. " s~
S 24f 4

2 50 100 2 50 100

sequence i sequence i

Fig. 1. Binding affinities in terms of pIC50 values for the first three COEPrA
tasks sorted with increasing pIC50 value. The solid horizontal lines mark
the threshold used to group the peptides into binders and non-binders.
(A) Training sets that were used to build the models. (B) Prediction sets
used to estimate performance. Histograms of the binding affinities are given
in the supporting material (Supplementary Fig. S1).
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The simplest set of sequence based features is to assume that all amino
acids are equidistant. In such a case, we can represent the 20 native amino
acids by 20 component vectors )?‘Q. for amino acid type Q. All components
of this vector are zero except for the position encoding the considered
amino acid type where the value of the component is unity (sparse binary
descriptor). In this case, we use the simple metric that all amino acid pairs
have the same degree of similarity. This was the amino acid representation
that we used in the CoEPrA competition. Thus, the total number of features
is 180 for nona-peptides and 160 for octo-peptides.

Another representation using also a 20 component feature vector per
amino acid is to characterize the amino acids by the integer values of a
Blosum matrix (Block substitution matrix) (Henikoff and Henikoff, 1992).
Blosum matrices are generated from multiple sequence alignments of protein
sequences that share a certain amount of sequence identity. The Blosum
matrices contain the information on how likely it is that a certain amino
acid can mutate into another. Positive values imply a high negative values
a low probability for such mutations. In other words, positive entries refer
to other amino acids that possess common biochemical properties and thus
can be exchanged more easily without alternating the behavior of a protein,
whereas negative values refer other amino acids that are rather dissimilar.
There are different Blosum matrices labeled by numbers that differ by the
protein similarity that was used to generate the multiple sequence alignments.
BlosumX matrices with a small X value describe amino acid similarities of
evolutionary more distant proteins, whereas BlosumX matrices with a large
X value describe amino acid similarities of highly related proteins. In our
studies, different Blosum matrices where used: Blosum40, Blosum62 and
Blosum90. The Blosum62 matrix yielded the best overall performance in our
applications and is also the default for many sequence alignment applications
(Altschul et al., 1997). Analog to the sparse descriptor the oligo-peptides are
described by feature vectors of lengths 180 or 160 for nona- or octo-peptides,
respectively.

Since the encoding techniques with three different types of features
have specific merits and disadvantages we also build models for all four
possible combinations of them (sparse/Blosum; sparse/physico-chemical;
Blosum/physico-chemical; sparse/Blosum/physico-chemical). Especially,
when using physico-chemical features or combinations involving them the
features represent many different properties and therefore are given in
different units. Thus, it is important to normalize feature vectors before
training a classifier. However, before that all features whose standard
deviation for the training set vanishes are removed, since they do not contain
information. The remaining features are shifted and scaled such that each
feature has a mean of zero and a standard deviation of unity relative to the
training set. These transformations are then also applied to the prediction set.

2.3 Linear discriminant function

Each oligo-peptide i of the training and the prediction set can be characterized
by features combined in a vector X; f P4 in a d dimensional feature space.
The decision whether the oligo-peptide X; is binding (target value t = +1) or
non-binding (target value 7 = —1) can be made by a linear scoring function
defined by

&) =w'-Xi+b, (1)
where w [ P is the model parameter vector of the scoring function and b f P
the threshold or bias. Positive values of the scoring function correspond to
one class (£=+1) negative to the second class (¢#=—1). Setting the linear
scoring function to zero describes a hyperplane in the d-dimensional feature
space P¢ defining two half-spaces that correspond to the two classes. The
orientation of the hyperplane is defined using the model parameter vector w
as normal vector of the plane, while its distance from the origin is defined
by the threshold value b as (b/|w|). A data point with vector X is classified as
positive, if g(x) > 0 and as negative, ifg(x) <0.

Note that for this type of scoring functions the number of model
parameters is d+ 1, where d is the number of features. The d+1 model
parameters are optimized during the so-called training phase where data
with known classification are used to determine the hyperplane that is able

to separate the binding form the non-binding training samples. Predictions of
new samples can be performed by evaluating the sign of the scoring function.

2.4 Mean-squared error loss function

To determine an optimal parameter vector w we use an objective function,
which is minimized to yield a solution of the hyperplane. Given a set of
n training sequences with their feature vectors X; we define the objective
function

n
L(w,b)= E f(' -X;+b), (@)
i=0
where f(s;), s; /P is the so-called loss function. Different loss functions
lead to hyperplanes with different properties. A common loss function for
classification is the mean-squared error (MSE) loss function for classification
(Fisher, 1936)

fMSEfclass(Si) =[s; —ti]29 5= W '}i +b 3)

with target values #; =+1, if X; corresponds to a positive data point and
t;=—1,if X; corresponds to a negative data point. Minimizing the objective
function L(w, b) leads to a solution where the scoring function g(X) assumes
approximately the value +1 for all positive data points and —1 for all negative
data points in the training set. An analog approach was used before using the
sparse descriptor to classify MHC nona-peptides (Riedesel er al., 2004).

As described earlier, the first three CoEPrA classification tasks have
corresponding regression data sets. Hence, besides the information that a
peptide is positive or not each peptide of task 1 to 3 is characterized by
its pIC50 binding affinity. To consider the latter information, we use the
following loss function

FMSEES (o) = [5i = pIC50;1, )

where pIC50; denotes the binding affinity of peptide i. Thus, minimizing the
objective function leads to a hyperplane where the distances of the data points
to the hyperplane are proportional to their measured pIC50 values. This
technique is known as regression and the resulting model predicts the binding
affinities instead of the target value of the corresponding class. However, a
regression result can also be used for classification. For that purpose, all
peptides with a predicted pIC50 value larger than a given threshold 7' are
considered as positives, whereas all peptides with a predicted pIC50 value
smaller or equal to T are considered as negatives or vice versa depending on
the biological problem and the definition of the classes.

2.5 Weighted biased regression loss function

For the regression problem, pIC50 values need to be predicted, which is more
difficult than to predict the classes to which the peptides belong to. Hence, the
outcome of a prediction based on regression is expected to introduce larger
uncertainties than solving the classification problem directly. Nevertheless,
the binding affinity contains additional information, which could be of use
to solve the classification problem. Therefore, this information should be
included in model building. In order to do so, we defined a specific loss
function called weighted biased regression (WBR) loss function. This loss
function incorporates the binding affinity information to build a classifier
rather than a regression scheme

wi(si—pIC50,) ,if yis; <y;pIC50;

‘WBR_class
FBRE () =
f ' 0 ,else

(&)

where y; f[+1, —1] denotes the class label of data point i with y; =41,
if X; is a positive data point and y; = —1, if X; is a negative data point.
Note that we are interested in a parameter vector w such that all positive
data points are above the classification threshold (s=g(x¥)>T) and all
negative data points are below the classification threshold (s=g(xX) <T).
However, we are not interested to match the pIC50 value of a peptide
with the scoring function g exactly. Hence, positive data points with a
predicted pIC50 value equal or larger than their measured pIC50 value are not
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penalized by setting fWBR-c1a5(5,) =), since these data points are classified
correctly anyway. If the predicted pIC50 value is smaller than its measured
pIC50 value a penalization similar to the MSE regression is applied using
FWBR class () = 1. (s; — PIC50;)2. Here, w; > 0 is an additional parameter that
can be used to weight each data point individually. All negative data points
are treated in an analogue fashion. If the predicted pIC50 value is smaller
or equal to its measured pIC50 no penalization is applied, whereas for a
predicted pIC50 value larger than its measured pIC50 value a quadratic
penalization term according to Equation (5) is used.

Many classification techniques concentrate on those data points that are
nearest to the decision boundary, since these data points are most critical
and informative. In a SVM classification scheme, the separating hyperplane
is determined only by those data points that are nearest to the decision
boundary. These data points are the so called support vectors (Burges, 1998).
In boosting, training is performed over several weak classifiers reweighting
the training set for each classifier such that misclassified data points are
weighted higher (Guo and Viktor, 2004). The WBR loss function is also
capable of reweighting the training points. To emphasize those data points
that are closer to the decision threshold than those that are more distant to
it we use the weights j; = 1/[(s; — PIC50;)> 4 y*1, where y =0.1 is used to
prevent singularities.

2.6 Regularization of the objective function

Empirical devices to predict target values employ classification or regression
schemes where model parameters are optimized by using a training set of data
points with known target values. This method can suffer from overtraining,
i.e. the model parameters are particularly adjusted to recall the target values
of the training set, but fail to predict target values of data points, which do
not belong to the training set. This so-called learning by heart phenomenon
occurs especially when the number data points for training is comparable or
even smaller than the number of model parameters. To control this effect,
the objective function is usually extended by a so called regularization term
of positive weight (0 <A < 1)

LG, b)=(1—1) [Zf(?v’-?c,-—&—b)} + AW, 6)
i=0

where A assumes a predefined value that is not optimized simultaneously
with the model parameters w and b. Minimizing this enhanced objective
function requires to balance the two terms. The regularization term adopts
its minimum value, if all components of the parameter vector w vanish.
Normally, this is in conflict with the first term, which requires specific non-
vanishing model parameters. The trade-off is that the model parameters
governing the less important features are set to small or even vanishing
values, while model parameters referring to features that exhibit strong
correlations with the target values are kept. According to the structure of
the scoring function, Equation (1), features whose corresponding model
parameters vanish are ignored, thus, reducing the complexity of the model.
Increasing the strength of the regularization term with a larger A value
leads to a simplified model description with a smaller effective number
of model parameters. As a consequence, the recall performance decreases,
while simultaneously the prediction performance can increase, which avoids
learning by heart. The latter is in particular the case, if the original model
contained irrelevant or conflicting features. However, if the regularization
term becomes too large by increasing the A parameter further on not
only recall but also prediction performance will decrease, since now also
important features may be suppressed.

The art is to optimize the regularization parameter A by increasing its
value just before the point where the prediction performance diminishes.
But even very small A parameters (say A=1071%) are useful, since they
suppress spurious singularities, which may arise from the usage of linear
dependent features. The optimal A value has to be chosen carefully. This can
be done automatically by evaluating the prediction performance observing
the error in n-fold cross-validation. For that purpose, we define a candidate
set of A values [1074, 1073, 1072, 0.1, 0.2, 0.3 ... 0.9, 0.93], which contains

arange of A values to be tested. For each value of this set, the training set is
randomly divided into n parts. One part is retained as a validation set while
the other n — 1 parts are used to train the classifier. This process is repeated n
times such that each part is used exactly once as validation set. The average
over these n validation errors is the estimated performance. The A value that
reveals the smallest validation error is then used to train the classifier on the
whole dataset.

2.7 Data balancing

In the case that the number of positive and negative data points is highly
unbalanced or if one of the two classes should get a higher weight, since one
would like to avoid false positives for that class, it could be reasonable to
split up the positive X; and negative ¥; data points leading to the objective
function

n4
e [ Of(W X+ bi)] +

i=

L(w,b)=(1-2) i
v [zw e m]
i=0

+aw W (7

In expression (7), the first sum runs over all positive while the second sum
runs over all negative data points in the training set, where ny and n_ (ny +
n_ =n) denote the number of positive and negative data points, while w
and w_(wy +w_ =1) are the weights for the positive and negative data
points, respectively. Here, we use only w, =w_ =0.5.

2.8 Training

Since in all cases considered here, the objective function is quadratic in the
parameters w and b, the minimum of the objective function can be obtained
analytically solving a corresponding linear equation (Riedesel et al., 2004)
with the Cholesky decomposition (Bau and Trefethen, 1997). Note that
the WBR loss function is a recursively defined function, since the model
parameters w, b depend on the loss function and vice versa. Minimizing
the objective function in this case is performed iteratively starting with
zero values for all parameters Wy, bg, using the resulting definition of the
WBR loss function, Equation (5), to determine the minimum of the objective
function, Equation (7) that yields a new set of parameters w1, by as solution
of the linear equation system. With these parameters a new definition of the
WBR loss function is obtained and the objective function can be minimized
again. This procedure is repeated until convergence is reached.

2.9 Quality measurement

The quality of the predictions listed in the results section are characterized
by the Matthews correlation coefficient (MCC) (Baldi et al., 2000), which
combines the prediction results for binding and nonbinding data points in a
single numerical value. The MCC ranges from —1 to +1. An unsuccessful,
purely random prediction yields MCC=0, while MCC=+1 is a perfect
prediction.

3 RESULTS

3.1 General considerations

For each individual classification approach, we use only data from
the training set. However, we subsequently compare prediction
performances for the different approaches while knowing the
outcome. Therefore, we can select the most successful approach.
In doing so, we use implicitly information on the prediction dataset
such that it is no longer an unbiased prediction as it was for the
participants of the CoEPrA contest, which did not even know the
predictions of the competitors before the contest was terminated.
Therefore, in this study we do not claim that our best approach
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Table 2. MCC (Matthews Correlation Coefficient) prediction results for the four CoEPrA classification tasks using the MSE loss function, Equation (3), with

different sets of features as indicated

Task Sparse Blosum62 Physchem Sparse & Sparse & Blosum62 & Sparse & CoEPrA first CoEPrA second
Blosum62 physchem physchem Blosum62 &
physchem
1 0.6634 0.7273 0.7517 0.7047 0.7517 0.7303 0.7303 0.7303 0.7273
2 0.5623 0.6158 0.6852 0.5922 0.7108 0.7379 0.6158 0.7108 0.7108
3 0.3232 0.3246 0.3535 0.2937 0.3238 0.3535 0.3238 0.3560 0.3188
4 0.0724 0.2197 0.3470 0.2380 0.2848 0.3470 0.3015 0.3972 0.3276

The last two columns show the best two results from the CoEPrA contest. Results to recall the data of the training set and the corresponding values of the regularization parameters
A are given in the Supplementary Material (Table S1). Best results per task are printed in bold digits. The two best results of the CoEPrA contest are given in the last two columns.

is truly superior to the best approaches in the CoEPrA contest, if
applied to a new problem. Conversely, since we are comparing our
approaches with a large number of alternative approaches submitted
by the participants in the CoEPrA prediction contest, being close to
the best results is quite a challenge.

To relate the results of the present study with the CoEPrA
contest results all tables that display the prediction results of this
study contain also the results of the best and second best COEPrA
competitor. No competitor obtained the best prediction results in
all four CoEPrA prediction contests, although one group came
close to it.

3.2 Classification with the MSE classifier

Table 2 shows the prediction results for the simplest type of
the considered classification approaches, where the information
on binding affinity provided with the first three CoEPrA tasks
has not been used. We used the mean-squared error (MSE) loss
function and the regularization parameter A has been optimized
via cross validation as described in the ‘Methods’ section. A total
of seven descriptor types were used. These are the three basic
descriptors and all possible combinations of them. Typical values
of the regularization parameters A are 0.6, 0.7, 0.7 for the basic
descriptors (sparse, Blosum62, physico-chemical see method part
for details), respectively. The A values and the results to recall the
training data are given in Supplementary Table S1.

The winner of the first CoEPrA classification task is the group
of Wuju Li obtaining an MCC of 0.7303. They used their Tclass
classification system (Wuju and Momiao, 2002), which is based
on Fisher and naive Bayes prediction methods together with an
optimized set of seven features from the set of physico-chemical
features provided by the CoEPrA webpage. However, with physico-
chemical features alone or a combination of physico-chemical and
sparse features and appropriate regularization a better result can be
obtained with an MCC of 0.7517. Especially, the physico-chemical
representation seems to contain important information, since all
combinations, which include physico-chemical features yield as
good or better results for task 1 as the best CoEPrA competitor.
All other sequence encoding techniques except using the sparse
encoding alone show a fairly good prediction performance indicating
that the first data set is a rather easy classification task. This became
already evident from a comparison of the distributions of pIC50
values for the CoEPrA tasks (Fig. 1 and related discussion in the
‘Method’ section).

The winner of the second CoEPrA classification task is the group
of Levon Budagyan obtaining an MCC of 0.7108. They used a
support vector machine (SVM) (Boser et al., 1992; Vapnik, 1995)
classifier together with gapped pair counts as descriptors (Budagyan
and Abagyan, 2006). Again with a combination of sparse and
physico-chemical features the MSE classifier yields results of the
same quality. However, here the best result is achieved when
combining Blosum62 and physico-chemical features yielding an
MCC of 0.7379. On the other hand, using sparse or Blosum62
features alone yields results that are noticeably inferior to the
best prediction in the CoEPrA contest indicating that the second
classification task is more difficult than the first.

The group of Wit Jakuczun wins the third CoEPrA task with an
MCC of 0.3560. They used SVM with a linear kernel combined
with 250 physico-chemical features, which were selected from the
original CoEPrA feature set using random forest approach (Breiman,
2001). Here, none of our classifiers yields results as good as the best
CoEPrA competitor. Nevertheless, the physico-chemical features
alone or in combination with Blosum62 features lead to an MCC of
0.3535, which is better than of the second best competitor (whose
MCC is 0.3188) and close to the result of the best competitor.

For the fourth CoEPrA task, the group of Gavin Cawley obtained
the best results with an MCC of 0.3972. They used SVM with
a normalized quadratic kernel on the original physico-chemical
CoEPrA feature set. Again none of our MSE classifiers achieved
such good results. However, some combinations that contain the
physico-chemical features give better results than the second best
competitor, which obtained an MCC of 0.3276.

These results of the MSE-based classification show that none
of the different feature representation techniques used here can
outperform the different techniques used by the competitors for
all four CoEPrA classification tasks simultaneously. Nevertheless,
the physico-chemical features and combinations involving them
yield good results for all four CoEPrA classification tasks. This
is particularly the case for the combination of physico-chemical
with Blosum62 features. Training the MSE-based classifier with
this combination of sequence descriptors prediction performance
is better than the best CoEPrA competitor for the first two
classification tasks and better than the second best CoEPrA
competitor for the third and fourth classification tasks. Hence, for all
four CoEPrA classification tasks the physico-chemical descriptors
seem to be most successful. Combining the physico-chemical
descriptors with the other two descriptor types the prediction
results can even be improved. Using physico-chemical features, the
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Table 3. MCC prediction results of the CoEPrA classification tasks 1 to 3 using the pIC50 values of the binding affinities for regression with subsequent

analysis of the regression results to perform classification

Task Sparse Blosum62 Physchem Sparse & Sparse & Blosum62 & Sparse & CoEPrA first CoEPrA second
Blosum62 physchem physchem Blosum62 &
physchem
1 0.7001 0.7303 0.7549 0.6847 0.7303 0.7303 0.7549 0.7303 0.7273
0.4073 0.3521 0.4234 0.4475 0.4488 0.4513 0.4763 0.7108 0.7108
3 0.2783 0.3834 0.3383 0.3840 0.3383 0.3383 0.3383 0.3560 0.3188

Oligo-peptides with a predicted pIC50 value below the threshold 7' (7'=5.3900, 7.7810 and 7.0725, for the classification tasks 1, 2, 3, respectively) were classified as non-binders,
whereas peptides with a predicted pIC50 value above the given threshold were classified as binders. Results to recall the data of the training set and the corresponding values of
the regularization parameters A are given in the Supplementary Material (Table S2). Best results per task are printed in bold digits. The two best results of the CoEPrA contest are

given in the last two columns.

Table 4. MCC prediction results of the CoEPrA classification tasks 1 to 3 using the pIC50 values of the binding affinities in a classifier with Weighted Biased

Regression (WBR) loss function

Task Sparse Blosum62 Physchem Sparse & Sparse & Blosum62 & Sparse & CoEPrA first CoEPrA second
Blosum62 physchem physchem Blosum62 &
physchem
1 0.5755 0.7502 0.7303 0.7303 0.7517 0.7759 0.7280 0.7303 0.7273
2 0.6600 0.5863 0.7410 0.5146 0.7462 0.7410 0.7128 0.7108 0.7108
3 0.2492 0.2482 0.3688 0.2330 0.3985 0.3985 0.4135 0.3560 0.3188

All values denote the MCC of the prediction set. Results to recall the data of the training set and the corresponding values of the regularization parameters A are given in the
Supplementary Material (Table S4). Best results per task are printed in bold digits. The two best results of the CoEPrA contest are given in the last two columns.

number of model parameters is particularly large and can result
in overtraining. Nevertheless, the classifiers based on the physico-
chemical features do not seem to over fit the training data although
the number of training data is nearly two orders of magnitude
smaller.

This behavior is due to efficient regularization.

3.3 Classification based on simple regression of binding
affinities

For the first three CoEPrA data sets also binding affinities of the
oligo-peptides are available. These values were used to build a
simple regression scheme that predicts pIC50 values as described
in the ‘Methods’ section. All oligo-peptides with a predicted pIC50
value below the given threshold T separating the two classes were
classified as negatives whereas all peptides with a predicted pIC50
value above the threshold were classified as positives. Table 3 shows
the results of predictions using the same sets of features as for the
MSE classifier discussed before.

For the first CoEPrA task, consideration of the binding
affinity yields slightly better results than obtained with the MSE
classification. Again the physico-chemical features alone or in
combination with other features yield results that are as good as
or better than the results of the best CoEPrA competitor. For the
second CoEPrA task, the regression leads to classification results
that are much worse than those obtained by the MSE classification.
All descriptor types yield very poor prediction results. This may
be due to the fact that the pIC50 values in the second data
set are biased towards the negative data points (Fig. 1). For the
third task, consideration of the binding affinity yields considerably
better results than the MSE classification. Especially, the Blosum62

features alone or in combination with a sparse descriptors yield good
results with an MCC of 0.3834.

3.4 Classification with the WBR classifier

The first three data sets have also been used to train classifiers
with the newly introduced WBR loss function as described in
the ‘Methods’ section, Equation (5). Table 4 shows the prediction
results. For the first CoEPrA, classification task the results are
considerably better than the results achieved by a simple regression.
The combination of Blosum62 and physico-chemical features yields
an MCC of around 0.77, which is better than of the MCC of the
best CoEPrA result (MCC of 0.7309). For the second CoEPrA task,
the results for the WBR loss function are much better than using
a simple regression. If physico-chemical features are used alone
or in combination with sparse or Blosum62 features the results
surpass the best CoEPrA prediction yielding an MCC of around
0.74. For the third CoEPrA task, the WBR classifier using feature
combinations that involve physico-chemical features outperform all
other classifiers. For the fourth CoEPrA data set, the WBR classifier
is not applicable, since the necessary pIC50 values are not available.

4 CONCLUSIONS

We have applied three different classification schemes to the four
classification tasks of MHC binding oligo-peptides in the CoEPrA
2006 competition using a linear scoring function in all cases.
The oligo-peptides were described by three different feature sets
and all possible combinations of them. These are (i) simple set
of features describing each amino acid pair to have the same
degree of similarity (or dissimilarity) (so-called sparse descriptor);
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(ii) Blosum62 features; (iii) physico-chemical features provided at
the CoEPrA webpage. The three classification schemes use: mean-
squared error (MSE) loss function, regression with subsequent
classification, WBR loss function. The latter approach uses a
recursively defined loss function that focuses on data, which are
difficult to classify. Since all three approaches use the square of
the linear scoring function, Equation (1), the minimization of the
objective function can be performed by solving a corresponding
linear equation system exactly peptides (Riedesel et al., 2004).

An important ingredient of the objective function is the
regularization term that is also quadratic in the model parameters.
It controls and avoids learning by heart by setting unimportant model
parameters to small values. The weight of the regularization term is
optimized by cross-validation using solely data from the training set.

Classification based on results from regression performs relatively
poorly, since it is more demanding to predict specific values of
binding affinity instead of a direct classification. On the other hand,
results obtained with the WBR loss function together with combined
Blosum62 and physico-chemical features outperform all results from
the CoEPrA contest. This demonstrates that using information on
binding affinity directly in a classification approach can improve
prediction performance considerably. However, we should point out
that the selection of the successful prediction procedure (based on
the WBR loss function with corresponding feature sets) was done by
observing the performance for the prediction sets. Such information
was not available for the participants of the CoEPrA contest. Hence,
we cannot claim to be really more successful than best performing
predictions in this contest.
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