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Neuronal migration is, along with axon guidance, one of the fundamental mechanisms
underlying the wiring of the brain. As other organs, the nervous system has acquired the
ability to grow both in size and complexity by using migration as a strategy to position cell
types from different origins into specific coordinates, allowing for the generation of brain cir-
cuitries. Guidance of migrating neurons shares many features with axon guidance, from the
use of substrates to the specific cues regulating chemotaxis. There are, however, important
differences in the cell biology of these two processes. The most evident case is nucleokinesis,
which is an essential component of migration that needs to be integrated within the guidance
of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the
leading process of migrating cells to guidance cues might be different to those involved in
growth cone steering, at least for some neuronal populations.

The migration of newly born neurons is a
precisely regulated process that is critical

for the development of brain architecture. Neu-
rons arise from the proliferative epithelium that
covers the ventricular space throughout the neu-
ral tube, an area named the ventricular zone
(VZ). From there, newly born neurons adopt
two main strategies to disperse throughout the
central nervous system (CNS), designated as
radial and tangential migration (Hatten 1999;
Marı́n and Rubenstein 2003). During radial
migration, neurons follow a trajectory that is
perpendicular to the ventricular surface, mov-
ing alongside radial glial fibers expanding
the thickness of the neural tube. In contrast,

tangentially migrating neurons move in tra-
jectories that are parallel to the ventricular
surface and orthogonal to the radial glia
palisade (Fig. 1). Besides their relative orienta-
tion, some of the basic mechanisms underlying
the movement of cells using each of these two
modes of migration are also different. For exam-
ple, radially migrating neurons often use radial
glial fibers as substrate, whereas tangentially
migrating neurons do not seem to require their
support to migrate. Even so, neurons may alter-
nate from radial to tangential movement and
vice versa during the course of their migration.
This suggests that both types of migrations share
common principles, in particular those directly
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related to the cell biology of movement (Marı́n
et al. 2006).

One of the structures that better illustrates
how both types of migrations are integrated dur-
ing brain development is the cerebral cortex, and
so we will primarily refer to studies performed
on cortical neurons for this review. The adult
cerebral cortex contains two main classes of neu-
rons: glutamatergic cortical projection neurons
(also known as pyramidal cells) and GABAergic
interneurons. Pyramidal cells are generated in
the ventricular zone (VZ) of the embryonic
pallium—the roof of the telencephalon—and
reach their final position by radial migration
(Rakic 2007). In contrast, cortical interneurons
are born in the subpallium—the base of telen-
cephalon—and reach the cerebral cortex
through a long tangential migration (Corbin
et al. 2001; Marı́n and Rubenstein 2001).

The earliest cortical neurons form a tran-
sient structure known as the preplate, around
embryonic day 10 (E10) of gestation age in

the mouse. This primordial layer consists of
Cajal-Retzius cells and the first cohort of pyra-
midal neurons, which will eventually populate
the subplate. Cajal-Retzius cells, which play
important roles during neuronal migration,
arise from discrete pallial sources and colonize
the entire surface of the cortex through tangen-
tial migration (Bielle et al. 2005; Takiguchi-
Hayashi et al. 2004; Yoshida et al. 2006). The
next cohort of pyramidal cells forms the cortical
plate (CP) by intercalating in the preplate and
splitting this primitive structure in a superficial
layer, the marginal zone (MZ or layer I), and a
deep layer, the subplate. The development of
the neocortex progresses with new waves of neu-
rons that occupy progressively more superficial
positions within the CP (Gupta et al. 2002;
Marı́n and Rubenstein 2003). Birth dating stud-
ies have shown that layers II–VI of the cerebral
cortex are generated in an “inside-out” sequence.
Neurons generated earlier reside in deeper
layers, whereas later-born neurons migrate past
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Figure 1. Representative migrations in the developing CNS. Multiple migrations coexist during embryonic
development at different areas of the central nervous system. This schema summarizes some of these
migrations during the second week of the embryonic period in the mouse. Neurons use tangential and radial
migration to reach their final destination; both strategies are used by the same neurons at different stages of
development (i.e., cortical interneurons in the forebrain and precerebellar neurons in the hindbrain). (IML)
intermediolateral region of the spinal cord; (IO) inferior olive nucleus; (LGE) lateral ganglionic eminence;
(LRN) lateral reticular nucleus; (MGE) medial ganglionic eminence; (NCx) neocortex; (OB) olfactory bulb.
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existing layers to form superficial layers
(Angevine and Sidman 1961; Rakic 1974). In
parallel to this process, GABAergic interneu-
rons migrate to the cortex, where they disperse
tangentially via highly stereotyped routes in
the MZ, SP, and lower intermediate zone/
subventricular zone (IZ/SVZ) (Lavdas et al.
1999). Interneurons then switch from tangen-
tial to radial migration to adopt their final lam-
inar position in the cerebral cortex (Ang et al.
2003; Polleux et al. 2002; Tanaka et al. 2003).

CELLULAR MECHANISMS IN NEURONAL
MIGRATION

Migrating neurons are highly polarized in the
direction of their movement. This is achieved
through the generation, maintenance, and
remodeling of a leading process that marks the
direction followed by the cell. Leading processes
are tipped by structures that are similar to the
growth cones of migrating axons, and as such
are thought to play an important role in sensing
the surrounding microenvironment and there-
by contributing to the guidance of neurons
(Rakic 1990; Yee et al. 1999).

The standard movement of neurons is com-
monly known as locomotion (Nadarajah and
Parnavelas 2002) (Fig. 2). Neurons undergoing
locomotion follow three synchronized steps to
move (Ayala et al. 2007; Marı́n and López-
Bendito 2006). First, the cell extends a leading
process. Second, the nucleus translocates into
the leading process, a step referred to as nucleo-
kinesis. Nucleokinesis typically occurs in a sal-
tatory pattern, which suggests that nuclear
movement is coupled to specific local dynamics
in leading process. In the final step, the migrat-
ing neuron eliminates its trailing process, which
leads to the net movement of the cell. The sub-
sequent remodeling of the leading process will
initiate a new migratory cycle, which will be
repeated until the neuron reaches its final desti-
nation. It should be noted, however, that some
neurons do not form a trailing process. Pyrami-
dal cells, for instance, extend their axon as they
move (Noctor et al. 2004; Schwartz et al. 1991).

The basic migratory cycle is simplified when
the leading process reaches its destination,

which happens during the last cycle of neu-
rons undergoing locomotion or in early born
pyramidal neurons. This later process, known as
somal translocation, involves nucleokinesis and
trailing process remodeling without the extension
of additional leading processes (Miyata et al.
2001; Miyata and Ogawa 2007; Nadarajah and
Parnavelas 2002).

Leading Process Dynamics

The leading process acts as the compass of mi-
grating neurons, selecting the direction of mi-
gration in response to chemotactic cues. The
leading process also reflects the state of polariza-
tion of migratory neurons, which in some cases
may vary in different phases of the migration
(Fig. 2). For example, newly born pyramidal
cells have a single process as they leave the pallial
VZ (Noctor et al. 2001), but they become tran-
siently multipolar for a short period of time in
the SVZ. During this phase, neurons partially
generate several short processes oriented
tangentially (Tabata and Nakajima 2003). Sub-
sequently, pyramidal cells become highly polar-
ized again and establish a leading process that
remains in contact with radial glial fibers until
they cease migration (Rakic 1972).

The morphology of the leading process
varies in different neuronal types, probably
reflecting an adaptation to different migratory
requirements (Fig. 2). In cortical interneurons,
for instance, the leading process branches as
part of the migratory cycle (Bellion et al. 2005;
Kappeler et al. 2006; Martini et al. 2009). This
seems to be common to many tangentially
migrating neurons (Okada et al. 2007). In con-
trast, radially migrating neurons seem to have a
single leading process (Rakic 1972). Interest-
ingly, defects in the interaction between pyra-
midal cells and radial glial fibers frequently
lead to aberrant branching of the leading pro-
cess (Elias et al. 2007; Gupta et al. 2003), which
suggest that the bipolar morphology of radially
migrating neurons might be imposed by glial-
guided locomotion.

Recent time-lapse experiments have shown
how migrating neurons integrate the dynamic
reorganization of branched leading processes
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into the migratory cycle (Martini et al. 2009). In
cortical interneurons, the two branches are ori-
ented toward the front of the cell and have a dy-
namic, exploratory behavior until the cell
decides what direction to follow. At this point,
only one of the branches keeps extending,
whereas the other begins retracting. This event
is followed by nucleokinesis, in which the
nucleus typically advances up to the previous
branching point. These steps are repeated con-
tinuously with the generation of a new branch
in the leading process in each migratory cycle.

The ability of tangentially migrating neu-
rons to generate a branched leading process ap-
pears to be intimately linked to their guidance.
In these cells, chemoattractants and chemo-
repellents induce the biased formation of new

leading processes already oriented toward or
against, respectively, the source of the guid-
ance molecule (Martini et al. 2009; Ward et al.
2005). This seems to allow migrating neurons
to rapidly change direction without having to
reorient pre-existing branches. For example,
interneurons invade the CP by generating
new branches that are oriented orthogonally
to their tangential migration (Martini et al.
2009; Polleux et al. 2002; Yokota et al. 2007).
Interestingly, this guidance mechanism seems
to be very different than that described for
growing axons, in which growth cone steer-
ing determine the direction of movement
(Lin and Holt 2007). In migrating cells with
branched leading processes, the angle formed
between branches remains relatively stable
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Figure 2. Leading process dynamics in cortical migrating neurons. (A) Early generated pyramidal cells migrate
independently of radial glia fibers by translocating their soma toward the meninges using a springlike
mechanism (a). (B) As the cerebral cortex grows, the distance between the ventricular zone (VZ) and the
marginal zone (MZ) increases, and pyramidal cells use locomotion to reach the cortical plate (CP).
Pyramidal cells go through a multipolar state (e) before attaching to the radial glial process and continue
their migration toward the cortical plate (c). Cortical interneurons initially migrate tangentially through the
cortex in defined streams (A and B), without invading the cortical plate. Then, eventually, they move radially
to allocate in a particular cortical layer. The leading process of these cells develops several branches, which
are used to modify their trajectory (d and e). Projection neurons and interneurons born at the same time
end up occupying the same layers (red colored nuclei represent cells born at the same time). (SVZ)
subventricular zone; (VZ) ventricular zone; (V–VI) cortical layers V and VI.
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during each migratory cycle, and therefore the
cell chooses the new direction out of two pre-
existing options, in a binary manner (Martini
et al. 2009; Ward et al. 2005). It is presently
unclear why navigating axons are able to orient
up gradients of guidance cues using a single
growth cone, whereas many migrating neurons
have developed complicated leading process
dynamics for guidance. One possible explana-
tion is that the generation of multiple leading
process branches represents a very efficient
method for the exploration of the microenvi-
ronment (Britto et al. 2009).

Not all tangentially migrating neurons use
this guidance mechanism to achieve directional
migration. In some cellular contexts, the guid-
ance of the leading process is remarkably sim-
ilar to axon guidance. This is the case, for
example, of pontine neurons, which generate a
long leading process of up to a 1000 mm that
extends continuously toward the floor plate be-
fore nucleokinesis (Yee et al. 1999). In this form
of somal translocation, growth cone steering
seems to be responsible for the guidance of the
migration, as it happens during axon guidance.
It should be noted, however, that this does not
seem to be the most common behavior for
migrating neurons in the CNS.

Little is known about the molecular mecha-
nisms regulating leading process dynamics in
migrating neurons. CDK5, a serine/threonine
cyclin-dependent kinase, modulates the exten-
sion of the leading process through phosphory-
lation of Pak1 and p27Kip1, two important
actin regulators (Dhavan and Tsai 2001; Kawau-
chi et al. 2006a; Nikolic et al. 1998). Pak1 phos-
phorylation by CDK5 down-regulates Pak1
activity, thereby modulating the actin dynamics
in the growth cone (Nikolic et al. 1998). On
CDK5 phosphorylation, p27Kip1 is stabilized
in neurons, and this stabilization is critical to
keep the proper level of F-actins in the leading
processes (Kawauchi et al. 2006b).

Lissencephaly 1 (Lis1) and Doublecortin
(DCX), two microtubule associated proteins
that are better known for their roles during
nucleokinesis (see next section), are also
involved in regulating leading process branch-
ing in migrating interneurons (Kappeler et al.

2006; Nasrallah et al. 2006). The leading process
of Dcx-deficient interneurons branches more
frequently than normal, but new branches
are very unstable. This suggests that DCX is
required to stabilize new leading process bran-
ches, and that cytoskeleton instability in the
leading process may prompt neurons to branch
more frequently (Kappeler et al. 2006). In con-
trast, the leading process of interneurons hete-
rozygous for a Lis1 mutation branch less
frequently and, consequently, is longer than in
normal cells (Nasrallah et al. 2006). These
results suggest that Lis1 is required for leading
process branching, and ultimately, guidance
of these neurons. Altogether, these evidences
indicate that Lis1 and DCX play comple-
mentary roles in leading process dynamics.

Nucleokinesis

The translocation of the nucleus into the lead-
ing process is the mechanism that best defines
neuronal migration (Fig. 3). Time-lapse imag-
ing studies reveal that nucleokinesis occurs in
two steps. First, a cytoplasmic swelling forms
in the leading process, immediately proximal
to the nucleus. The centrosome, which is
normally positioned in front of the nucleus,
moves into this swelling (Bellion et al. 2005;
Schaar and McConnell 2005; Tsai and Gleeson
2005). The centrosome is accompanied by
additional organelles, including the Golgi appa-
ratus, mitochondria, and the rough endoplas-
mic reticulum. Second, the nucleus follows the
centrosome. These two steps are repeated pro-
ducing the typical saltatory movement of mi-
grating neurons.

Nucleokinesis relies on a large interactive
signaling network. According to the current
model, forces generated within the leading
process are transmitted to the centrosome,
which moves forward. The centrosome is con-
stantly linked to the nucleus through a micro-
tubule network that envelops the nucleus in a
“fork-” or “cage”-like structure (Rivas and
Hatten 1995; Xie et al. 2003). Following centro-
some movement, the nucleus is pulled toward it
by dyneins associated with the microtubule
network (Rivas and Hatten 1995; Solecki et al.
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2004; Tsai and Gleeson 2005; Xie et al. 2003)
(Fig. 3). In addition, actomyosin contraction
in the rear of the cell contributes to drive the
nucleus forward during nucleokinesis (Bellion
et al. 2005; Schaar and McConnell 2005).

Our knowledge of the molecular mecha-
nisms underlying nucleokinesis largely derives
from studies on human neurological syndromes.
For example, impaired neuronal migration
causes a human brain malformation known as
lissencephaly (“smooth brain”), characterized
by an abnormally thickened cerebral cortex
that lacks normal cerebral convolutions and or-
ganized layers (Francis et al. 2006; Jellinger and
Rett 1976). Lissencephaly has been attributed to
mutations in two genes, LIS1 and DCX. Muta-
tions in LIS1 result in autosomal dominant
lissencephaly (Hattori et al. 1994; Reiner et al.
1993), whereas mutations in DCX are responsi-
ble for X-linked lissencephaly in males and for a
syndrome known as double cortex in females.

Double cortex is manifested as a subcortical
band of neuronal cell bodies in the white matter,
caused by the arrest of a population of neurons
halfway between the ventricle and the cortex
(des Portes et al. 1998; Gleeson et al. 1998).

Although the mouse cortex has no convo-
lutions, mice deficient in Lis1, Dcx, or their
interactive proteins have proven very valuable
to understand human lissencephaly. Mice het-
erozygous for a Lis1 null allele display only
mild defects in neuronal migration, but further
reduction of Lis1 levels by combining a null
allele with a hypomorphic Lis1 allele pro-
foundly disrupts cortical lamination (Gambello
et al. 2003; Hirotsune et al. 1998). In many Lis1-
deficient neurons, the extension of the leading
process is unaffected (but see McManus et al.
2004), suggesting that the perturbed neuronal
migration most likely results from defects in
nucleokinesis (Shu et al. 2004; Tanaka et al.
2004; Tsai and Gleeson 2005).
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Figure 3. Nucleokinesis in migrating neurons. Nucleokinesis involves both perinuclear and nucleus
translocation. First, the perinuclear dilatation containing the centrosome and the Golgi apparatus move
forward. The perinuclear microtubular cage (in green) pulls the nucleus forward until reaching the swelling.
Forward pulling forces (green arrow) are complemented by myosin II at the rear, which generates pushing
forces (red arrows) to move the nucleus in its characteristic saltatory pattern of nucleokinesis. Many motor
proteins and other proteins related to the cytoskeleton are implicated in the process. (N) nucleus.
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Lis1 associates with microtubules and a sub-
population of Lis1 localizes to the centrosome.
It promotes microtubule stability by inhibiting
microtubule catastrophe in vitro (Sapir et al.
1997). Interestingly, in filamentous fungi, Lis1 be-
longs to a highly conserved family of genes that
regulate nuclear migration, an event that is remi-
niscent of nucleokinesis in migrating neurons.
This familyalso includes Ndel1 and dynein (Mor-
ris et al. 1998). Ndel1 is required for targeting Lis1
and dynein to the centrosome, and facilitates the
nucleation and anchoring of microtubules to
the centrosome (Guo et al. 2006). In addition,
Ndel1 facilitates the interaction between Lis1
and dynein and regulates dynein-mediated retro-
grade transport (Gupta et al. 2003; Li et al. 2005;
Mesngon et al. 2006; Smith et al. 2000). Disrup-
tion of Lis1 function abolishes centrosome-
nucleus coupling, increasing thedistance between
the two organelles. Similar defects are observed in
neurons with Ndel1 or dynein loss of function
(Aumais et al. 2001; Dawe et al. 2001; Sasaki
et al. 2000; Shu et al. 2004; Tsai et al. 2005), sug-
gesting that Lis1, Ndel1, and dynein regulate the
microtubule network that couples the centro-
some to the nucleus. Perturbation of this complex
may contribute to the cortical lamination defects
observed in lissencephaly patients (Ayala et al.
2007; Higginbotham and Gleeson 2007; Tsai
and Gleeson 2005).

Mice with Dcx mutations display no detect-
able defects in the cerebral cortex, and only mild
abnormalities in the hippocampus (Deuel et al.
2006). One possible explanation is that geneti-
cally redundant pathways may compensate for
the absence of DCX in the knockout mice.
This possibility is supported by the observation
that acute knockdown of DCX from rat cortex
using RNAi results in severe defects in neuronal
migration, with affected neurons aberrantly
accumulated in the intermediate zone of the
cortex (Bai et al. 2003). The compensative effect
seems to be mediated by Doublecortin-like
kinase (DCLK), a protein with great similarity
to DCX (Burgess et al. 1999; Lin et al. 2000).
DCX and DCLK are microtubule associate pro-
teins, and both promote the polymerization
and stabilization of the microtubules (Francis
et al. 1999; Gleeson et al. 1999; Horesh et al.

1999). Similar to DCX, DCLK null mice show
no lamination defects, whereas DCLK acute
knockdown via RNAi disrupts neuronal mi-
gration (Koizumi et al. 2006). Further evidence
of genetic redundancy of the two genes comes
from DCX/DCLK double knockout mice. In
these mice, radial migration is severely dis-
rupted, and cortical layers are abnormally broad
and less distinct (Deuel et al. 2006; Koizumi
et al. 2006; Tanaka et al. 2006).

Increasing evidence indicates that DCX and
DCLK participate in the regulation of nucleoki-
nesis during neuronal migration. Interneurons
lacking DCX have nucleokinesis abnormalities
(Kappeler et al. 2006). In particular, the centro-
some-containing cytoplasmic swelling can move
backward toward the nucleus in Dcx mutant
neurons, indicating a problem in the polariza-
tion of organelles in these cells. Consistently,
knockdown of Dcx in pyramidal cells leads to
an abnormally hyperactive centrosome, with
loss of directional movement and lack of spatial
correlation with the nucleus (Sapir et al. 2008).
In addition, the centrosome-nucleus uncou-
pling observed in Lis1 or dynein-deficient cells
is rescued by DCX expression (Tanaka et al.
2004). These results suggest that DCX and
DCLK play important roles in the maintenance
of the microtubule network coupling the centro-
some and the nucleus in migrating neurons.

Studies on CDK5 and its activators p35 and
p39 reveal another important signaling pathway
involved in neuronal migration. Cdk5 null mice
die around birth, and show widespread disrup-
tions in neuronal layering of multiple cortical
structures. In the cerebral cortex, the preplate
is successfully split, but subsequently generated
neurons fail to migrate past their predecessors,
and are accumulated progressively into deeper
layers, resulting in an inverted “outside-in” cor-
tex (Gilmore et al. 1998; Ohshima et al. 1996).
Mouse mutants for p35 display inverted layering
of cerebral cortex similar to Cdk5 knockouts, but
only have mild abnormalities in the hippo-
campus and cerebellum (Chae et al. 1997;
Kwon and Tsai 1998). Although p39-deficient
mice do not show noticeable defects, the pheno-
type of p35/p39 double mutant is indistinguish-
able from Cdk5 null mice (Ko et al. 2001). These
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results suggest an essential role of CDK5 and its
activators in neuronal migration.

Several lines of evidence support the idea
that CDK5 function is essential in nucleokinesis.
First, Ndel1 contains five CDK5 phosphoryla-
tion sites, and the phosphorylation may modify
the interaction between Ndel1 and Lis1/dynein.
Hence, CDK5 may potentially regulate neuronal
migration through modulating the function of
Lis1/Ndel1/dynein complex, which has well-
established roles in nucleokinesis. Second, CDK5
phosphorylates many microtubule-associated
proteins, including the previously discussed
DCX, MAP1b, and tau, and modulates their
association with microtubules. For instance,
CDK5 phosphorylation of DCX on Ser297 en-
hances its binding to microtubules. Abolishing
this phosphorylation dissociates DCX from
microtubules, which subsequently leads to mi-
crotubule depolymerization and ultimately de-
fective migration (Tanaka et al. 2004). Third,
CDK5 also phosphorylates other kinases, such
as focal adhesion protein (FAK). Phosphoryla-
tion of FAK by Cdk5 at Ser732 is required for
the organization of the perinuclear microtubule
network. Inhibition of FAK Ser732 phosphory-
lation results in abnormal nuclear movement
and laminar positioning defects in vivo (Xie
et al. 2003). Collectively, these evidences suggest
that CDK5 plays an essential role during
nucleokinesis.

Although the function of Lis1, DCX, DCLK,
and CDK5 in nucleokinesis has been primarily
studied in radially migrating cells, analysis of
other neuronal populations suggests that they
play a universal role in this process (Friocourt
et al. 2007; Kappeler et al. 2006; McManus et al.
2004; Nasrallah et al. 2006; Rakić et al. 2009).

MECHANISMS AND CUES GUIDING RADIAL
NEURONAL MIGRATIONS

Radial Glia–Neuron Interactions

Radial glia cells play fundamental roles in neu-
ronal migration. These cells, which are the pro-
genitors of pyramidal cells (Noctor et al. 2001),
have their cell bodies in the VZ and extend their
long processes spanning the entire thickness

of the developing cortex. As the thickness of
the developing cortex grows, neurons under-
going locomotion use these fibers as a guide to
reach the CP (Campbell and Gotz 2002; Rakic
1971). Various membrane-bound cell adhesion
molecules, including astrotactin, neuregulin, and
several integrins, mediate the interaction of mi-
grating neurons and radial glial fibers (Adams
et al. 2002; Anton et al. 1997; Edmondson et al.
1988; Fishell and Hatten 1991; Stitt and Hatten
1990).Wewillusetheintegrinfamilyasanexample
to illustrate how membrane-bound cell adhesion
molecules regulate radial migration.

Integrins are transmembrane receptors that
mediate cell–cell and cell–extracellular matrix
interactions. Functional integrins are composed
of a and b subunits that form heterodimers.
Multiple a subunits are expressed in the devel-
oping cortex, including a3, aV, and a6, all of
which dimerize with b1 integrin. Mouse
mutants for each of these integrin genes show
distinct cortical lamination phenotypes, indi-
cating that different subunits may play different
roles in neuronal migration (Marı́n and Ruben-
stein 2003). Targeted mutation of a3 integrin
results in retarded neuronal migration and
disrupted cortical lamination (Schmid et al.
2004). Consistently, in vitro blocking a3 integ-
rin reduces the migration speed and detaches
migrating neurons from radial glia (Anton
et al. 1999; Dulabon et al. 2000). Conditional
knockout of aV integrin in radial glia leads to
extensive cerebral hemorrhage in embryos
(Bader et al. 1998; McCarty et al. 2005), but
this phenotype prevents a profound evaluation
of cortical development. In a6 integrin null
mice, ectopic clusters of cells penetrate the
pial surface, and cortical lamination is dis-
turbed. This overmigration of neurons has
been attributed to persistent laminin deposits
along radial glia fibers, which may prevent neu-
rons from arresting their migration and localiz-
ing to the appropriate layer (Georges-Labouesse
et al. 1998). Conditional knockdown of the b1
subunit leads to disrupted cortical lamination
as well. In these mice, the anchoring of radial
glial end feet at the pial surface is perturbed,
which may explain the observed neuronal posi-
tioning defects (Graus-Porta et al. 2001). These
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studies indicate a wide spectrum of cell adhe-
sion functions mediated by the integrin family,
which cooperatively modulate the radial migra-
tion of cortical neurons.

The signaling events downstream of the var-
ious integrins are not fully elucidated. However,
several studies suggest that CDK5/P35, Filamin
A, and Disabled-1 (Dab1) are involved in integ-
rin-mediated signaling. a1b1 integrin activates
CDK5 (Li et al. 2000), which interact with mul-
tiple proteins involved in the adjustment of the
cytoskeleton. Filamin A, an actin cross-linking
protein, binds to b1 integrins (Loo et al.
1998). Filamin A mutations in humans cause
periventricular heterotopia, a disease character-
ized by ectopic neuronal clusters lining the lat-
eral ventricles beneath the cortical white matter
(Sarkisian et al. 2008). Filamin A deficient
mice display aberrant adherent junctions at
the lining of the ventricular zone (Feng et al.
2006), which may be partially responsible for
the failure of initiation of neuronal migration.
Furthermore, in vitro studies showed that mu-
tations in b integrins, which increase their
binding capacities with Filamin A, inhibits cell
migration through blockage of the membrane
protruding dynamics critical in early steps of
neuronal migration (Calderwood et al. 2001).
Hence, it is possible that in migrating neurons,
Filamin A links extracellular signaling from in-
tegrins to the actin filament network at the lead-
ing edge of the migrating neuron (Sarkisian
et al. 2008). Dab1, a tyrosine phosphorylated
adaptor protein mediating Reelin signaling,
also associates with the cytoplasmic region of
b1 integrin (Schmid et al. 2005). It is hypothe-
sized that the interaction betweena3b1 integrin
with the Reelin signaling pathway may trigger
the internalization of integrins, thus leading to
the detachment of migrating neurons from the
radial glial processes (Dulabon et al. 2000;
Schmid et al. 2005). Together, these studies
suggest that integrin activation is translated by
intracellular mediators to modifications of the
microtubule and actin networks as well as
cell–cell adhesion, both of which are precisely
modulated during neuronal migration.

Recent studies have shown that the interac-
tion between radial glial fibers and migrating

neurons also relies on the adhesive properties
of Gap junctions (Cina et al. 2009; Elias et al.
2007). Several connexins, the component of
Gap junctions, are expressed in both radial glial
cells and migrating neurons, and their associa-
tion in trans is required for glial-guided mi-
gration. Interestingly, the channel capabilities
of Gap junctions are not required for this proc-
ess. The mechanisms regulating the dynamic
assembly and disassembly of these transient
contacts between radial glial fibers and migrat-
ing neurons are currently unknown.

Cues Regulating Radial Migration

A large number of secreted extracellular mole-
cules have been shown to regulate migration,
including Slits, netrins, semaphorins, and
Reelin (Fig. 4). The functions of Slits, netrins,
and semaphorins have been characterized in tan-
gential migration, but their role in radial
migration is not as well studied as Reelin. Thus,
we will use Reelin as an example to illustrate
how extracellular molecules and their receptors
regulate neuronal migration and positioning.

The discovery of the Reelin pathway origi-
nates from the reeler mouse, initially described
over 50 years ago. These spontaneous mutant
mice display abnormal behaviors such as ataxia,
tremor, and reeling gaits, and their brains have
layering defects in multiple brain regions, but
most prominently in cortical areas (Lambert
de Rouvroit and Goffinet 2001; Rice and Curran
1999). In the neocortex, the preplate forms nor-
mally, but the next cohort of cortical neurons
fails to divide it into the marginal zone and
the subplate. Moreover, birth dating experi-
ments showed an inverted lamination pattern
of the reeler cortex (Caviness 1982). Subsequent
studies revealed that mutations in Reelin, a gene
encoding for a large extracellular glycoprotein,
is mutated in reeler mice (D’Arcangelo et al.
1995; Hirotsune et al. 1995; Ogawa et al. 1995;
Sheppard and Pearlman 1997). Reelin is secre-
ted by Cajal-Retzius cells located in the mar-
ginal zone, and it binds to two members of
the lipoprotein family receptors, VLDLR and
ApoER2 (D’Arcangelo et al. 1999; Hiesberger
et al. 1999). Notably, VLDLR and ApoER2
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double mutants phenocopy the defects found in
reeler (Trommsdorff et al. 1999), although each
receptor seems to play specific roles in this
process (Hack et al. 2007).

The layering defects found in reeler and
VLDLR/ApoER2 double mutant mice can also
be found in two other spontaneous mutant
mice, scrambler and yotari, which carry muta-
tions in Dab1 (Gonzalez et al. 1997; Howell
et al. 2000; Rice et al. 1998; Sheldon et al.
1997; Trommsdorff et al. 1999; Yoneshima
et al. 1997). Biochemical studies suggest Reelin

binding to its receptors induces tyrosine phos-
phorylation of Dab1 (Howell et al. 1999; Howell
et al. 2000), which triggers a signaling cascade
that instructs neurons to adopt their proper
destination in the cortex. Notably, mice harbor-
ing point mutations in all tyrosine residues of
Dab1 also phenocopy reeler mice (Howell
et al. 2000), suggesting that the tyro-
sine phosphorylation of Dab1 is a key step in
Reelin signaling. Tyrosine phosphorylation of
Dab1 is markedly reduced on simultaneous
disruption of Src and Fyn, the two kinases
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along with other factors such as semaphorins, guide the migration of projection neurons. (CP) cortical plate;
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cortex; (Str) striatum; (SVZ/VZ) subventricular/ventricular zones.
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that are responsible for this phosphorylation
(Arnaud et al. 2003; Bock and Herz 2003).
Src/Fyn double mutant mice display similar
cortical and cerebellar lamination defects than
Dab1 and Reelin mutants (Kuo et al. 2005).

Dab1 phosphorylation is finally translated
into the regulation of microtubule dynamics,
as supported by several lines of evidence. First,
tyrosine phosphorylation of Dab1 is coupled to
the activation of PI3K in the leading processes
of migrating neurons. This in turn activates
AKTand induces the serine phosphorylation of
GSK3b, which inhibits its activity (Beffert et al.
2004). One of the major substrates of GSK3b is
the microtubule associated protein tau, which
stabilizes microtubules in its unphosphorylated
state. Under physiological conditions, activation
of Dab1 might function to maintain tau phos-
phorylation, thereby promoting microtubule
stability. Accordingly, both reeler and VLDLR/
ApoER2 double mutant mice show hyperphos-
phorylation of tau at Ser202 and Thr205, two
GSK3b sites (Hiesberger et al. 1999). Moreover,
Reelin signaling induces the phosphorylation
of GSK3b at its tyrosine residue, leading to its
activation. Activated GSK3b functions synergis-
tically with CDK5 to phosphorylate another
microtubule associated protein, MAP1B
(Gonzalez-Billault et al. 2005). Phosphorylation
of MAP1B is believed to regulate microtubule
stability and the cross talk between microtubules
and actin filaments in axonal growth cones
(Kawauchi et al. 2005). These opposite effects
on MAP1B and tau phosphorylation likely re-
flect a very dynamic regulation of microtubule
dynamics by Reelin signaling, depending on
the context of cellular compartment or phases
of migration. Third, Dab1 interacts with Lis1, a
protein implicated in the human brain develop-
mental disorder lissencephaly. This interaction
depends on the tyrosine phosphorylation of
Dab1 (Assadi et al. 2003). Furthermore, Lis1
mutations associated with severe phenotypes in
humans disrupt the Lis1-Dab1 interaction. In
addition, the compound Reelin/Lis1 heterozy-
gous mice show a greater degree of cortical mal-
formation than the individual heterozygotes,
suggesting an epistatic relationship of the two
genes (Assadi et al. 2003). Taken together, these

studies suggest that the Reelin signaling pathway
regulates microtubule dynamics through multi-
ple signaling components.

MECHANISMS AND CUES GUIDING
TANGENTIAL NEURONAL MIGRATIONS

Cellular Interactions During Tangential
Migration

Tangentially migrating neurons do not seem to
follow radial glial fibers but instead interact
with other cell types (Corbin et al. 2001; Marı́n
and Rubenstein 2001). In general, tangentially
migrating cells can move in clusters, as it is the
case of olfactory bulb interneurons, or indi-
vidually, as it happens for instance with cortical
interneurons or Cajal-Retzius cells. Cellular
interactions also differ depending on the nature
of the substrate. They can be homotypic, when
interactions occur between cells of the same class,
or heterotypic, when migrating cells rely on the
contact with other cell types for their migration.

Different types of homotypic interactions
support tangential migration. Homotypic inter-
actions are highly permissive when neurons
move through territories that are hostile to
migration. This is the case, for example, of neu-
roblasts migrating from the lateral ventricles of
the telencephalon toward the olfactory bulb in
the adult brain (Wichterle et al. 1997). In this
type of collective movement, known as chain
migration, neuroblasts crawl on each other as
they move forward, using adjacent migrating
cells as their main substrate. This mode of mig-
ration allows neurons to form an isolated micro-
environment in which each individual cell
promotes the migration of others.

Neurons may also develop inhibitory homo-
typic interactions. This mode of migration,
known as contact inhibition, was first described
to define the behavior of fibroblasts confronting
each other in vitro, where they retract their
protrusions and change direction on contact
(AbercrombieandHeaysman 1953). This strategy
allows neuronsto achieve directional migration in
the absence of chemotactic gradients, because it
favors the movement of cells toward areas with
less cell density. Recent in vitro experiments
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suggests that Cajal-Retzius cells derived from the
cortical hem may use this mechanism to disperse
throughout the surface of the cerebral cortex dur-
ing early corticogenesis (Borrell and Marı́n 2006),
although the molecular mechanisms underlying
this process are currently unknown. It should be
noted, however, that members of the planar cell
polarity(PCP)pathwayhavebeenshowntomedi-
ate contact inhibition of locomotion in neural
crest cells (Carmona-Fontaine et al. 2008), and
PCP proteins are likely involved in the migration
of telencephalic neurons (Ying et al. 2009).

Most tangentially migrating neurons rely on
heterotypic interactions with their substrates. In
the most common scenario, neurons respond to
cues present in the extracellular matrix or in the
surface of other cells to achieve directional
migration. An extreme case of heterotypic mi-
gration is used by neurons that move along ax-
ons to reach their final destination. This form of
migration resembles axon fasciculation, and is
used, for example, by the neurons responsible
for producing the Gonadotropin-releasing
hormone (GnRH, also known as Luteinizing
hormone-releasing hormone, LHRH). During
development, these neurons traverse the fore-
brain from the olfactory bulb to the hypothala-
mus following vomeronasal axons (Wray 2002).

Chemotaxis in Tangential Migration

Tangentially migrating neurons most frequently
achieve directional migration by interpreting
chemotactic gradients. Almost every molecule
known to influence axon guidance has also
been implicated in tangential migration. The
list not only includes members of the classical
families of guidance factors, such as Slits, ne-
trins, and semaphorins, but also growth factors
or morphogenetic proteins. This circumstance
strongly suggests that the molecular mecha-
nisms responsible for the chemotactic response
share many similarities between axons and
migrating neurons, even though the cellular
strategies adopted by both might be different.

Many signals responsible for the guidance of
cortical interneurons have been identified over
the past few years (Fig. 4), in particular for those
derived from the medial ganglionic eminence

(MGE). MGE-derived interneurons achieve
directional migration by integrating chemoat-
tractive and chemorepellent cues (Marı́n et al.
2003; Wichterle et al. 2003) (Fig. 4). In addition,
several growth factors, including BDNF, NT4,
and HGF increases the migratory rate of MGE-
derived interneurons in vitro and are thought to
promote the movement of these cells in vivo
(Polleux et al. 2002; Pozas and Ibañez 2005).
The mechanisms through which these signals
elicit a potent migratory response in MGE-
derived cells are not completely understood,
but are thought to involve activation of PI3K/
AKT and ERK pathways (Polleux et al. 2002;
Segarra et al. 2005).

The best-characterized chemoattractant for
MGE-derived cells is Neuregulin-1 (Nrg1),
which acts primarily through ErbB4 (Yau et al.
2003), a member of the EGF receptor family
(Buonanno and Fischbach 2001). Two different
isoforms of Nrg1 are expressed in the develop-
ing telencephalon (Flames et al. 2004). Type
III Nrg1 (CRD-Nrg1) is expressed in the migra-
tory route used by interneurons to cross the
lateral ganglionic eminence (LGE) toward the
cortex. This form of Nrg1 is membrane-bound,
and so it is thought to function as a permissive
substrate for interneuron migration. In con-
trast, type I/II Nrg1 (Ig-Nrg1) expression is
restricted to the developing pallium. Because
this later molecule is cleaved from the mem-
brane, it is likely that a gradient of Ig-Nrg1 con-
tributes to drive MGE-derived interneurons
toward the cortex. The analysis of Nrg1 and
ErbB4 mutants are consistent with this hy-
pothesis, as both show delayed migration from
the MGE and deficits in cortical interneurons
(Flames et al. 2004; Neddens and Buonanno
2009). Recent studies have begun to explore
the cellular mechanisms through which Nrg1
directs the guidance of cortical interneurons
(Martini et al. 2009). In vitro experiments
suggest that migrating interneurons respond
to a gradient of Nrg1 by generating new leading
process branches that are better aligned with
the source of the gradient and, subsequently,
selecting those branches to continue their mi-
gration. Thus, in contrast to its role in axon
guidance (López-Bendito et al. 2006), Nrg1
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does not influence neuronal migration by reor-
ienting previously existing growth cones. The
molecular basis for this disparity is currently
unknown, but is likely to involve fundamental
differences in the way growing axons and migra-
ting neurons integrate chemotactic signals.

The progression of MGE-derived cells
toward the cortex is also guided by chemorepel-
lents, which preclude their entry into undesired
targets (Fig. 4). For instance, interneurons are
prevented from migrating in ventral direction
by a so far unidentified chemorepellent activity
present in the preoptic area (Marı́n et al. 2003;
Wichterle et al. 2003). MGE-derived cortical
interneurons also avoid the developing striatum
in response to class III semaphorins (Sema3A
and Sema3F) expressed in this structure (Marı́n
et al. 2001; Nóbrega-Pereira et al. 2008). This
mechanism involves Nrp1 and Nrp2, the recep-
tors for Sema3A and Sema3F, respectively. In
addition, recent work has suggested that Robo
receptors might be involved in regulating the
migration of cortical interneurons around the
striatum in a mechanism that is likely inde-
pendent of Slits (Andrews et al. 2007; Marı́n
et al. 2003).

The mechanisms controlling the guidance
of interneurons within the developing cortex
are less understood. Cortical interneurons dis-
perse tangentially through the cortex following
two main routes of migration, the MZ and the
SVZ (Lavdas et al. 1999), initially avoiding the
CP (López-Bendito et al. 2008). Chemokines
are responsible for maintaining migrating inter-
neurons within the MZ and SVZ as they
disperse tangentially throughout the cortex (Li
et al. 2008; López-Bendito et al. 2008; Tiveron
et al. 2006). Cells in these layers express
Cxcl12, a potent chemoattractant for MGE-
derived cells. Interneurons in turn express
Cxcr4, a receptor for this chemokine. Loss of
Cxcr4 function does not prevent interneurons
from reaching the cortex in normal numbers,
but it disrupts their distribution as they migrate
within the cortex (Tiveron et al. 2006). This
phenotype causes premature interneuron entry
into the CP, which disrupts their normal lami-
nar and regional distribution (Li et al. 2008;
López-Bendito et al. 2008). The mechanisms

controlling the laminar distribution of inter-
neurons have not been yet identified, but cur-
rent evidence suggests that this process is
independent of Dab1 signaling (Pla et al. 2006).

COORDINATION OF NEURONAL
MIGRATION AND AXON GUIDANCE

Neuronal migration and axon guidance are
frequently studied as independent processes,
but the normal development of neural circuits re-
quires theircoordination. Over the past few years,
we have learned a great deal about the integration
of both mechanisms in some aspects of neural
development, in particular in relation to the
role of intermediate targets in axon guidance.

Migration of Guidepost Cells for Axon
Guidance

Guidepost cells represent a clear example that
illustrates how neuronal migration and axon
guidance are coordinated during the wiring of
brain circuitry. Guidepost cells are typically
positioned at critical decision points within
the migratory pathway of axons and provide
them with guidance information (see Dickson
and Zou 2010).

The guidance of three major forebrain
projections relies on guidepost cells: the corpus
callosum, the thalamocortical projection, and
the lateral olfactory tract (Fig. 5). Cortical com-
missural axons rely on cues provided by a pop-
ulation of cells named the “glial sling” to
successfully navigate the midline. Neurons
that form the glial sling derive from the SVZ
and migrate toward the midline around E17.5,
just before the arrival of the first commissural
axons (Shu et al. 2003b). In mouse mutants
for one of the Nuclear factor I genes, Nfia, sling
cells fail to reach the midline and instead mi-
grate toward the septum. As a consequence,
the corpus callosum does not form in Nfia mu-
tant mice (Shu et al. 2003a). The molecular na-
ture of the cues guiding sling cells remains
unknown, as is the case for corridor cells, the
population of GABAergic neurons that serve
as an intermediate target for thalamocortical
axons. These neurons derive from the LGE
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and migrate tangentially in ventral direction
until the region where thalamocortical axons
(TCAs) enter the telencephalon (López-Ben-
dito et al. 2006). Through a mechanism that
involves CRD-Nrg1/ErbB4 signaling, corridor
cells facilitate the migration of TCAs through
the most ventral aspect of the subpallium,
a territory hostile for the growth of thalamic
axons.

The migration of lateral olfactory tract
(LOT) cells is probably the best characterized
of all three. This population of neurons is gen-
erated very early during telencephalic develop-
ment (E10.5) by progenitor cells in the
pallium (Tomioka et al. 2000). LOT cells sub-
sequently migrate laterally through the MZ
until they reach the pallial-subpallial boundary,
where they turn 908 and disperse in rostro-
caudal direction around the piriform cortex.
This migration requires the coordinated activity
of Sema3F, which restrict the migration of LOT
cells close to the pial surface (Ito et al. 2008);
ephrinA5, which prevents the migration of
LOT cells into the subpallium (Nomura et al.
2006); and Netrin-1, which guides LOT cells

surrounding the piriform cortex (Kawasaki
et al. 2006). The final location of LOT cells
accompanies the route of the prospective lateral
olfactory tract, whose axons will navigate
through the space created by LOT cells deep to
the piriform cortex.

Integration of Migration and Axon Guidance
Programs Within Individual Cells

The coordination of migratory and axon guid-
ance programs does not only occur at the pop-
ulation level, as described previously, but it
also poses a very interesting challenge for indi-
vidual cells. It is generally assumed that neu-
ronal migration is largely incompatible with
other programs of differentiation because this
later process drives cells into the acquisition of
morphological features that are unsuited for
migration. Specifically, neuronal differentiation
involves the growth of dendrites and axons in
specific patterns, which may restrict their move-
ment and break the polarity that cells require to
migrate. To prevent this from happening, mi-
grating neurons express genes that repress the

NCx
A

A’

B

B’

C

C’

NCx LGE

LGE

MGE

MGE

PCx

PCx

NCx

–P/SP

LGE
MGE

LV

LV

GP

GP

LV

S

S

Str

Str

E10.5 E15.5 E11.5

E13.5E17.5E14.5

PCx

OB

Figure 5. Migrating guidepost cells in the developing forebrain. (A, A’) LOT cells are generated early in
development at the ventricular zone of the neocortex. They migrate tangentially to the piriform cortex,
where they arrive at 3–4 d in advance to the olfactory axonal tract. (B, B’) Glial sling cells derive from the
ventricular zone in the medial neocortex at E15.5. They migrate toward the midline to contribute to the
formation of the corpus callosum through signaling that involves Slit2. (C, C’) A subpopulation of
LGE-derived interneurons migrates ventrally, forming a cellular corridor that expresses CRD-NRG1. These
guidepost cells are required for the migration of thalamocortical axons as they extend through the basal
telencephalon on their way to the cortex. (GP) globus pallidum; (LGE) lateral ganglionic eminence; (LV)
lateral ventricle; (MGE) medial ganglionic eminence; (NCx) neocortex; (OB) olfactory bulb; (PCx) piriform
cortex; (P/SP) pallium-subpallium boundary; (S) septum; (Str) striatum.

O. Marı́n et al.

14 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a001834



differentiation program of the cell. In migrating
cortical interneurons, for instance, Dlx1 and
Dlx2 repress the expression of other genes invol-
ved in axonal growth, synaptogenesis, and axon
and dendritic branching (Cobos et al. 2007).
One of these genes is PAK3, an intracellular
kinase that is normally activated at the end of
the migration of cortical interneurons and
that is involved in driving the growth of den-
drites and axons in these cells.

It is well known, however, that certain types
of neurons are able to migrate as they simultane-
ously extend an axon in the opposite direction.
This is the case of pyramidal cells, which grow
their axon as soon as they start migrating toward
the CP (Noctor et al. 2004; Schwartz et al. 1991).
How do cells manage to run these programs in
parallel? One possibility is that neuronal migra-
tion and axon growth do not occur simultane-
ously, but instead in alternative cycles. In favor
of this hypothesis is the observation that pyra-
midal cells extend their axons when they pause
their migration in the subventricular zone
(Fig. 2). Thus, the formation of the axon is pre-
ceded by a phase in which the cell loses its initial
polarization and becomes multipolar, until one
of its multiple processes is selected as the axon
and oriented toward the VZ (Kriegstein and
Noctor 2004). This suggests that cell migration
and axon growth might not occur exactly at
the same time, at least during this early phase.
Additional time-lapse studies with high tempo-
ral resolution would be required to solve this
question.

CONCLUDING REMARKS

There has been much progress in understanding
the mechanisms regulating neuronal migration
over the past few years. In particular, many
guidance cues have been identified for different
classes of migratory neurons and our knowl-
edge of the mechanisms underlying the cell bi-
ology of migration has rapidly expanded, in
particular in relation to nucleokinesis. There
are, however, major questions, old and new,
that remain unanswered. For example, we know
virtually nothing about the mechanisms that
coordinate the guidance of the leading process

with the movement of the nucleus. Similarly,
we ignore how guidance cues are integrated by
migrating neurons with branched leading proc-
ess, or how the guidance process is dissociated
in migrating neurons that extend axons as they
move. These and other questions promise an ex-
citing future for research in this field.
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