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Intercellular anchoring junctions are highly specialized regions of the plasma membrane
where members of the cadherin family of transmembrane adhesion molecules on opposing
cells interact through their extracellular domains, and through their cytoplasmic domains
serve as a platform for organizing cytoskeletal anchors and remodelers. Here we focus on
assembly of so-called “anchoring” or “adhering” junctions—adherens junctions (AJs) and
desmosomes (DSMs), which associate with actin and intermediate filaments, respectively.
We will examine how the assembly and function of AJs and DSMs are intimately connected
during embryogenesis and in adult cells and tissues, and in some cases even form specialized
“mixed” junctions. We will explore signaling and trafficking machineries that drive assembly
and remodeling and how these mechanisms are co-opted in human disease.

In multicellular organisms intercellular junc-
tions serve to maintain cell and tissue polarity

and integrity. In vertebrates these organelles
include: gap junctions, which chemically and
electrically couple neighboring cells; tight
junctions, which are essential for establishing
the epithelial barrier; and “adhering junc-
tions,” which organize the cortical cytoskeleton
beneath the plasma membrane to modulate cell
and tissue behavior. Together, these organelles
integrate intra- and intercellular signaling,
including regulation of nuclear functions and
transcriptional pathways.

Calcium-dependent, cadherin-based anchor-
ing junctions known as adherens junctions (AJs)
and desmosomes (DSMs) organize and tether
microfilaments and intermediate filaments
(IF) to the plasma membrane, respectively. In
polarized cells, AJs appear as continuous
zonula, subjacent to the tight junctions, and
are uniformly distributed along the plasma
membrane in a belt that is closely opposed to
an actin-rich mat underneath the plasma mem-
brane (Niessen and Gottardi 2008). DSMs
appear as “spot welds” distributed subjacent
to the zonula and scattered throughout the
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lateral border, where they distribute forces
of mechanical stress via interactions with the
IF cytoskeleton (Holthofer et al. 2007; Garrod
and Chidgey 2008). These junction types ap-
peared at different times during the evolution
of multicellular organisms, but share common
blueprints, linked assembly mechanisms and
synergistic functions.

Building Blocks for Assembly of Intercellular
Adhering Junctions

The structure of AJs and DSMs is roughly paral-
lel in blueprint and can be broken down into
three major components: the (1) transmem-
brane cadherins, the tails of which provide a
scaffold for (2) armadillo family members,
which help build a cortical platform for addi-
tional (3) cytoskeletal adapter proteins (see
also Meng and Takeichi 2009). Together these
components associate with and organize actin
and IF, respectively, at the plasma membrane.

Cadherins and Nectins: Classical cadherins
(e.g., E- and N- and P-cadherin) are single-pass
transmembrane proteins (Hulpiau and van Roy
2009). Their extracellular cadherin domains
contain a series of five conserved cadherin
repeats, which extend from the cell surfaces
and bind to cadherins present on adjacent
cells (see Shapiro and Weis 2009). The cyto-
plasmic domains contain binding sites for
associated catenins (see the following dis-
cussion) and other regulatory proteins
(Perez-Moreno and Fuchs 2006). The desmo-
somal cadherins, desmogleins and desmo-
collins, have a similar ectodomain structure
but more divergent cytoplasmic domains
(Getsios et al. 2004b). In particular, the desmo-
gleins have extended cytoplasmic tails contain-
ing variable numbers of RUD (repeating unit
domain) motifs, whose function is unknown.

Nectins are more recently identified
calcium-independent adhesion molecules in
the IgG superfamily (Irie et al. 2004). They
are thought to prime adhesive interactions
for cadherins, thus initiating AJ assembly.
Notably, the nectin cytoplasmic domain inter-
acts with an actin binding protein called
afadin/AF6, which has been shown to bind to

a-catenin and has thus been implicated in
recruiting/clustering cadherin complexes in
nascent junctions, and as a possible alternative
way to link actin to the plasma membrane, as
described below (Tachibana et al. 2000).

Armadillo Proteins: Both desmosomal and
classic cadherins contain conserved intracellu-
lar domains that bind members of the armadillo
family (Hatzfeld 2007). Junctional armadillo
proteins fall into two subclasses that are each
characterized by a central domain built from a
series of �42 amino acid armadillo repeats.
Armadillo drives the transcriptional program
responsible for segment polarity in the fly, in
addition to being a key component of fly AJs
(Brembeck et al. 2006). Intercellular adhering
junctions contain members from two armadillo
subfamilies: One family contains armadillo
and its close relative plakoglobin; the other
group contains p120catenin, d-catenin/NPRAP
(neural plakophilin related arm protein,
NPRAP), ARVCF (armadillo repeat gene
deleted in Velo-Cardio-Facial syndrome), and
plakophilins (PKPs) 1–3 and p0071/PKP4
(Hatzfeld 2007).

Cytoskeletal Adaptor Proteins: The cyto-
plasmic cadherin tails and associated armadillo
proteins are embedded within a cortical mesh-
work containing cytoskeletal adaptor proteins
and associated cytoskeletal fibers that make
up the electron dense junctional “plaque.”
Contained within this plaque region are the
b-catenin binding protein a-catenin, and the
plakoglobin- and PKP-binding protein des-
moplakin (Green and Simpson 2007; Niessen
and Gottardi 2008). In previous textbook
models, these adaptors are final links in a
chain that connect cadherins to their respective
cytoskeletons, actin and IF. However, cadherin-
b–a-catenin and a-catenin–actin interactions
have recently been shown to be mutually exclu-
sive in vitro (Yamada et al. 2005). Thus, the
identity or identities of the real actin anchors
are uncertain. a-Catenin may still contribute
to the effort indirectly via associated proteins
such as afadin, a-actinin, vinculin, ZO-1, or
EPLIN (Abe and Takeichi 2008; Stemmler
2008). Data from AJ studies also prompt new
consideration of the model proposed for
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DSMs, whereby desmoplakin directly links IF to
the desmosomal cadherin complex.

These core junctional components are
assisted by additional cell-type specific and
accessory molecules including actin remodeling
proteins, IF binding and cornified envelope
proteins, tyrosine kinases and phosphatases,
growth factor receptors, and their associated
proteins, which cooperate to tailor junctions
structurally and functionally (Perez-Moreno
and Fuchs 2006; Holthofer et al. 2007).

EMBRYOGENESIS AND JUNCTION
ASSEMBLY

An Evolutionary Perspective

The cadherin superfamily comprises over one
hundred members (Hulpiau and van Roy
2009). Cadherins first appeared in single-celled
organisms, such as the choanoflagellate
Monosiga brevicollis, where they are speculated
to have served a role in binding bacterial prey
(Abedin and King 2008; King et al. 2008).
With the acquisition of multicellularity, cad-
herins recruited other structural and signal-
ing proteins into primitive AJs. This ancient
“assembly” step advanced AJ functions in regu-
lating tissue morphogenesis through junctional
and nonjunctional pathways, the latter through
armadillo proteins that moved between the
surface and the nucleus (Grimson et al. 2000;
Schneider et al. 2003). With the appearance of
vertebrates came the desmosomal cadherins.
Their expanded diversity allowed tailoring of
adhesive junctions for new structural and mor-
phogenetic requirements, providing complex
tissues with mechanical integrity whose impor-
tance is underscored by human diseases of
the desmosome and corresponding animal
models (reviewed by Kowalczyk and colleagues
[Delva et al. 2009]) (Cheng and Koch 2004;
Lai-Cheong et al. 2007). Consistent with the
mantra “ontogeny recapitulates phylogeny,”
AJs appear first during embryonic develop-
ment. A rich body of literature regards AJs as
master regulators of TJ and DSM assembly,
suggesting that their assembly routes may have

been overlaid on pre-existing cytoskeletal and
signaling pathways.

De Novo Junction Assembly in the
Preimplantation Embryo

Intercellular junctions are initially formed
during compaction of the 8-cell stage embryo
in a process that culminates with the differen-
tiation of the first epithelial layer, the trophecto-
derm (Fig. 1) (Vestweber et al. 1987; Fleming
et al. 1991; Fleming et al. 1993; Barcroft et al.
1998). Up until the early 8-cell stage, the
embryo consists of loosely adherent blasto-
meres. On compaction, these relatively spheri-
cal blastomeres are converted into highly
polarized cells that flatten to maximize contact
points and begin to elaborate AJs along with
focal tight and gap junctions (Fleming et al.
1993; Eckert and Fleming 2008). In contrast,
DSMs anchoring intermediate filaments to
cell–cell contacts are only found in the mature
trophectodermal epithelium at the 32-cell
stage when a blastocoel cavity has formed and
tight junctions have adopted a more zonular
distribution. This sequence of developmental
events places E-cadherin upstream in a
pathway that allows for the formation and
organization of other anchoring junctions.

E-cadherin-based adhesion complexes are
required for embryo compaction and the sub-
sequent formation of a trophectodermal
epithelium (Larue et al. 1994; Riethmacher
et al. 1995; Torres et al. 1997; De Vries et al.
2004). The mere presence of E-cadherin or its
cytoplasmic partners (a-, b-, g-catenin) is not
sufficient to trigger compaction because all of
these proteins are diffusely expressed along the
cell surface in blastomeres of 4-cell embryos
(Kidder and McLachlin 1985; Vestweber et al.
1987; Fleming et al. 1991; Fleming et al. 1993;
Collins et al. 1995; Ohsugi et al. 1996; Barcroft
et al. 1998). Although the process that activates
the cadherin complex during compaction is not
known, PKCa is redistributed to cell–cell
contacts in 8-cell blastomeres and its activation
can trigger compaction and b-catenin phos-
phorylation (Sefton et al. 1992; Pauken and
Capco 1999). Because depletion of b-catenin
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results in postimplantation loss of embryos
(Haegel et al. 1995), this armadillo family
member is not the only target for PKC-
mediated compaction events. Vezatin, which
bridges the unconventional myosin VIIa
motor to the cadherin–catenin complex, is a
potential candidate because it maintains the
levels of E-cadherin and b-catenin to allow for

compaction (Hyenne et al. 2007). Accordingly,
compaction also requires active actin remodel-
ing and contraction (Kabir et al. 1996; Clayton
et al. 1999).

Desmosomes form fairly abruptly in the
trophectodermal epithelium at the 32-cell
stage, in contrast to the more gradual matu-
ration and redistribution of tight junctions
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Figure 1. Junction biogenesis in preimplantation mammalian embryos. Following the initial cleavage event of
the zygote and throughout the entire 4-cell stage, blastomeres are loosely connected to one another and
exhibit a diffuse distribution of E-cadherin. Embryo compaction at the 8-cell stage stabilizes E-cadherin
along increasing areas of cell–cell contact and initiates a process of junction assembly, cytoskeletal (actin
microfilaments and microtubules) reorganization, and increased polarization of apico-basolateral membrane
domains (apical microvilli). Asymmetric cell divisions that give rise to a 16-cell embryo allocate inner
daughter cells lacking epithelial characteristics and an outer epithelial cell layer that gradually elaborates actin
cytoskeleton-associated adherens and tight junctions (reviewed in Eckert and Fleming 2008). A functional
tight junction barrier triggers cavitation and the formation of a fluid-filled blastocoel that contacts the inner
cell mass; this process is coordinated with the abrupt assembly of intermediate filament-associated
desmosomes in the outer trophectodermal epithelium.
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into a zonular pattern at the apical interface.
Although plakoglobin and Dsc3 are present at
the time of compaction, most other desmosome
proteins, including membrane (Dsg2, Dsc2)
and plaque (desmoplakin) components, are
first detected in the early blastocyst upon for-
mation of an outer trophectoderm layer that
surrounds the inner cell mass (Jackson et al.
1980; Fleming et al. 1991; Den et al. 2006).
The induction of Dsc2 mRNA transcripts is
tightly coordinated with the appearance of
desmosomes and subsequent blastocoel for-
mation (Fleming et al. 1991; Collins et al.
1995). The developmental signal that triggers
Dsc2 expression appears to be E-cadherin-
independent because Dsc2 and desmoplakin
can be induced in the presence of function
blocking antibodies for this classical cadherin.
Moreover, desmosomal cadherins are normally
distributed at the cell surface of E-cadherin-null
blastocysts that have undergone compaction
owing to the persistence of maternally derived
E-cadherin or its ectopic replacement by
transgenic N-cadherin expression (Ohsugi
et al. 1997; Kan et al. 2007). Although Dsc2
induction appears to be a key initiator of
desmosome assembly, E-cadherin is uniquely
required for trophectoderm maturation lead-
ing to the death of these embryos during the
preimplantation stages.

Embryos completely lacking zygotic and
maternal E-cadherin cannot form DSMs and
never reach the 32-cell stage because of a
failure in compaction (De Vries et al. 2004;
Kan et al. 2007). These results are mirrored by
the observation that depletion of classic cadher-
ins in keratinocytes results in a failure to form
DSMs in vitro (Tinkle et al. 2008; Michels
et al. 2009). These findings suggest that the
temporal pattern of junction assembly is
linked to their functional interdependence, a
concept that will be further explored in the
following section.

IN VITRO ANALYSIS OF CELL JUNCTION
ASSEMBLY AND DYNAMICS

As during evolution and embryogenesis, AJ
formation precedes DSM formation in vitro;

however, rather than being drawn out over
days of embryogenesis, events occur within
minutes of de novo cell contact or elevation
of extracellular calcium (Figs. 2 and 3). AJs
and DSMs exhibit interdependence from the
initiation of nascent complexes through segre-
gation of components into specific domains.
Functionally, mature junctions synergize to
maintain epithelial polarity and integrity.
Further, junction homeostasis is a balance of
biosynthetic and endocytic pathways, each step
subject to post-translational modifications and
pathogenic input.

Assembly of the Adherens Junction and
Desmosome Adhesive Interface

Trafficking behavior of cadherins and associated
armadillo proteins: Desmosomal and classic
cadherins are constantly synthesized and deliv-
ered to the plasma membrane (Fig. 4) (Penn
et al. 1987; Pasdar and Nelson 1989; Shore and
Nelson 1991). In response to de novo contact
or elevation of extracellular calcium, cadherins
cluster and become stabilized, and, in most
cell types, segregate into distinct domains.

Cadherins follow a classic secretory route
beginning with synthesis in the endoplasmic
reticulum (ER), followed by transport to the
Golgi for processing, sorting into post-Golgi
carriers, and long range trafficking via
MT-dependent motors (reviewed in Bryant
and Stow 2004). Transport of tubulovesicular
carriers containing E-cadherin out of the
trans-Golgi network is dependent on the tether-
ing protein Golgin-97 (Lock et al. 2005) and
association with ankyrin-G and b-2-spectrin
(Kizhatil et al. 2007). The ankyrin-G–spectrin
complex later stabilizes E-cadherin by directly
connecting it to the spectrin/actin cytoskeleton
(Kizhatil et al. 2007), and these functions are
both critical for coordinating cadherin traffick-
ing with formation of cell–cell contacts in both
cultured cells and developing embryos (Kizhatil
et al. 2007). Studies linking desmosomal PKPs
to vesicle trafficking have begun to emerge,
with the discovery that PKP3 associates
with the dynamin-like protein DNM1L, which
is involved in vesicle trafficking within the
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secretory pathway in lung carcinoma cells
(Furukawa et al. 2005).

Both classic and desmosomal counterparts
are synthesized as precursor propeptides and
processed via a furin-dependent mechanism
before reaching the cell surface (Muller et al.
2004; Yokouchi et al. 2009). The presence of
the propeptide is thought to prevent premature
adhesion inside the cell (Ozawa and Kemler
1990). Glycosylation does not appear to be
required for efficient processing of the

precursor or transport of E-cadherin to the
cell surface, but in the case of desmosomal
cadherins, may contribute to their notable
insolubility (Shore and Nelson 1991).

The E-cadherin tail is unstructured in the
absence of its binding partners b-catenin and
p120catenin, which protect it from degradation
(Huber et al. 2001; Davis et al. 2003) and shep-
herd the cadherin from the ER to the plasma
membrane (Chen et al. 1999). A soluble pool
of plakoglobin, which is capable of associating

Adherens junctions

Tight junctions

Desmosomal junctions

Intermediate filaments

Hemidesmosomal junctions

Actin 

Microtubules 

Cytoskeletal networks

Intercellular junctions

Gap junctions

Figure 2. Junction biogenesis in vitro and associated cytoskeletal arrangements. Following cell contact in vitro,
initial cadherin engagement triggers reorganization of the cytoskeleton, coordinated with downstream assembly
of tight junctions and desmosomes. In polarized simple epithelial cells, the maturation of junctional contacts is
accompanied by the formation of a circumferential zone of parallel microfilament bundles near the apical region
of the cell, below the tight junction barrier. Desmosomes are subjacent to this complex and also appear as
disclike structures that extend along the entire lateral border, where they anchor IF to the plasma membrane.
MTs also anchor at AJs and DSMs.
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with both classic and desmosomal cadherins,
initially associates primarily with E-cadherin
and may serve a similar role (Hinck et al.
1994). An insoluble pool of newly synthesized
plakoglobin associated with desmoglein is
required for its stabilization and incorporation
into DSMs (Pasdar et al. 1995). The functional
implications of a potential temporal switch in
partnership between classic and desmosomal
cadherins was indicated by experiments
suggesting that desmosome assembly in A431
cells depends on the presence of plakoglobin

associated with E-cadherin (Lewis et al. 1997).
Whether plakoglobin serves a chaperone role
for desmosomal cadherins has not been directly
tested, although desmogleins are also unstruc-
tured in the absence of plakoglobin binding
(Kami et al. 2009), and truncated desmogleins
deficient in plakoglobin binding fail to properly
localize to plasma membranes (Andl and
Stanley 2001).

In polarized epithelial cells, a-catenin and
p120 associate with E-cadherin as it reaches
the plasma membrane (Hinck et al. 1994;

MFB

IFB

N

A

B

Figure 3. Ultrastructural relationships between microfilaments, IFs, and associated adhering junctions at
keratinocyte cell–cell contacts and during contact formation. (A) Transverse section through cell contact
zone between two mouse keratinocytes showing alternating arrangement of AJs and DSMs at the cell
margins with their associated actin and IF networks. (B) Cross section of mouse keratinocyte during contact
initiation shows the intimate connection between keratin IF bundles, which emanate from the nuclear
surface and dive down towards and integrate within actin bundles near the substrate (Reprinted, with
permission, from Green et al. 1987).

Intercellular Junction Assembly, Dynamics, and Homeostasis

Cite this article as Cold Spring Harb Perspect Biol 2010;2:a000125 7



p120catenin

4

Cytoplasmic plaque
molecules

Transmembrane
molecules

5

6

Adherens junctions Tight junctions

Par3/Par6

ZO-1/2/3JAM-1Afadin

b-catenin Occludin/claudin

E-cadherin

Desmosomal junctions

Desmoglein

Cytoskeletal networks

Intermediate filaments

Nectin

1

2

1

a-catenin

Desmocollin

Plakophilin

Plakoglobin

Desmoplakin

Actin

Microtubules

Motor proteins

Myosin II

Kinesin

3

Figure 4. Model depicting possible molecular dynamics of intercellular junction assembly. Molecular players in
assembly of the adhesive core (left cell) and junctional plaques (right cell) are depicted, with emphasis on AJs
and DSMs assembly. Transmembrane molecules are transported in a MT-dependent fashion toward the plasma
membrane, possibly via molecular motors in the kinesin family. Cadherins and nectins (1) initiate the process of
assembly of the AJ adhesive interface, whereas initial recruitment of desmocollins (2) is followed by stabilization
at sites of junction assembly by desmogleins (3). Cargo loading may be facilitated through armadillo family
members in some cases. Junctional plaque assembly occurs through dynamic remodeling of the cortical
cytoskeleton, initiated by the cadherin-dependent concentration of actin remodeling proteins at sites of
junction assembly to drive actin polymerization and reorganization from branched to bundled actin. In
coordination with these changes, desmosomal precursors containing desmoplakin and plakophilin are
formed in the cytoplasm in close association with IF. Desmosome precursors (4) subsequently translocate
to sites of desmosome assembly in an actomyosin-dependent manner to reinforce the plaque (5), in
conjunction with actin rearrangement depending on myosin II (6).
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Miranda et al. 2003). Here p120 promotes junc-
tion formation by stabilizing cadherins through
interfering with endocytic internalization
(Davis et al. 2003; Kowalczyk and Reynolds
2004) and association with the actin-associated
protein afadin in a Rap1 GTPase-dependent
manner (Hoshino et al. 2005).

Cadherin Dynamics and Role of Microtubules

Intercellular adhesions depend on the presence
of an intact microtubule (MT) cytoskeleton
(Grindstaff et al. 1998; Waterman-Storer et al.
2000; Stehbens et al. 2006; Kizhatil et al. 2007;
Stehbens et al. 2009). MTs facilitate long-range
trafficking of classic and desmosomal cadherins
including their anterograde transport to the
plasma membrane (Pasdar et al. 1991; Mary
et al. 2002; Chen et al. 2003). Evidence is con-
sistent with transport via kinesins, possibly
through associated armadillo proteins (Mary
et al. 2002; Chen et al. 2003; Teng et al. 2005)
(Fig. 4).

Established junctions interact with both
plus- and minus-end-directed MTs and associ-
ated motor proteins. These interactions regulate
junction assembly state and provide transport
routes to sites of cell adhesion (Ligon and
Holzbaur 2007; Shaw et al. 2007). b-catenin-
dynein (Ligon et al. 2001), a-E-catenin-
dynactin (Lien et al. 2008) and Nezha/
PLEKHA7-KIFC3 (Meng et al. 2008) associ-
ations have been revealed as critical for MT
interaction and AJ stability. Further, dynamic
MTs at adhesion sites promotes active myosin
II recruitment, which in turn increases junc-
tional E-cadherin (Stehbens et al. 2006).
Intercellular junctions also control the spatial
distribution of MTs. Notably, DSMs are
required for reorganization of MTs to cell–cell
contacts in differentiating keratinocytes
through interactions with the centrosomal
protein ninein, whose redistribution to cell–
cell contacts along with MTs requires desmopla-
kin (Lechler and Fuchs 2007). Collectively, these
data paint a picture of cooperative interactions
between cadherin-based junctions and MTs
in junction assembly and regulation of MT
dynamics and organization.

Role of Rabs and the Exocyst

Cadherin trafficking and junction assembly is
tailored through small GTPases called Rabs
which recruit specific effectors in the secretion
process (Caviston and Holzbaur 2006).
E-cadherin has been reported to associate with
an intermediate Rab11-positive recycling com-
partment in MDCK cells (Lock and Stow
2005). Further, Rab11 is associated with the
exocyst, a multisubunit complex responsible
for correct targeting of proteins to the plasma
membrane. Loss of function of the exocyst com-
ponents sec 5, 6, and 15 results in accumulation
of Drosophila E-cadherin in a Rab11 compart-
ment, inhibiting its delivery to the membrane
(Langevin et al. 2005). Interfering with the
tight junction scaffold protein associated with
Lin seven 1 (PALS1) results in mislocalization
of the exocyst and impairs E-cadherin delivery
to the plasma membrane (Wang et al. 2007),
and coordination between these junctions
is facilitated by the balance of activities of
Rab13 and Rab8 and their associated proteins
(Yamamura et al. 2008).

How desmosomal and classic cadherins are
coordinated during their egress out to the cell
surface is not well understood. Based on the
existence of “mixed” junctions that occur natu-
rally or because of genetic interference, it seems
plausible that cotrafficking of classic and des-
mosomal cadherins may be coupled with
mechanisms to remodel or segregate com-
ponents into distinct junctions in epithelial
tissues (Bornslaeger et al. 1995; Ruiz et al.
1996; Borrmann et al. 2006). Temporal analysis
of vesicular trafficking following a calcium
switch suggests that 60-nm vesicles containing
mostly Dsc2 are first observed to transport to
the entire cell surface (Burdett 1998), consistent
with the possibility that desmocollins serve
as initiators of junction assembly in vitro
(Hanakawa et al. 2000) and during embryo-
genesis. Larger vesicles containing desmoglein
and E-cadherin were later observed to target
basolaterally where they presumably associate
with desmocollins and stabilize at sites of
junction assembly (Wollner et al. 1992;
Burdett 1998). Electron microscope pulse-chase
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experiments demonstrated that in keratino-
cytes, desmogleins first form small clusters on
the surface lacking IF attachment, and later
found associated with IF-attached desmosomal
plaques (Sato et al. 2000). Collectively, these
data suggest both a temporal and spatial staging
of cadherin targeting and incorporation into
junctions.

Establishing Functional Adhesion

Two models have been proposed to explain how
intercellular adhesion is established once cad-
herins have arrived at the plasma membrane.
The first depends on the initial formation of
lateral or “cis” cadherin dimers, which then
come together on adjacent cells to interact in
trans, followed by a zippering of the adhesive
interface (Shapiro et al. 1995; Pokutta and
Weis 2007). The second suggests that cadherin
monomers interact in trans to form a “strand
dimer” (Boggon et al. 2002), an arrangement
supported by site-specific cross-linking exper-
iments (Troyanovsky et al. 2003) and visualized
by tomographic analysis of DSMs (He et al.
2003). Additional support for this idea comes
from recent single-molecule structural (fluo-
rescence resonance energy transfer) and func-
tional (atomic force microscopy) assays that
identified trans but not cis interactions (Zhang
et al. 2009).

In contrast to classic cadherins, robust des-
mosomal cadherin-mediated adhesion requires
the presence of both desmogleins and des-
mocollins in the correct ratio (Amagai et al.
1994; Chidgey et al. 1996; Kowalczyk et al.
1996; Marcozzi et al. 1998; Tselepis et al. 1998;
Getsios et al. 2004a). Biochemical and atomic
force microscopy (AFM) suggest that desmo-
somal cadherins are capable of interacting in
both homophilic and heterophilic configu-
rations (Syed et al. 2002; Waschke et al. 2005;
Heupel et al. 2008) and desmocollin and
desmoglein from neighboring cells can be co-
precipitated (Chitaev and Troyanovsky 1997).
However, the organization of desmosomal
cadherins in situ is still unknown.

It has been suggested that weak trans inter-
actions (Chen et al. 2005) are subsequently

strengthened by lateral cadherin clustering
and cytoskeleton attachment (Gumbiner 1996;
Kusumi et al. 1999). But the possible existence
of higher affinity interactions is supported by
the isolation of cadherin dimers from cells
(Chitaev and Troyanovsky 1997) and the obser-
vation that cadherin mutants lacking catenin-
binding sites can support cell–cell adhesion
(Ozawa and Kemler 1998). The discrepancy
between in vivo and in vitro data could arise
from incomplete unfolding of the cadherin
EC1 domain in vitro that makes strand dimer
formation impossible (Troyanovsky et al.
2007). The observed range of mechanical
strengths between trans-bonded E-cadherin
pairs is also consistent with the possibility
that longer lived associations can exist (Perret
et al. 2004).

Assembly of the Junctional Plaque:
Actin Remodeling and Desmosome
Assembly are Linked

Although one can debate the existence of weak
versus strong cadherin–cadherin dimers, the
cortical actin cytoskeleton and myosin II
activity are clearly required for adhesion
strengthening, junctional plaque assembly and
maintenance (Chu et al. 2004; Mege et al.
2006; Miyake et al. 2006). Classic cadherin
ligation triggers rearrangements and poly-
merization of cortical actin that drive formation
of the AJ plaque (Yonemura et al. 1995;
Perez-Moreno and Fuchs 2006; Pokutta et al.
2008). During this time, the process of DSM
assembly and establishment of IF attachments
is set into motion, the latter stages occurring
in an actin-dependent manner (Figs. 3 and 4)
(Green et al. 1987; Godsel et al. 2005). A func-
tional link between actin rearrangements and
desmosome assembly may help explain why
interfering with classic cadherins or a-catenin
suppresses desmosome formation (Gumbiner
et al. 1988; Watabe et al. 1994; Amagai et al.
1995; Taniguchi et al. 2005). Here, we will
discuss actin remodeling pathways triggered by
cadherin-dependent cell contact and then
explore how these events may couple with
downstream assembly of DSMs.
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Classic Cadherins Trigger Rho
GTPase-Dependent Actin Polymerization
and Contractile Signaling

Cell contact occurs through the extension of
lamellopodia driven by the polymerization of
branched actin filaments at the leading edge
of simple polarized epithelial cells (Drees et al.
2005), or filopodial projections driven by
polymerization of linear actin bundles, as has
been described in primary keratinocytes and
developing Drosophila/Caenorhabditis elegans
during tissue morphogenesis (Raich et al.
1999; Vasioukhin et al. 2000; Bloor and
Kiehart 2002). The extent to which cells use
one or both of these actin-dependent processes
to drive the initial stages of adhesion in specific
cell types is not known. It seems likely that a
combination of mechanisms and actin modu-
lators tailor remodeling of the cell cortex to con-
textual and cell type differences (Gates and
Peifer 2005).

In the contacting lamellopodia of MDCK
cells, a highly mobile fraction of E-cadherin
(Adams et al. 1998) converts into immobile
puncta and ultimately into larger plaques
whose formation and stability requires an
intact actin cytoskeleton (Adams et al. 1996).
Actin rearrangements occur in concert with
alterations in Rac1, Cdc42, and RhoA signaling
triggered by nectin and cadherin-mediated
contacts (Noren et al. 2001; Irie et al. 2004).
Rac-dependent recruitment of arp2/3 (Kovacs
et al. 2002), which promotes polymerization
of branched actin filaments, collaborates with
actin binding proteins such as cortactin, to
facilitate expansion of the contact zone
(Helwani et al. 2004). Actin remodeling pro-
gresses through the local accumulation and
dimerization of a-catenin near contact sites.
In its dimerized form, a-catenin inhibits
Arp2/3, converting actin from branched to
linear, bundled arrays typical of maturing AJs
(Yamada et al. 2005).

Rho activity facilitates contact expansion by
activating actomyosin contractility in the flank-
ing regions of the junctional contact zone
(Yamada and Nelson 2007). Rho also regu-
lates formins, actin-associated proteins that

mediate polymerization of linear bundles. The
Rho effector Dia is required for junction
stability and attenuation of protrusive activity
in vertebrates and Drosophila (Sahai and
Marshall 2002; Homem and Peifer 2008),
depending on myosin II activity for reinforce-
ment of cell–cell junctions (Carramusa et al.
2007). Formins are also recruited by a-catenin
to E-cadherin-tipped filopodia that project
into neighboring keratinocytes to draw them
together and initiate AJ assembly (Kobielak
et al. 2004). Rho activity can also destabilize
junctions through alternate pathways (Sahai
and Marshall 2002; Zandy et al. 2007; Fang
et al. 2008). The ability of the cadherin-
associated protein p120catenin to inhibit Rho
through p190RhoGAP may ensure that Rho
activity is properly titrated at cell–cell junctions
(Wildenberg et al. 2006). The continued activi-
ties of Rho and its downstream effector ROCK
help to transform keratinocyte sheets to stratify-
ing tissues (Vaezi et al. 2002) and increase the
height of polarized epithelial cells (Zhang
et al. 2005).

AJ Maturation and Assembly of the
Desmosomal Plaque

Shortly after calcium-induced cell contact in
keratinocytes, electron-dense desmosome pre-
cursors associated with keratin IF align along
perpendicular actin bundles that appear to
emanate from newly formed AJ plaques
(Green et al. 1987; Godsel et al. 2005). These
precursors eventually disappear from the cyto-
plasm as DSMs mature (Jones and Goldman
1985; Pasdar and Nelson 1988), frequently alter-
nating with AJs along contacting cell borders
(Green et al. 1987) (Fig. 3). Live cell imaging
of desmoplakin-GFP suggests that these precur-
sors represent part of a three phase process that
occurs in response to cell–cell contact in cul-
tured keratinocytes at the leading edge of a
wound. Desmosomal plaque assembly begins
with the rapid accumulation of desmoplakin
at contacting borders followed by a second
phase (within �20–30 min of cell contact)
in which fluorescent bright nonmembrane
bound desmoplakin-containing particles form
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in the cortical region of the cell. The subsequent
translocation of particles to nascent junctions to
reinforce the plaque, is coordinated with actin
rearrangements and dependent on myosin II
activity (Godsel et al. 2005 and unpublished
results). Once formed, desmosomes continue
to exhibit dynamic fusion events as well
as internalization and retrograde transport
(Windoffer et al. 2002).

How is the desmoplakin-IF system coupled
to AJ assembly and the actin-based machinery?
Although plakoglobin has been the focus of
early studies as important for junctional cross
talk (Lewis et al. 1997), inducible expression
of the p120-related protein PKP1 has also
been reported to initiate DSM assembly in
a classic cadherin-dependent fashion (Wahl
2005). In addition to interacting with desmo-
plakin and IF, PKPs can associate with actin
and cause p120-like rearrangements of the
actin cytoskeleton (Hatzfeld et al. 2000)
(Chen, Bass-Zubek, and Green, unpublished).
PKP2 deficiency also results in major alterations
in the actin cytoskeleton and rhoA signaling,
likely interfering with AJ-dependent actin
remodeling driving DSM assembly (Bass-
Zubek, Godsel and Green, unpublished).
Thus, PKPs may provide a link between the
desmoplakin-IF network and an actin-
dependent phase of desmosome assembly.

Loss of PKP2 also results in retention of
desmoplakin on IF, preventing its incorporation
into DSMs. This “beads on a string” appearance
of desmoplakin is reminiscent of the distri-
bution of desmoplakin in PKCa knockdown
cells (Bass-Zubek et al. 2008) and a phosphoryl-
ation deficient desmoplakin mutant (S2849G)
that exhibits delayed outward trafficking
(Godsel et al. 2005) because of its higher affinity
for, and aberrant retention on, IF (Stappenbeck
et al. 1994; Meng et al. 1997; Fontao et al. 2003).
Our data suggest a model whereby PKP2
scaffolding of PKCa promotes desmoplakin
phosphorylation and assembly competence
(Bass-Zubek et al. 2008). Consistent with this,
PKC restores DSM assembly in a-catenin-null
colon carcinoma cells and can promote DSM
assembly even in reduced calcium (Sheu et al.
1989; Hengel et al. 1997). PKPs also collaborate

with plakoglobin to mediate desmosomal
cadherin clustering into ultrastructurally iden-
tifiable plaques (Bornslaeger et al. 2001; Koeser
et al. 2003).

Like AJs, DSMs undergo a period of matu-
ration, ultimately attaining a hyper-adhesive
state which can be reversed by the calcium-
dependent kinase PKCa (Watt et al. 1984;
Wallis et al. 2000; Garrod et al. 2005; Kimura
et al. 2006). The fact that PKCa also promotes
desmosome assembly supports the idea that
this kinase is important for maintaining a
dynamic state, which would allow rapid des-
mosome remodeling in response to environ-
mental cues. Desmosomes are also defective
in patients with Darier’s disease who have
impaired calcium homeostasis because of
mutations in the sarco(endo)plasmic reticulum
Ca2þ-ATPase (SERCA) isoform 2 pump
(Sakuntabhai et al. 1999; Dhitavat et al. 2003).
Although these abnormalities were suggested
to arise from improper folding of desmoplakin,
it also seems possible that alterations in
calcium-dependent kinase activity could con-
tribute to the observed defects.

Achieving maximum mechanical integrity
of epithelial cell sheets requires proper attach-
ments of junctions to both IF and cortical
actin, as intercellular adhesion is synergistically
strengthened by the presence of IF and actin
attachments (Huen et al. 2002). Further, AJs
are unable to mature properly in cells lacking
desmoplakin and normal IF attachments
suggesting bi-directional regulation between
AJs and DSMs (Vasioukhin et al. 2001b).

JUNCTION HOMEOSTASIS: ROLE OF
ENDOCYTOSIS

AJs and DSMs can be modified posttranslation-
ally by physiological stimuli resulting in changes
in phosphorylation state and proteolytic pro-
cessing (Gumbiner 2005; Green and Simpson
2007). These processes have traditionally been
proposed to alter interactions with the cyto-
skeleton, thus weakening adhesive strength.
However, modification of the cadherins and
their associated proteins can also regulate endo-
cytic internalization and recycling (Bryant and
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Stow 2004; Ivanov et al. 2005; Yap et al. 2007;
Delva and Kowalczyk 2009). Derailed endocy-
tosis of cadherins may contribute to tumor
progression (Mosesson et al. 2008) and blister
formation in the autoimmune disease pemphi-
gus (Kottke et al. 2006).

Like other receptors, cadherins can be con-
stitutively endocytosed by a clathrin-dependent
pathway (Le et al. 1999; Palacios et al. 2002; Xiao
et al. 2005), possibly via binding of the adaptor
complex AP2 to the dileucine motif in the
juxtamembrane region (Miyashita and Ozawa
2007). This motif may be exposed on dis-
sociation of p120, consistent with earlier work
demonstrating a role for p120 in E-cadherin
stability (Davis et al. 2003; Xiao et al. 2003).
However, other determinants must be respon-
sible for clathrin-dependent endocytosis of
VE-cadherin, because even though it is simi-
larly regulated by p120 (Xiao et al. 2005), it
does not possess such a motif. Further,
N-cadherin intracellular regions lacking the
dileucine motif facilitate endocytosis (Tai et al.
2007). Basolateral targeting of E-cadherin may
also be regulated by the dileucine motif (Lock
and Stow 2005), and assembly and recycling
facilitated by the adapter mu1B subunit
through a variant of PIPKg (Ling et al. 2007).

Growth factors such as TGFb (Janda et al.
2006), EGF (Lu et al. 2003; Hirao et al. 2006;
Bryant et al. 2007), HGF (Palacios et al. 2001),
and, FGF (Bryant et al. 2005) can promote
internalization and loss of junctions. Further,
cadherin molecules can physically complex
with growth factor receptors including EGF
receptor, ErbB-1 (Dumstrei et al. 2002;
Fedor-Chaiken et al. 2003) HGF receptor,
c-Met (Davies et al. 2001) and FGFR (Suyama
et al. 2002). These associations can either
promote internalization or stabilize cell sur-
face retention, impacting both junction integ-
rity and growth factor-dependent signaling.

Small molecule inhibitors of EGFR/ErB2
have been shown to block internalization of
E-cadherin and desmoglein 2 in tumor cells,
resulting in increased adhesive strength even
under conditions of reduced calcium, highlight-
ing the therapeutic value of EGFR inhibitors for
patients with cancers that overexpress EGFR

(Lorch et al. 2004; Klessner et al. 2009). The
ADAM family of sheddases cooperates with
EGFR in increasing the internalized pool of
desmoglein 2, thus reducing adhesive strength
(Klessner et al. 2009). Different endocytic
pathways have been suggested to mediate
growth factor-regulated endocytosis, including
rac-dependent macropinocytosis (Akhtar and
Hotchin 2001; Bryant et al. 2007) and caveolin-
dependent endocytosis (Lu et al. 2003).

Growth factor stimulation has also been
linked to activation of nonreceptor tyrosine
kinases such as Src. Src-dependent phosphory-
lation of two tyrosines of E-cadherin (Y755
and Y756) produces a binding site for E3
ubiquitin-ligase Hakai, and ubiquitination
of the E-cadherin–catenin complex facilitates
clathrin-dependent internalization (Fujita et al.
2002) and targeting for lysosomal degradation
(Palacios et al. 2005). This pathway likely
explains cadherin internalization and dissolu-
tion of AJs shown to accompany the activation
of ts-v-Src in MDCK cells (Warren and Nelson
1987; Palovuori et al. 2003) or reduced extra-
cellular calcium via activation of Cdc42 (Shen
et al. 2008).

Desmosomal cadherin internalization is
a contributing factor in the autoimmune dis-
ease pemphigus (Kottke et al. 2006). Dsg3 is
degraded in response to PV autoantibody
binding resulting in Dsg3-depleted DSMs
(Aoyama and Kitajima 1999), shown to be
because of rapid clathrin- and dynamin-
independent internalization of a soluble pool
of PV-IgG-bound Dsg3 (Calkins et al. 2006;
Delva et al. 2008). PV antibodies may impair
assembly of new DSMs by targeting internali-
zation of newly synthesized Dsg3 (Sato et al.
2000; Mao et al. 2009). Although it has been
reported that plakoglobin, but not desmo-
plakin, remains associated with the cadherin
(Calkins et al. 2006), others suggest that plako-
globin dissociates from phosphorylated Dsg3
after which it is degraded, depleting a nuclear
pool required for attenuating c-myc transcrip-
tion (Muller et al. 2006). PV induces alterations
in both IF attachment (Caldelari et al. 2001;
Calkins et al. 2006) and cortical actin
(Waschke et al. 2006). The latter has been
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linked with a reduction in Rho A activity,
suggesting another link between pathways regu-
lating AJs and DSMs (Waschke et al. 2006).

Endocytosis can be envisioned to target two
pools of cadherin molecules—engaged or
unengaged in adhesion. In isolated epithelial
MCF-7 cells, a pool of free cadherin is subjected
to macropinocytosis (Paterson et al. 2003;
Bryant et al. 2007) and clathrin-dependent
endocytosis was suggested to target extrajunc-
tional cadherin (Izumi et al. 2004; Hoshino
et al. 2005). However, it is also plausible that
cadherins are internalized directly from the
intrajunctional region, forcefully breaking
apart cadherin adhesive bonds. This would be
consistent with the observed association of
endocytic vesicles with AJs and supported by
the protective effect of endocytosis inhibitors,
which lead to the rapid expansion of the junc-
tional interface (Troyanovsky et al. 2006).
Thus, cadherin endocytosis may be essential
to counterbalance a continuous assembly of
cadherin dimers in AJs. Supporting this idea,
defects in endocytosis induced by the lack of
dynamin or proteins involved in Arp2/
3-dependent actin polymerization prevented

completion of endocytosis in Drosophilia epi-
thelial cells (Georgiou et al. 2008; Leibfried
et al. 2008). Together the data suggest that
different endocytic routes collaborate to regu-
late the assembly state of adhering junctions in
normal tissues and pathogenic states.

JUNCTION ASSEMBLY IN COMPLEX
TISSUES: CHALLENGES FOR THE FUTURE

Onto these basic modes of junction assembly
and remodeling are overlaid additional com-
plexities in the case of tissues such as the epi-
dermis. This stratified squamous epithelium
does not exhibit the typical apico-basolateral
polarity found in simple epithelial cells. Yet,
junctional components are integrated into
specialized membrane complexes in a polarized
fashion as basal layer keratinocytes stratify
and differentiate (Green and Simpson 2007;
Niessen 2007; Fuchs 2008). For example, adhe-
rens junction-enriched basal keratinocytes are
accompanied by increasing numbers of DSMs,
which change in molecular composition in the
spinous layers and granular layers (Fig. 5 and
Fig. 3 of Delva et al. 2009). Although many

Stratum 
corneum

Granular 
layer

Spinous 
layer

Basal
layer

AJs

TJs

DSMs

Figure 5. Organization of intercellular junctions in the epidermis. Desmosomes and AJs are found throughout
the epidermis but AJs enriched in E- and P-cadherin are found in the basal layers whereas the number and
surface area occupied by DSMs increases during differentiation, during which time P-cadherin is lost. See
Kowalczyk and colleagues (Delva et al. 2009, Fig. 3) for the expression patterns of DSM components during
differentiation in epidermis. The TJ barrier is in the granular layer of the epidermis, with structurally
definable junctions restricted to the second cell layer.
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tight junction components (e.g., claudin-1,
occludin, and ZO-1) are expressed throughout
the epidermis, a tight junction barrier is sealed
only in granular cells before these eventually
give rise to a cornified dead cell layer (Furuse
et al. 2002). Thus, junction assembly in the epi-
dermis is coordinated throughout multiple cell
layers instead of within distinct basolateral
membrane domains of a simple epithelial cell.

As in the case of compacting embryos,
keratinocytes devoid of classical cadherins
(E- and P-cadherin) fail to elaborate DSMs
and tight junctions in vitro (Tinkle et al. 2008;
Michels et al. 2009). Although depletion
of classical cadherins interferes with epider-
mal cohesion and the tight junction barrier
in vivo, desmosomes still form in epidermis
lacking classical cadherins or alpha-catenin
(Vasioukhin et al. 2001a; Tunggal et al. 2005;
Tinkle et al. 2008). a-catenin also plays an
important role in orienting the mitotic spindle
in the basal layer for asymmetric cell divisions
that promote stratification into the differen-
tiated layers (Lechler and Fuchs 2005). The
lack of desmoplakin has little influence on the
place of cell division in basal keratinocytes,
but this IF binding protein regulates MTorgan-
ization in the suprabasal epidermis via inter-
actions with ninein (Lechler and Fuchs 2007).
These studies emphasize that elaboration of
AJs and DSMs into a stratified epithelium not
only holds the tissue together but also provides
positional cues for targeting cytoskeletal,
trafficking, and endocytic machineries.

How junction assembly and remodeling
occurs on the molecular level in vertebrate
tissues in vivo is a challenge for future study.
During stratification, DSMs with different com-
positions reflecting differentiation-dependent
expression patterns must either be made de
novo or remodeled or both (North et al.
1996). In part this remodeling may be driven
by transcriptional programs, such as that
regulated by grainyhead transcription factors
that drive expression of desmoglein 1 in differ-
entiated layers of the epidermis (Wilanowski
et al. 2008). Once expressed, whether newly syn-
thesized cadherins are immediately incorpo-
rated into junctions or require additional

regulatory cues or post-translational modifi-
cations, similar to those that occur during
embryogenesis, is unknown. We also do not
yet know whether, once assembly competent,
molecules are inserted into pre-existing junc-
tions or used to create new junctions. In the
future, studies at the molecular level that
address fundamental properties of junction
dynamics, coupled with genetic analysis of in
vivo models, should begin to reveal the com-
plexity of mechanisms used in vivo.
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