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The establishment of precise neuronal cell morphology provides the foundation for all
aspects of neurobiology. During development, axons emerge from cell bodies after an
initial polarization stage, elongate, and navigate towards target regions guided by a range
of environmental cues. The Rho and Ras families of small GTPases have emerged as critical
players at all stages of axonogenesis. Their ability to coordinately direct multiple signal trans-
duction pathways with precise spatial control drives many of the activities that underlie this
morphogenetic program: the dynamic assembly, disassembly, and reorganization of the actin
and microtubule cytoskeletons, the interaction of the growing axon with other cells and
extracellular matrix, the delivery of lipids and proteins to the axon through the exocytic
machinery, and the internalization of membrane and proteins at the leading edge of the
growth cone through endocytosis. This article highlights the contribution of Rho and Ras
GTPases to axonogenesis.

The Ras superfamily of small GTPases, con-
sisting of almost 200 proteins, can be sub-

classified into six families: Rho, Ras, Rab, Arf,
Sar, and Ran (Colicelli 2004). These proteins
act as molecular switches, cycling between
an inactive, GDP-bound state and an active,
GTP-bound state (Fig. 1). The activated confor-
mation interacts with specific effectors to
propagate downstream signaling events that
influence many aspects of cell biology. Guanine
nucleotide exchange factors (GEFs) activate the
switch by catalyzing the exchange of GDP for
GTP, whereas GTPase-activating proteins
(GAPs) increase the intrinsic GTPase activity

and inactivate the switch (Fig. 1) (Jaffe and
Hall 2005). Dominant–negative (DN) and con-
stitutively active (CA) versions of small GTPases
(created through specific amino acid substitu-
tions) have been used extensively to dissect the
individual roles of these proteins. Although
these have been incredibly informative, they do
have potential drawbacks: dominant–negative
constructs, which act by sequestering GEFs,
may interfere with closely related family mem-
bers, whereas constitutively activated GTPases
interact indiscriminately with all their potential
targets, something that does not happen under
normal conditions. RNAi and gene knockout
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approaches afford the potential for greater spe-
cificity, but they too have limitations, because
GTPases, their regulators, and their targets are
typically found as closely related isoforms.
This article focuses on the role of Rho and Ras
family members in four different aspects of axo-
nogenesis: initiation, elongation, guidance, and
branching. The major role of Rho GTPases, con-
served in all eukaryotes, is to control the assem-
bly, disassembly, and dynamic rearrangements
of the actin and microtubule cytoskeletons. It is
not surprising, therefore, that they play crucial
roles in the growth, guidance, and branching of
axons. Ras GTPases, on the other hand, are acti-
vated by a large number of plasma membrane
growth factor receptors and adhesion receptors
to promote key signal transduction pathways,
including ERK, MAP kinase, and PI3-kinase,
which play a variety of important roles in
axonogenesis.

INITIATING AN AXON

The establishment and maintenance of neuronal
polarity, morphologically visualized as a long,
thin axon and several short, thicker dendrites,
depend on coordinated cytoskeletal rearrange-
ments and directed membrane trafficking. A
more comprehensive review on the molecular
pathways involved in neuronal polarity can be

found elsewhere (Polleux and Snider 2010).
Here, we focus on the specific roles played by
Rho and Ras GTPases.

Insights from Cell Culture Studies

Cultured rodent hippocampal neurons have been
used extensively to model neuronal polarization
in vitro (Dotti et al. 1988). After the initial exten-
sion of thin filopodia (stage 1), two neurites
emerge from opposite poles of the cell body, fol-
lowed by the development of other short proc-
esses (stage 2). Half a day after plating, one of
these minor neurites, usually one of the initial
two sprouting processes, elongates and becomes
the axon (stage 3) (Calderon de Anda et al.
2008). Four to 7 days later, the remaining minor
neurites become mature dendrites (stage 4) and
subsequently display dendritic spines (stage 5).

Five members of the Ras family, Ras, R-Ras,
Rap1, Ral, and Rheb, have been implicated in
axon initiation in hippocampal neurons (Fig.
2). The ectopic expression of CA-R-Ras induces
multiple axons, whereas R-Ras depletion inhibits
axon formation and these effects have been
ascribed to R-Ras-dependent regulation of PI3-
kinase activity and the production of the
signaling lipid PIP3 in the presumptive axon
(Oinuma et al. 2007). A major target of PIP3 is
the kinase Akt and one of its substrates, the kinase
GSK-3, can be inactivated by phosphorylation.
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Figure 1. The GTPase cycle GTPases. (Ras, in this example) cycle between an inactive GDP-bound state and an
active, GTP-bound state. Following a specific stimulus, GEFs catalyze the exchange of GDP for GTP, enabling the
interaction of GTPases with specific effectors leading to cellular responses. In contrast, GAPs inactivate GTPases
by stimulating their intrinsic GTPase activity.
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There is strong evidence that the localized inacti-
vation of GSK-3 at the tip of the presumptive
axon is a key trigger for polarized microtubule
growth (Zhou and Snider 2005; Kim et al.
2006; Arimura and Kaibuchi 2007; Ciani and
Salinas 2007). RNAi-mediated depletion of Ras
also blocks axon formation, and FRET imaging

has revealed localized activation of Ras in the
nascent axon (Fivaz et al. 2008). Interestingly,
PI3-kinase leads to further activation of Ras, in
a positive-feedback loop, as well as activation
of Rap1B, which similarly localizes to the tip
of the future axon in stage 2 neurons and is
required for axon formation (Schwamborn and
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Figure 2. Rho and Ras GTPases in axon initiation. A simplified scheme showing some of the main axon initiation
pathways involving Rho and Ras GTPases. Activation of Ras downstream of extracellular stimuli or adhesion to
extracellular matrix leads to a phosphatidylinositol 3-kinase (PI3K)-mediated cascade of small GTPases
regulating axon initiation, including the other Ras family members Rap1B and Rheb. Rap1B acts upstream
of Cdc42 and the Par3/Par6/aPKC polarity complex, which can locally activate Rac through the Rac GEFs
Tiam1 and STEF, and control not only actin dynamics, but also microtubule stability by inhibition of the
microtubule destabilizing protein stathmin. The signaling lipid phosphatidylinositol-3, 4, 5-triphosphate
(PIP3) produced by PI3K also activates Rac via another GEF, DOCK7, and Rheb, which functions through its
effector mammalian target of rapamycin (mTOR), a crucial regulator of translation. Localized inactivation of
GSK-3b during axon growth may depend on Akt-dependent phosphorylation, but axon initiation seems to
require an alternative mode of inhibition, possibly involving noncanonical Wnt/Dishevelled (Wnt/Dvl)
signaling. Finally, RalA may participate in the polarized transport essential for axon initiation through its
effector the exocyst complex, which could promote polarized trafficking of the PAR complex (dashed line).
See text for a detailed explanation. (Yellow, Ras family GTPases; magenta, Rho family GTPases; orange, GEFs.)
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Puschel 2004). This same study reported that
Rap1B acts upstream of Cdc42 (a Rho family
member), suggesting a cascade of small GTPases
acting at the tip of the presumptive axon. Yet
another potential role for PI3-kinase is in the
Rheb/mTOR pathway, a central regulator of cell
growth that also seems to influence neuronal po-
larization (Li et al. 2008b). Finally, the asymmet-
ric transport of proteins to the axon and to the
dendrites is essential for the establishment and
maintenance of neuronal polarity. RalA interacts
with the exocyst, an octameric protein complex
promoting membrane delivery. The depletion
of RalA, or of components of the exocyst complex
in neurons causes axon loss, suggesting an impor-
tant role for this GTPase in polarized trafficking
to the axon (Lalli 2009).

One theme to emerge from these studies is
the importance of the localized phosphoryla-
tion and inhibition of GSK-3 by Akt. However,
neurons from a double knockin mouse in which
the Akt-phosphorylation sites present on the
two GSK-3 isoforms (Ser9 in GSK-3b- and
Ser21 in GSK-3a) have been replaced by an
alanine residue and show no defects in neuronal
polarization (Gartner et al. 2006). This suggests
that GSK-3 inhibition occurs through an alter-
native mechanism and there is evidence that
this may involve noncanonical Wnt/Dishev-
elled signaling (Zhang et al. 2007).

A close interplay between the actin and
microtubule cytoskeletons occurs at the tip of the
presumptive axon, often visualized as growth-
cone enlargement, shortening of actin ribs,
and subsequent penetration of microtubules
into the central growth-cone region at the stage
2-3 transition. Indeed, localized microtubule
stabilization (by taxol) or localized depolymeri-
zation of actin filaments (by cytochalasin) is
sufficient to initiate axonal extension in a
neurite (Witte and Bradke 2008). Rho family
GTPases control the actin and microtubule
cytoskeletons through specific effectors and
play important roles in regulating neuronal
polarization. A tight regulation of Cdc42 activity
is required for axon specification, because
neurons expressing CA-Cdc42 do not extend
neurites, whereas cells transfected with a “fast
cycling” Cdc42 mutant extend multiple axons

(Schwamborn and Puschel 2004). An important
Cdc42 effector is the Par6/aPKC complex, which
controls polarity in a variety of contexts, includ-
ing morphogenesis, migration, and asymmetric
cell division (Goldstein and Macara 2007).
aPKC, in turn, regulates APC (the adenomatous
polyposis coli tumor suppressor protein), which
stabilizes microtubule plus ends at the tip of the
presumptive axon (Shi et al. 2004). Cdc42 may
also locally activate Rac through an interaction
between Par3 (complexed with Par6) and two
Rac GEFs, Tiam1 or Tiam2/STEF, both of which
are reported to be essential for neuronal polariza-
tion (Nishimura et al. 2005). Because Rac can
stimulate PI3-kinase, this may establish a
positive-feedback loop between Cdc42 and Rac
to reinforce neuronal polarization.

Rac regulates a parallel pathway that triggers
microtubule growth in the nascent axon. Acti-
vation of the Rac GEF DOCK7 leads to Rac-
mediated phosphorylation and inactivation of
the microtubule destabilizing protein stath-
min/Op18 in the nascent axon (Watabe-Uchida
et al. 2006). One candidate for triggering
localized activation of DOCK7 at the presu-
mptive axon tip is the extracellular matrix pro-
tein laminin, which acts through the laminin
receptor and PIP3 to recruit DOCK7 to the
plasma membrane. The kinase responsible for
stathmin phosphorylation is likely to be the
Rac effector PAK (Daub et al. 2001). In hippo-
campal neurons, PAK is present in all neurites,
but the activated (phosphorylated) form is spa-
tially restricted to the growing axon (Jacobs
et al. 2007).

Rho appears to act antagonistically to
Cdc42/Rac and negatively regulates neurite
extension through ROCK, a target kinase (Da
Silva et al. 2003). DN-Rho does not alter axon
number, but CA-Rho inhibits axon formation
and induces round cells (Schwamborn and
Puschel 2004). Inactivation of Rho/ROCK in-
creases the amount of dephosphorylated profi-
lin IIa, resulting in F-actin destabilization and
sprout formation (Da Silva et al. 2003). Interest-
ingly, the Rho/ROCK/PIIa cascade can be in-
activated by plasma membrane ganglioside
sialidase (PMGS), an enzymatic activity that
localizes at the tip of the future axon in stage 2
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neurons and induces axon specification by
enhancing TrkA activity (Da Silva et al. 2005).

Insights from In Vivo Studies

Loss-of-function studies of members of the
Drosophila Rac family (DRac1, DRac2, and
Mtl) in both the visual system and mushroom-
body neurons have revealed specific roles in axon
growth, guidance, and branching (Hakeda-
Suzuki et al. 2002; Ng et al. 2002). Expression
of CA-DRac1 or DN-DRac1 causes failure in
axon, but not dendrite outgrowth, whereas
mutants of DCdc42 affect general aspects of
morphogenesis, including cell migration and
dendrite/axonal outgrowth. A RhoA null muta-
tion in mushroom-body neurons does not
affect axon specification and growth, but causes
dendrite overextension, whereas activated RhoA
reduces dendritic complexity. These data sup-
port an important role for RhoA in dendritic,
but not axonal morphogenesis (Lee et al.
2000). There are three Rac-like proteins in
C. elegans: CED-10, Rac2/3, and MIG-2. They
appear to have overlapping functions in several
aspects of neuronal development. Interestingly,
Rac double mutants display ectopic axons and
branches, suggesting that Rac is involved in the
suppression of superfluous axon and branches
(Lundquist 2003). The analysis of a Cdc42 con-
ditional knockout mouse, in which Cdc42 is
depleted in late gestation in the cortex and
hippocampus, revealed normal initial neurite
sprouting, but a strong inhibition of axon
formation (Garvalov et al. 2007). Further ex-
periments using cultured Cdc42-null neurons
suggested that this GTPase acts upstream of a
local actin depolymerizing activity (perhaps
cofilin), which is required for initial axon
formation.

GROWING AN AXON

After the establishment of neuronal polarity, the
axon may extend considerably depending on
the type of neuron. Rho and Ras GTPases
continue to play important roles during axon
growth (Fig. 3).

Insights from Cell Culture Studies

In addition to their role in neuron polarization,
the Rac GEFs Tiam1, and Tiam2/STEF are im-
portant players in axon extension (de Curtis
2008). The Rac/Cdc42 effector IQGAP3 is
required for axon growth in hippocampal neu-
rons—it localizes asymmetrically at the distal
end of the axon, where it likely modulates
both the actin and the microtubule cytoskele-
tons (Wang et al. 2007). In addition to IQGAP3,
N-WASP may be an important Cdc42 effector
during neurite extension. It promotes actin pol-
ymerization through the Arp2/3 complex and a
dominant–negative version of N-WASP was
reported to abolish neurite extension in hippo-
campal neurons (Banzai et al. 2000). However,
in another report, a different dominant–
negative version of N-WASP led to enhanced
axon elongation in hippocampal neurons,
suggesting that Arp2/3 antagonizes neurite
extension (Strasser et al. 2004).

Rho and its downstream effector ROCK
negatively regulate the early steps of axon out-
growth in cultured neurons (Govek et al.
2005). However, axon elongation in cerebellar
granule neurons promoted by the neural che-
mokine stromal cell-derived factor (SDF)-1a
is mediated by Rho, though through a distinct
signaling pathway involving another down-
stream effector, mDia (Arakawa et al. 2003).
These experiments show the potential for con-
fusion using a dominant–negative GTPase;
thus, although a variety of upstream signals
converge on Rho, they may lead to the activa-
tion of different signaling pathways.

Other members of the Rho family have also
been linked to axon growth. The first GEF do-
main of Trio, which activates RhoG, is required
for NGF-mediated neurite outgrowth in PC12
cells (Estrach et al. 2002). RhoG binds to
Elmo, a scaffold for the Rac GEF Dock180 and
thus may mediate Rac activation (Katoh and
Negishi 2003). TC10, a close relative of Cdc42,
was initially identified in neuronal cells as a
gene that was dramatically re-expressed after
axotomy of motor neurons in the hypoglossal
nuclei (Tanabe et al. 2000). Low levels of
TC10 are found in developing and adult brain,
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but its up-regulation after nerve injury suggests
a role in neurite elongation. Indeed, TC10 over-
expression in cultured dorsal root ganglia
(DRG) promotes axon extension.

Less is known about the contribution of the
Ras family to axon elongation. Ras is involved in
NGF-mediated axon growth, but is also re-
quired for neuronal survival, thus complicating
any molecular analysis. In embryonic DRG
neurons, the Ras effector Raf promotes axon
elongation, whereas another Ras effector Akt

causes an increase in axon caliber and branching
(Markus et al. 2002). The Rit GTPase is widely
expressed in the developing and adult nervous
system, and has recently emerged as a conver-
gence point for multiple signaling pathways in-
volving NGF and BMP and axonal growth (Lein
et al. 2007). Interestingly, Rit stimulates ERK
MAP kinase signaling and interacts with the po-
larity protein Par6, which could function to
spatially localize this GTPase at the tip of the
growing axon (Rudolph et al. 2007).
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Figure 3. Rho GTPases in axon growth. Rho can either promote or inhibit axon extension depending on the type
of effector (mDia or ROCK, respectively). The Rap1-activated RA-RhoGAP or p190RhoGAP (blue) inactivate
Rho to promote axon growth. On the other hand, the Rho-specific GEF domain of Kalirin-9 activates Rho to
promote axon growth. Both ROCK and PAK can inhibit the actin-depolymerizing factor cofilin through LIM
kinase (LIMK). The balance of dephosphorylated (active) and phosphorylated (inactive) cofilin appears to
be crucial for axonal extension. Several GEFs (orange) like Tiam1, STEF, and Dock180 may act upstream of
Rac to regulate actin and microtubule dynamics. Cdc42 can also control the actin and microtubule
cytoskeletons during axon growth via some of its effectors like IQGAP3, PAK, and N-WASP. See text for details.
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Insights from In Vivo Studies

In Drosophila sensory neurons, expression of
either CA-DRac or DN-DRac causes axonal
outgrowth arrest without affecting dendrites,
whereas in motor neurons, an inactive DRac1
mutation disrupts axon trajectory, without
inhibiting their extension (Luo et al. 1994;
Kaufmann et al. 1998). In giant fibers, over-
expression of wild-type DRac1 affects axonal
morphology, CA-DRac1 inhibits neurite out-
growth, and DN-DRac1 causes axonal ectopic
branching (Allen et al. 2000). It is not so clear
how to interpret these results; notwithstanding
the potential problems associated with express-
ing constitutively activated GTPases, it does
seem that the role of Rac differs in different neu-
ronal types. Partially redundant functions of
DRac1, DRac2, and Mtl in axon outgrowth
have been shown in two distinct contexts: the
visual system and mushroom-body neurons.
Furthermore, varying the level of Rac activation
results in different outcomes, such that progres-
sive loss of activity leads first to defects in
branching, then guidance, and finally out-
growth (Ng et al. 2002). This suggests that Rac
may activate different downstream pathways
under these different conditions. Interestingly,
CRIB motif-containing effectors (such as
PAK) seem not to be required for axon out-
growth (Kim et al. 2003). To complicate matters
further, Rac may have a dual role: inhibiting
axon growth through Trio/Rac/PAK/LIMK
and cofilin phosphorylation, but promoting
growth in a PAK-independent fashion down-
stream of another Rac GEF, still life (STEF)
(Ng and Luo 2004). Activation of RhoA through
the GEF Pebble results in axon growth inhibition
through ROCK, which inactivates cofilin via
LIMK-mediated phosphorylation. Cofilin phos-
phorylation and dephosphorylation therefore
represent important regulatory steps in axonal
growth.

Drosophila RacGAP50C (Tum) is important
during cytokinesis, but in the post-mitotic neu-
rons of the mushroom body, RNAi-mediated
depletion leads to axon overextension (Gold-
stein et al. 2005). Its axon growth limiting func-
tion is lost if the GAP domain, which likely acts

on Rac, is mutated (Canman et al. 2008).
Through an interaction with the kinesin Pava-
rotti (pav), Tum may help spatially regulate
Rac activity during axon growth. Mosaic analy-
sis in the Drosophila mushroom body revealed a
surprisingly selective function for RhoA in
dendritic, but not axonal morphogenesis,
and neurons lacking RhoA overextend their
dendrites, but display normal axon projections
(Lee et al. 2000). In C. elegans, Rac mutants
display premature axon growth arrest (Lund-
quist 2003). RhoA RNAi causes embryonic le-
thality; however, studies with CA-Rho and
DN-Rho suggest an inhibitory role in neurite
outgrowth of chemosensory neurons (Zallen
et al. 2000).

The expression of CA-Rac1 in mouse Pur-
kinje neurons inhibits axonal outgrowth and al-
ters the number and morphology of dendritic
spines, without blocking dendritic growth or
branching (Luo et al. 1996). The negative regu-
lator of Rho, p190 RhoGAP, is a major Src sub-
strate in the brain and is involved in axon
growth, guidance, and defasciculation. Extra-
cellular matrix components, such as laminin,
enhance p190-mediated neurite outgrowth,
whereas mice lacking functional p190 RhoGAP
have substantial defects in axon extension
(Brouns et al. 2001). In contrast to the Droso-
phila studies, some of the CRIB motif-containing
effectors appear to be involved in axon growth in
mice. Indeed, knockout of the Cdc42 effector
PAK4 impairs axon extension, besides causing a
variety of other neuronal development defects
(Qu et al. 2003). A tight regulation of PAK3
expression levels by the homeobox transcription
factors Dlx1/2 seems to be crucial in restraining
neurite growth and promoting tangential migra-
tion (Cobos et al. 2007).

GUIDING THE AXON

Axon guidance is directed by numerous soluble,
matrix and cell-bound ligands acting through
distinct receptors at the tip of the axon—the
growth cone. Localized changes in filamentous
actin in the growth cone direct microtubule dy-
namics and thereby the direction of axonal
elongation. Given the importance of Rho
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GTPases in regulating the actin cytoskeleton,
they have been a major focus in the analysis of
signaling by guidance cues. Rho and ROCK
often appear to work antagonistically to Rac/
Cdc42; the former associated with repulsive
cues and growth-cone collapse and the latter
with attractive cues and forward protrusion.
However, closer examination of the signaling
pathways reveals a far more complex story. We
also refer the reader to the article by Bashaw
and Klein for more extensive discussion on
signaling downstream of guidance receptors
(Bashaw and Klein 2010).

In Drosophila, gain-of-function and loss-
of-function Rac mutations have distinct effects
on motor axon pathways, pointing to a role for
Rac in executing specific guidance decisions
(Luo et al. 1994). Similarly, Rac activation is re-
quired during neuromuscular development for
directional specificity and target recognition,
whereas Cdc42 is necessary for motor-axon
extension (Kaufmann et al. 1998). A targeted
knockout approach for Rac1 in mouse ventral
telencephalic neurons revealed a requirement
in the formation of midline commissures, as
well as proper fasciculation and targeting of tha-
lamocortical and corticothalamic axons (Chen
et al. 2007). The ability of Rac to affect specific
guidance decisions is further shown by the fact
that commissural axons of cortex-restricted
Rac1 knockout mice still display potent exten-
sion, yet fail to cross the midline (Kassai et al.
2008). Misregulation of Rho activity has a sub-
stantial impact on axonal guidance. p190Rho-
GAP knockout mice, for example, display clear
guidance defects in the axonal projections of
the posterior limb of the anterior commissure
(Brouns et al. 2001). The abundance and broad
distribution of p190RhoGAP in the nervous
system makes this GAP a crucial mediator link-
ing diverse extracellular guidance cues with
Rho-dependent cytoskeletal rearrangements.

Some of the upstream activators and down-
stream effectors that participate in Rac pathways
have been identified. Single mutants of any of
the three Rac-like genes in C. elegans (ced-10,
mig-2, and rac-2) lead to subtle phenotypes,
but double mutants cause severe defects in
axon pathfinding, as well as outgrowth. The

Rac GEF UNC-73 (Trio) acts in all Rac-depend-
ent pathfinding pathways, whereas another
GEF, CED-5 (DOCK180), acts with MIG-2,
but not with CED-10 (Lundquist et al. 2001).
Trio was initially characterized in Drosophila
as an essential regulator of PAK during photo-
receptor axon guidance (Bateman et al. 2000).
The axon patterning defects observed in Trio
mosaics are remarkably similar to those seen
in both PAK and Dock mutants, suggesting
that Trio/Dock/PAK act together in a single
signaling pathway regulating axon guidance
(Newsome et al. 2000).

Semaphorins

Semaphorins (collapsins) are a family of se-
creted or membrane-bound proteins that pro-
mote either attractive or repulsive guidance
through their interaction with the plexin/neu-
ropilin receptor family (Kruger et al. 2005).
Growth-cone collapse induced by Sema3A,
which acts through the neuropilin1/plexinA1
receptor complex, depends on Rac and Rho ac-
tivity (Jin and Strittmatter 1997; Kuhn et al.
1999; Vastrik et al. 1999; Turner et al. 2004)
(Fig. 4A). Rac.GTP interacts directly with plex-
inA and plexinB receptors, a highly unusual
situation for a small GTPase and a trans-
membrane receptor. Some have suggested that
this represents sequestration (essentially inacti-
vation) of Rac (Hu et al. 2001; Vikis et al.
2002). However, collapse induced by a ligand-
independent version of plexinA1 does not re-
quire Rac, which would be consistent with
the receptor being a downstream effector of
Rac (Turner et al. 2004). One idea is that Rac
induces a conformational change in the cyto-
plasmic tail of the receptor (i.e., in a similar
way to other targets of Rho GTPases), though
an alternative possibility is that Rac promotes
receptor endocytosis, which is required for
Sema3A-induced growth-cone collapse (Jurney
et al. 2002).

Sema3A leads to the activation of Rho
and ROCK, and attenuates actin polymeriza-
tion, while promoting intra-axonal F-actin
bundling and myosin II-mediated force genera-
tion (Gallo 2006). In hippocampal neurons,
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Figure 4. Rho and Ras GTPases in Semaphorin signaling. (A) Signaling downstream of plexinA1 receptors
involves up-regulation of Rho activity, leading to an increase in ROCK-mediated actin contractility. In
addition, direct binding of Rac.GTP to the GTPase-binding region of plexin (pink rhombus) may induce a
conformational change in the plexin cytoplasmic tail and enhance receptor endocytosis. Sema3A-induced
dissociation of the Rac GEF FARP2 from the plexinA1/neuropilin complex promotes the recruitment of
Rnd1 to plexinA1. The Rnd1/plexinA1 interaction opens the two R-Ras GAP domains of plexinA1 (gray),
thus leading to R-Ras inactivation. This event may facilitate growth-cone collapse by inhibiting
integrin-mediated adhesion and promoting microtubule destabilization (through a decrease in PI3K/Akt
and a subsequent increase in GSK-3 activities). Only the intracellular domain of the plexin receptor is shown
and interactions with co-receptors are not shown. (B) Rho activity downstream of plexinB1 undergoes
transient down-regulation via p190RhoGAP, possibly to mediate inhibition of integrin function. The PDZ
domain-binding motif exclusively present in the plexinB receptor subfamily (orange triangle) interacts with
the Rho GEFs PDZ-RhoGEF and LARG in a Sema-dependent fashion, thereby causing Rho activation and
growth-cone collapse. Similar to plexinA1, the association with Rnd1 is required to enable the R-Ras GAP
activity of plexinB1. Only the intracellular domain of the plexin receptor is shown and interactions with
co-receptors are not shown.
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Sema4D/plexin-B1 activates Rho through the
GEF, LARG (Swiercz et al. 2002) (Fig. 4B).
The relationship between plexin signaling and
Rho may be more complex, because a transient
down-regulation of Rho by p190RhoGAP ap-
pears to be necessary for growth-cone collapse
(Barberis et al. 2005). A further twist to this story
stems from the observation that Sema3A induces
intra-axonal translation of RhoA mRNA, which,
through an axonal 30 UTR targeting element, is
localized in developing axons and growth cones
(Wu et al. 2005). This local translation appears
to be necessary and sufficient for Sema3A-in-
duced growth-cone collapse.

The atypical Rho family members, Rnd1/2/
3, have also been linked to plexin signaling.
Rnd1 promotes an R-Ras GAP activity encoded
within the cytoplasmic tail of plexinB1 (Oinu-
ma et al. 2004a; Oinuma et al. 2004b). The inter-
action of Rnd1 with plexinA1 is required for
Sema3A/plexinA1-mediated repulsion, although
in this context, yet another small GTPase, RhoD,
has been reported to antagonize Rnd1 signaling
and prevent Sema3A-induced repulsion (Zanata
et al. 2002). The R-Ras GAP-related domain is
well conserved among different plexin subfami-
lies and is likely to be a significant feature of all
semaphorin signaling. PlexinC1 and plexinD1
have R-Ras GAP activity, though in the former
case this appears to be constitutive, whereas in
the latter, it requires Rnd2 (Uesugi et al. 2009).
The role of R-Ras in growth-cone guidance, how-
ever, is not clear. It regulates integrin-mediated
cell adhesion, and so down-regulation could re-
duce cell adhesiveness, but in addition can regu-
late PI3-kinase and therefore potentially modify
microtubule dynamics via Akt/GSK-3 (Ito et al.
2006). Interestingly, Sema3A promotes the disso-
ciation of the Rac GEF FARP2 from plexinA1/
neuropilin-1, which leads not only to Rac activa-
tion, but also to the recruitment of Rnd1 to plex-
inA1, thus triggering its R-Ras GAP activity
(Toyofuku et al. 2005).

Ephrins

Ephrins are transmembrane or glycosylphos-
phatidylinositol-anchored ligands recognized
by the Eph family of receptor tyrosine kinases.

They act as repulsive cues through activation
of Rho and ROCK in the growth cone (Wahl
et al. 2000; Reber et al. 2007) (Fig. 5A). The
GEF ephexin has been reported to be involved
in Rho activation downstream of EphA4 (Sha-
mah et al. 2001). However, ephexin-1 knockout
mice are apparently normal, raising the possi-
bility of redundancy within the very large family
(82) of mammalian Rho family GEFs (Schmidt
and Hall 2002; Sahin et al. 2005). An alternative
mechanism to regulate Rho GTPases is through
GAPs. EphrinB3 acting through EphA4 con-
tributes to the formation of two major motor
circuits: the corticospinal tract (CST) and the
spinal neuronal circuit controlling locomotion
(central pattern generator). The signaling path-
way involves activation of the Rac GAP,
a-chimerin, and the loss of a-chimerin in
mice (leading presumably to hyperactivation
of Rac) causes a failure in CSTaxons from stop-
ping at the midline (Iwasato et al. 2007). Simi-
lar conclusions were reached using cultured
hippocampal neurons, where EphrinA-induced
growth-cone collapse was associated with tyro-
sine phosphorylation of a2-chimerin and in-
hibition of Rac/PAK signaling (Shi et al. 2007).

On the face of it, inhibition of Rac makes
sense in the context of repulsive cues. Sur-
prisingly, however, one study reported that
although Rac activity decreases transiently in
neurons treated with ephrin-A2, growth-cone
collapse correlates with the resumption of Rac
activity (Jurney et al. 2002). The authors con-
cluded that this is due to Rac-mediated endocy-
tosis of the growth-cone plasma membrane.
Indeed, Eph triggered Vav2 (a Cdc42/Rac
GEF) activation leads to endocytosis of the
ligand/receptor complex and contributes to a
repulsive phenotype (Cowan et al. 2005).

Eph receptors activate Ras family GTPases,
but their contributions are less clear. EphB2 in-
teracts with a GEF, SHEP1, which can activate
both R-Ras and Rap1A, whereas EphA4 inter-
acts with a Rap1 GAP, SPAR (Dodelet et al.
1999; Richter et al. 2007). SPAR-mediated inac-
tivation of Rap1 is necessary for ephrinA-
dependent growth-cone collapse in hippocam-
pal neurons. Both R-Ras and Rap1 have been
shown to affect integrin activity, but whether
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Figure 5. Rho and Ras GTPases in Ephrin/Slit/Netrin signaling. (A) Schematic of the GEFs and GAPs involved in
EphA4 (left) or EphB2 (right) signaling. Inhibition of Rac/PAK cascade (by the Rac GAP a–chimerin) may
function together with ephexin-mediated Rho activation in controlling the cytoskeletal rearrangements
leading to growth-cone collapse. However, Rac activation (by Vav2) can also contribute to collapse by
stimulating endocytosis of the Ephrin/Eph complex. A tight regulation of R-Ras and Rap1 through GAPs
(SPAR, p120RasGAP) and GEFs (like SHEP1) seems to be needed downstream of Eph signaling, possibly for
the control of matrix adhesion. (B) Rac activity appears to be tightly regulated downstream of Slit through the
GEF Sos and the GAP CrGAP/Vilse. Slit stimulation recruits the adaptor protein Dreadlocks (Drosophila
Dock/vertebrate Nck) and subsequently PAK to Robo conserved cytoplasmic (CC) sequences (orange). The
Robo/Dock complex interacts with Sos, mediating Slit-dependent Rac activation. The role of Rho in Slit/
Robo signaling remains unclear and may depend on the neuronal context. (C) DCC homodimers promote
growth-cone attraction through Rac, Cdc42, and PAK activation. On Netrin-1 binding, the adaptor Nck
(which constitutively interacts with DCC), active Rac, Cdc42, Pak1, and N-WASP are recruited into a complex
with the intracellular domain of DCC, triggering reorganization of the growth-cone actin cytoskeleton. The
GEFs DOCK180 and Trio appear to be involved in netrin-1-dependent Rac activation. DCC may also
down-regulate Rho and ROCK; however, the signaling mechanisms leading to the modulation of Rho activity
downstream of netrin are still unclear, and they are likely to include cross talk with other GTPases. Only the
intracellular domains of Robo and the DCC homodimer are shown in (B) and (C), respectively.
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their role in growth-cone guidance relates to
matrix adhesion is not known.

Other Guidance Cues

The Slit family of repulsive guidance factors
are present at the midline of the nervous system
and act through Roundabout (Robo) receptors
(Guan and Rao 2003). Slit stimulation in Droso-
phila leads to Rac activation and recruitment of
the Nck adaptor protein and PAK to the Robo
receptor (Fig. 5B) (Fan et al. 2003). Dose-
sensitive and loss-of-function genetic analyses
reveal that limiting Nck, PAK, or Rac activities
disrupts Robo repulsion. Subsequent studies
have suggested that the dual specificity Ras/
Rac GEF, Sos, is responsible for Rac activation
downstream of Slit (Yang and Bashaw 2006).
These findings show yet again a role for Rac in
mediating repulsive cues. Robo also interacts
with the Rac/Cdc42 GAP, CrGAP/Vilse, and
both RNAi and gain-of-function experiments
indicate that regulation of Rac activity by both
GEFs and GAPs is necessary for proper Robo
signaling (Hu et al. 2005). Consistent with an
active role for Rho in Slit-dependent repulsion,
DN-DRho enhances and CA-DRho suppress
midline-crossing defects caused by homozy-
gous loss of Sos in Drosophila CNS (Fritz and
VanBerkum 2002). In contrast to this, overex-
pression of the Rho GEF GEF64C results in
too many axons crossing the midline, similar
to the Robo loss-of-function phenotype. In
this context, however, it appears that Rho (at
least when activated by this specific GEF) inter-
feres with the repulsive cues downstream of
Robo (Bashaw et al. 2001).

Netrins, acting through the DCC family of re-
ceptors, promote growth-cone attraction through
DCC homodimers or repulsion through DCC/
UNC-5 heterodimers (Moore et al. 2007).
Netrin-1-induced neurite outgrowth in embry-
onic rat spinal commissural axons requires both
Rac and Cdc42 (Shekarabi and Kennedy 2002).
Down-regulation of Rho or ROCK, on the other
hand, stimulates the DCC-induced neurite
outgrowth (Li et al. 2002b). Nck constitutively
interacts with DCC in embryonic spinal com-
missural neurons through its two SH3 domains

and, in the presence of netrin-1, mediates Rac
activation (Li et al. 2002a) (Fig. 5C). Netrin-1
also promotes activation of Cdc42 and PAK,
which together with N-WASP are recruited
into a complex with the intracellular domain
of DCC (Shekarabi et al. 2005). Recent studies
have identified two distinct Rac GEFs, Trio
and Dock180, in the netrin-1 attractive pathway.
Netrin-1- and DCC-dependent neuronal pro-
jections in the developing spinal cord and in
the brain (such as the anterior commissure,
internal capsule, and the corpus callosum) are
impaired in Trio-deficient mouse embryos
(Briancon-Marjollet et al. 2008). In addition,
Dock180 depletion attenuates netrin-stimu-
lated axon growth in vitro as well as projections
of commissural axons to the floor plate in chick
embryos (Li et al. 2008a).

Inhibitory molecules associated with myelin
and oligodendrocytes include myelin-associated
glycoprotein (MAG), Nogo-A, chondroitin sul-
fate proteoglycans (CSPGs), and oligodendro-
cyte myelin glycoprotein (OMgp) (Govek et al.
2005). Although traditionally studied for their
presence in the glial scar, their expression in
the CNS and PNS during neuronal develop-
ment indicates a likely role in axon guidance.
The Nogo receptor (NgR), a glycosyl-phospha-
tidyl-inositol (GPI)-anchored protein mediates
the inhibitory effects of Nogo-A, MAG, and
OMgp (Schwab 2004). Active domains of Nogo
plus the extracellular domain of MAG activate
Rho and decrease Rac activity, and accordingly
their inhibitory effect on neurite outgrowth
can be abolished by the Rho inhibitor C3 exoen-
zyme, or by the ROCK inhibitor Y-27632
(Govek et al. 2005). The low-affinity neurotro-
phin receptor p75NTR acts as an NgR co-recep-
tor (Wang et al. 2002) and leads to Rho
activation by promoting its dissociation from
a RhoGDI complex (Yamashita and Tohyama
2003). The GEF Trio can mediate Rho activa-
tion in response to MAG, triggering a Rho/
ROCK/LIMK and cofilin phosphorylation
pathway to inhibit neurite outgrowth (Harring-
ton et al. 2008). ROCK also phosphorylates and
inactivates CRMP-2 (a promoter of microtu-
bule assembly) in postnatal cerebellar neurons
and overexpression of a nonphosphorylatable
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form of CRMP-2 prevents the MAG inhibitory
effect (Mimura et al. 2006).

Overall, it is hard to extract clear conclu-
sions concerning the relative contributions of
Rho GTPases to axon guidance. Several explan-
ations may account for this, including the use of
constitutively active and dominant–negative
GTPases, the use of growth-cone collapse assays
as a surrogate for guidance, and the potential
variations between different neuronal types.
Furthermore, because each of the Rho GTPases
has maybe ten to twenty distinct downstream
target proteins, this too is likely to account for
some of the apparent confusion.

BRANCHING THE AXON

Axon branching provides a single neuron with
the ability to establish synaptic contacts with
multiple targets and is crucial for the assembly
of highly interconnected networks. There are
several branching modes: terminal axon branch-
ing through growth-cone bifurcation, delayed
branching where a branch springs from an
unstable membrane region left behind by a pre-
vious growth cone, and interstitial branching
where a branch emerges from the axon shaft at
sites distant from the growth cone, usually in
an orthogonal orientation (Acebes and Ferrus
2000). Axonal branching is characterized by
bundled microtubules splaying apart and “in-
vading” local actin-rich filopodial-like struc-
tures on the axon shaft (Kalil et al. 2000).

Insights from Cell Culture Studies

The Rac isoform Rac3, but not Rac1, promotes
neuritogenesis and branching when overex-
pressed in cultured chick retinal neurons
(Albertinazzi et al. 1998; Albertinazzi et al.
2003). Notably, this activity maps to the
carboxy-terminus of Rac3, the only region of
the protein that differs significantly from
Rac1. However, Rac3 null mice develop nor-
mally, suggesting potential redundancy in
vivo (Corbetta et al. 2005). Because branching
relies on filopodial extension, Cdc42-mediated
actin polymerization through N-WASP/Arp2/3
might be expected to be important. However,

depletion of N-WASP or Arp2/3 activity in
rodent hippocampal neurons enhances axon
branching (Strasser et al. 2004; Kakimoto et al.
2006). Perhaps mDia, which promotes actin
polymerization and affects microtubule dy-
namics, or IRSp53, which has been linked to fi-
lopodia formation and spine morphogenesis,
might be better candidates for Cdc42 targets in-
volved in branching (Fukata et al. 2003; Scita
et al. 2008). The role of Rho in branching is
complex. Rho facilitates branching in cultured
hippocampal neuron axons and activity-de-
pendent branching of upper cortical layer axons
in slice cultures (Ahnert-Hilger et al. 2004;
Ohnami et al. 2008). On the other hand, Rho
is required for TNF-induced inhibition of
branching in hippocampal neurons (Neumann
et al. 2002). An explanation for these apparent
discrepancies might lie in the nature of the Rho-
dependent signals elicited in the two contexts.

RalA and RalB promote neurite branching
in cortical and SCG neurons through distinct ef-
fectors, the exocyst complex and phospholipase
D, respectively. Moreover, they both enhance
phosphorylation of GAP-43, a neuronal protein
with sprout-promoting activity involved in ter-
minal arborization at innervation sites (Lalli
and Hall 2005). In neurons, Ral proteins are ac-
tivated by laminin, suggesting a role for these
GTPases in mediating branching downstream
of integrin signaling. The in vivo function of
Ral in axon branching and the upstream activa-
tors involved remain to be investigated.

Insights from In Vivo Studies

In Drosophila mushroom-body neurons, loss of
one allele of Rac1 causes defects in branching,
but does not affect axon growth or guidance.
Moreover, Rac mutants unable to interact with
CRIB motif-containing effectors can rescue
guidance (seen after inactivation of both alleles
encoding Rac1) and growth (seen after inactiva-
tion of all three genes encoding Rac-like
GTPases), but not branching, suggesting that
these play an active role in this process (Ng
et al. 2002). The importance of Rac regulation
in axon branching is further supported by
studies in C. elegans, where neuron-specific
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expression of a CA-Rac results in extensive axon
branching and formation of ectopic lamellipo-
dia and filopodia (Lundquist 2003). In the Dro-
sophila giant fiber system, on the other hand,
DN-Rac increases axon branching, suggesting
a negative role for Rac (Allen et al. 2000). These
contrary indications linking Rac to branching
are not easy to reconcile, other than by invoking
differences in neuron type. Inhibiting either Rac
or Cdc42 in chick RGC axons impaired the
birth and growth of collateral branches of the
retinotectal map. The interstitial axonal branch-
ing observed in this system is tightly controlled
by repellent tectal cues activating Rho/ROCK
and promoting branch retraction (Thies and
Davenport 2003). p190RhoGAP was identified
as a key modulator of axonal branching in the
Drosophila mushroom-body system and loss
of this protein leads to axon branch retraction;
a phenotype that can be mimicked by activated
Rho or ROCK and involves activation of myosin
II (Billuart et al. 2001). Interestingly, loss of
Rho in mushroom-body neurons did not cause
detectable phenotypes.

The deletion of the RasGAP neurofibromin
(NF1) in adult mouse DRG proprioceptive
sensory neurons results not only in enhanced
intrinsic axonal outgrowth and branching, but
also enhanced capacity for collateral sprouting
in response to spinal cord injury (Romero
et al. 2007). Sensory neurons respond to neuro-
trophins, such as NGF, primarily through acti-
vation of Raf/MEK/ERK and PI3-kinase/
Akt/GSK-3b. Although the former is generally
associated with survival, the latter seems to be
linked to neurite growth (Zhou et al. 2004). In
sensory neurons, activated Raf led to axon
extension similar to NGF, whereas active Akt
specifically increased axon branching and cali-
ber (Markus et al. 2002). How Akt acts is not
known, but PAK or GSK-3b could be involved.
Local inactivation of GSK-3b at the distal axon
leads to accumulation of dephosphorylated
APC at microtubule plus ends and promotion
of microtubule assembly, which is necessary for
NGF-induced axon growth. In contrast, a more
global inactivation of GSK-3b causes increased
APC accumulation along the axon shaft,
promoting the appearance of microtubule

protrusions and branches along the axon
(Zhou et al. 2004). Inactivation of GSK-3b could
also decrease phosphorylation of CRMP-2, thus
enhancing its ability to bind tubulin and pro-
mote microtubule assembly, and overexpression
of CRMP-2 has been shown to promote axon
growth and branching (Fukata et al. 2002).

CONCLUDING REMARKS

Awide range of studies carried out in tissue cul-
ture and in animals has identified Rho and Ras
GTPases as critical regulators of axon morpho-
genesis. Early indications that axon growth and
guidance could simply be explained by antago-
nistic effects of Rac and Rho on the actin cyto-
skeleton have given way to a more complex
scenario, in which multiple small GTPases
each act locally to promote discrete down-
stream signaling events, sometimes antagonis-
tic, sometimes synergistic. Deciphering the
individual biochemical processes that operate
in highly localized regions of the developing
axon represents a considerable future challenge,
even in cell culture, and will likely depend on the
development of sophisticated imaging tools ca-
pable of monitoring signal transduction path-
ways in living cells.
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