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Abstract
Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In 
particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of 
cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), 
which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an 
important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic 
phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former 
actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P 
stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. 
Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to 
promote cell survival, or as an extracellular receptor agonist to stimulate cell migration.

Introduction
Sphingolipids play essential roles in normal cell and tissue
homeostasis as well as in the establishment and progres-
sion of numerous diseases. In particular, ceramide is the
central core in sphingolipid metabolism, but has also
been involved in the regulation of signal transduction
processes. Specifically, ceramides induce cell cycle arrest
and promote apoptosis, a form of programmed cell death
[1,2]. Also, ceramides play important roles in the regula-
tion of autophagy, cell differentiation, survival, and
inflammatory responses [3-11], and have been associated
with insulin resistance through activation of protein
phosphatase 2A and the subsequent dephosphorylation
and inactivation of Akt (also known as protein kinase B
(PKB)) [12-14]. Cell ceramides typically have long N-acyl
chains ranging from 16 to 26 carbons in length [15-17].
However, in many studies short-chain analogs (N-acetyl-
sphingosine, or C2-ceramide, N-hexanoylsphingosine, or
C6-ceramide, and N-octanoylsphingosine, or C8-cer-
amide) have been used in experiments because these are
more water soluble than long-chain ceramides. Forma-
tion of ceramide is also relevant because it is the precur-

sor of important bioactive sphingolipids that can also
regulate cellular functions, as discussed below.

A major metabolite of ceramide is ceramide-1-phos-
phate (C1P), which is generated through direct phospho-
rylation of ceramide by ceramide kinase (CerK) (Fig. 1).
There is increasing evidence suggesting that C1P can reg-
ulate cell proliferation and apoptosis [7,18], and Chalfant
and co-workers have elegantly demonstrated that C1P is a
potent pro-inflammatory agent (Reviewed in [19,20]). In
addition, C1P plays an important role in phagocytosis
[21,22], and we have recently demonstrated that is a key
factor in the regulation of macrophage chemotaxis. The
aim of the present review is to discuss recent progress in
C1P biology with especial emphasis in the context of
health and disease.

Synthesis of Bioactive Sphingolipids
Although sphingosine is the simplest sphingolipid, cer-
amide is considered to be the central structure in sphin-
golipid metabolism. Fig. 1 shows that ceramide can be
generated by three major mechanisms: 1) the de novo
synthesis pathway is an anabolic route that begins with
condensation of the amino acid serine and palmitoyl-
CoA to form 3-ketosphinganine in a reaction that is cata-
lyzed by serine palmitoyltransferase (SPT); reduction of
3-ketosphinganine to sphinganine follows immediately;
acylation of sphinganine by dihydroceramide synthase
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(CerS, also known as Lass) then generates dihydrocer-
amide. The last step of this pathway is catalyzed by a
desaturase through introduction of a trans-4, 5 double
bond in the dihydroceramide molecule to yield ceramide
(Fig. 1). Concerning CerS six different genes have been
identified in mammalian cells. Interestingly, the different
CerS isoforms produce ceramide with different N-acyl
chains. The reason why there are so many of these genes
when most of the other enzymes in the sphingolipid bio-
synthetic pathway exist in only one or two isoforms is not
known. However, it is possible that ceramides containing
different fatty acids play different roles in cell biology
(reviewed in [23]). For details on SPT and CerS activities
the reader is referred to other excellent reviews by Han-
nun and Obeid [2,5,24], and Merrill and co-workers
[11,25]. Also, very elegant reviews by Kolesnick et al. [26],
Goñi and Alonso [27], and Cremesti et al. [28] specifically

address the important roles of SMase activities, enzymol-
ogy, and compartmentalization in cell biology. Once syn-
thesized, ceramide can be used for synthesis of complex
sphingolipids, through intervention of different biosyn-
thetic enzymes, including glucosyl or galactosyl ceramide
synthases to form cerebrosides or gangliosides, or it can
incorporate a phosphocholine head group from phos-
phatidylcholine (PC) to form SM through the action of
SM synthases. Formation of glucosylceramide is particu-
larly important because of its role in conferring drug
resistance to tumor cells [29]. In addition, ceramide can
be directly phosphorylated by ceramide kinase (CerK) to
form C1P (Fig. 1), which is a key regulator of cell homeo-
stasis [18,30] and has been implicated in inflammatory
responses [19,20,31]. 2) The second major mechanism for
ceramide generation is a catabolic pathway involving acti-
vation of SMases to form phosphorylcholine and cer-

Formation of bioactive sphingolipids in mammalian cells
Figure 1 Formation of bioactive sphingolipids in mammalian cells. Ceramide can be produced by degradation of sphingomyelin (SM) by sphin-
gomyelinases (SMase), or by de novo synthesis through the concerted action of serine palmitoyltransferase and dihydroceramide synthase. It can also 
be generated through metabolism of more complex sphingolipids. Ceramide can be metabolized to ceramide-1-phosphate by ceramide kinase, or 
to glucosylceramide by glucosylceramide synthase (GCS). The reverse reaction is catalyzed by ceramide-1-phosphate phosphatase, or by lipid phos-
phate phosphatases. Alternatively, ceramide can be degraded by ceramidases to form sphingosine, which can, in turn, be phosphorylated to sphin-
gosine-1-phosphate by sphingosine kinase. The reverse reaction is catalyzed by sphingosine-1-phosphate phosphatases, or by lipid phosphate 
phosphatases. Sphingomyelin N-deacylase generates sphingosylphosphorylcholine.
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amide directly (Fig. 1). There are three distinct forms of
SMases in mammalian cells that can be discriminated in
vitro by their optima pH: acid, neutral and alkaline
SMases. Whilst acid SMase and neutral SMase are
involved in signal transduction processes, the alkaline
form of SMase is responsible for digestion of dietary SM
in the intestine. The alkaline SMase isoform has now
been re-named NPP7 because of its similarity to the
nucleotide-pyrophosphatase/phosphodiesterase (NPP)
family of enzymes. In addition to its role in SM digestion,
a potential implication of this enzyme in cell signaling
processes has also been suggested [32]. In particular alka-
line SMase has been shown to inhibit cell proliferation in
HT-29 colon carcinoma cells [33]. 3) The third important
mechanism for generating ceramide is the sphingosine
salvage pathway, in which sphingosine (produced from
the metabolism of complex sphingolipids) is re-cycled to
ceramide through the action of CerS. As mentioned
above, another important enzyme that can control the
levels of ceramide is sphingomyelin synthase (SMS)
because it catalyzes the transfer of phosphorylcholine
from phosphatidylcholine (PC) to ceramide, thereby
releasing diacylglycerol (DAG) and lowering the levels of
ceramide to produce SM. Interestingly, we have recently
reported that SMS is implicated in the stimulation of
PKC-α by C1P, an action that is linked to the mitogenic
effect of this phosphosphingolipid in primary mac-
rophages [34]. Ceramide can also be metabolized back to
sphingosine by the action of specific ceramidases (Fig. 1).
Sphingosine is also bioactive. It was first described as the
physiological inhibitor of protein kinase C (PKC) [35].
There are many reports showing that PKC is inhibited by
exogenous sphingosine, and Merrill and co-workers dem-
onstrated that also endogenously generated sphingosine
can inhibit protein kinase C very potently [36]. In turn,
sphingosine can control the activity of other key enzymes
involved in the regulation of metabolic or cell signaling
pathways such as the Mg2+ dependent form of phosphati-
date phosphohydrolase [37,38], phospholipase D (PLD)
[39], or diacylglycerol kinase (DAGK) [40,41] in a variety
of cell types. In addition, sphingosine has been recently
reported to be a ligand of the steroidogenic factor 1 (SF1)
receptor, which is a nuclear receptor that plays a critical
role in endocrine development of sex differentiation [42].
Endogenous sphingosine was found to be bound to this
receptor under basal conditions, and treatment with
cAMP decreased the amount of sphingosine bound to the
receptor resulting in inhibition of cAMP-dependent
CYP17 gene transcription [43]. Phosphorylation of
sphingosine produces sphingosine 1-phosphate (S1P),
which can regulate a variety of cellular functions includ-
ing cell growth and survival, differentiation, and angio-
genesis [19,44-46]. In addition, S1P stimulates cortisol
and aldosterone secretion potently in cells of the zona

fasciculata, and zona glomerulosa, respectively, suggest-
ing that S1P is implicated in the regulation of steroido-
genesis, and steroid hormone actions [47,48]. Two
sphingosine kinases (SphKs) have so far been identified in
mammalian cells, SphK1 and SphK2, which exhibit differ-
ent biochemical properties and regulation. The roles of
S1P and SphKs in cell biology have been extensively
reviewed elsewhere [42,49].
Ceramides
Besides its role as the precursor of complex sphingolipids
ceramide is a signaling molecule capable of regulating
vital cellular functions including apoptosis, cell growth,
differentiation, senescence, diabetes, insulin resistance,
inflammation, neurodegenerative disorders, or athero-
sclerosis[2-5,15,35,50-56]. In this connection, it should be
pointed out that the topology of ceramide generation is
crucial for determination of its functions as a bioregula-
tory molecule, with compartmentalization being essential
for separation of signaling and metabolic pools within
cells. Indeed, the enzymes that regulate ceramide metab-
olism show distinct subcellular localization and topology
(reviewed in [2]). For instance, the plasma membrane of
cells contains caveolae-associated neutral SMase, and a
fraction of acid SMase, and the ceramides that are gener-
ated by these enzymes may have different functions. The
enzymology, and compartmentalization of sphingomyeli-
nases have been reviewed elsewhere [26-28]. Another
important aspect of ceramide action concerns its trans-
port from the ER, where it is synthesized, to the Golgi
apparatus, the primary site of SM and glycosphingolipid
synthesis. Hanada et al [57] recently demonstrated the
existence of a specific protein that is involved in SM bio-
synthesis and acts as a ceramide transfer protein (CERT)
in a non-vesicular manner. This protein has two domains
involved in the transport of ceramide: one that recognizes
ceramide and mediates its intermembrane transfer,
termed the START domain, and a phosphatidylinositol
binding domain (PH domain) with selectivity towards
phosphatidylinositol-4-phosphate, a lipid that is enriched
in the Golgi and that could serve as the site for ceramide
delivery by CERT [57]. Ceramide generation at the
plasma membrane exerts distinct and specific functions
including aggregation of the Fas receptor, and effects on
protein kinase C (PKC), but not other effects mediated by
endogenous ceramides such as apoptosis, or cell cycle
arrest [2]. Although the regulation of PKC activity by cer-
amides has already been reported, the results are still
controversial. In this regard, ceramides have been shown
to activate PKC-α and to inhibit PKC-α in renal mesan-
gial cells [58]. They have also been shown to induce the
translocation of PKC-α from the cytosol to the mem-
brane [59], the translocation of PKC-δ and PKC-ε from
the membrane to the cytosol [60], and the translocation
of PKC-δ from the cytosol to the mitochondria [61]. Also,
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ceramide was shown to induce apoptosis by transloca-
tion, tyrosine phosphorylation and activation of PKC-δ in
the Golgi complex [62]. Another important target of cer-
amide is phospholipase D (PLD), which is a key regula-
tory enzyme responsible for generation of phosphatidic
acid (PA), a potent mitogenic agent, and a precursor of
important second messengers including lysoPA and dia-
cylglycerol (DAG) [7]. We first reported that the cell-per-
meable ceramides N-acetylsphingosine (C2-ceramide)
and N-hexanoylsphingosine (C6-ceramide), or exogenous
bacterial sphingomyelinase, which can generate cer-
amides at the plasma membrane of cells, inhibited ago-
nist-stimulated PLD activity potently in intact rat
fibroblasts [63,64] or macrophages [65-67]. PLD inhibi-
tion by ceramides has also been demonstrated in several
other cell types [47,68-70], as well as in cell-free systems
[71,72], or digitonin-permeabilized fibroblasts that were
incubated with GTPγS [63]. However, the physiological
significance of PLD inhibition by ceramides is still
unclear.

Sphingolipids are also important because they are
implicated in atherogenic processes (reviewed by Stein-
brecher et al. [73]). In particular, ceramides, glycosphin-
golipids and S1P have been shown to accumulate in
atherosclerotic lesions, and to participate in the regula-
tion of signal transduction pathways that are implicated
in atherogenesis. Ceramides and S1P can be generated by
the action of oxidatively modified low density lipopro-
teins (LDL), or by pro-inflammatory cytokines. These
bioactive sphingolipids can upregulate the expression of
adhesion molecules and promote migration and adhesion
of monocytes to the sites of lesions. In fact, early and
intermediate atheromas are rich in macrophages and
smooth muscle cells, and show evidence of active cell
proliferation [74].

With regards to ceramide metabolism, the enzymes
responsible for its degradation, have recently gained par-
ticular interest because of their involvement in various
diseases. In particular ceramidases, would generate
sphingosine directly, and sphingosine can be readily con-
verted to S1P, a potent mitogenic agent and tumor pro-
moter. Details on protein sequence, chromosomal
location, tissue distribution, and subcellular localizations
of the different ceramidases have been recently reviewed
by Mao and Obeid [75]. Ceramidases have been impli-
cated in the mitogenic effect of oxidized LDL (oxLDL),
probably by enhancing the production of S1P [76]. Also,
dysregulation of mesangial cell proliferation or death
involves altered ceramidase activities [77-79] supporting
a role of this enzyme in diabetic nephropathy. An involve-
ment of the three different types of ceramidases (acid,
neutral and alkaline) in the development of type 2 diabe-
tes, insulin resistance and metabolic syndrome has also
been reported [80-84]. Ceramidases appear to also be

involved in some of the apoptotic effects promoted by
nitric oxide [58,85-87] and inflammatory cytokines [88-
99], the antiapoptotic properties of growth factors
[100,101], and in the promotion of embryo survival by
removing ceramides from newly formed embryos,
thereby inhibiting the default apoptosis pathway [102].
Moreover, ceramidases attenuate peptidoglycan-induced
COX-2 expression in macrophages [92], and the P. aerug-
inosa ceramidase enhances hemolysis induced phospholi-
pase C [103]. Increasing evidence points to important
roles of ceramidases, specially the Asah1 isoform, in the
outcome and progression of cancer, and the response of
tumors to therapy (reviewed in [33,95,104,105]. Asah1 is
overexpressed in several cancer cell lines and cancer tis-
sues [106-111], which appears to contribute to decreasing
the levels of ceramide and increasing those of S1P. Multi-
ple reports confirm the relationship between Asah1 activ-
ity and radio or chemotherapy resistance, as well as the
interest of Asah1 inhibitors as anticancer drugs. Also, in
most cases, Asah1 inhibition induces apoptosis. In fact,
high levels of Asah1 expression were found in a radiation
resistant glioblastoma cell line when exposed to gamma-
radiation, and sensitivity to radiation was achieved by
treatment with the ceramidase inhibitor N-oleoyletha-
nolamine (NOE), which significantly increased ceramide
levels, caspase activation and apoptosis [60]. In search for
ceramidase inhibitors, most efforts have been directed to
Asah1 inhibition, because of their potential used as anti-
proliferative and cytostatic drugs for cancer chemother-
apy. Ceramidase inhibitors have also been used in models
other than cancer. For example, incubation of smooth
muscle cells with oxLDL increased the activities of both
acid and alkaline ceramidases and the mitogenic effect of
oxLDL was inhibited by DMAPP, suggesting a role for
ceramidases (probably through formation of S1P) in the
mitogenic effect of oxLDL [76].
Ceramide 1-phosphate
Phosphorylation of ceramide seems to be the major
mechanism for generation of C1P in cells. The only
enzyme so far identified to induce the biosynthesis of
C1P in mammalian cells is ceramide kinase (CerK). This
enzyme was first observed in brain synaptic vesicles
[112], and then found in human leukemia HL-60 mono-
cytes [55]. CerK was found to be present in both the
microsomal membrane fraction, and the cytosolic frac-
tion of cells [113]. It was postulated that C1P traffics from
the Golgi apparatus along the secretory pathway to the
plasma membrane, and then released into the extracellu-
lar milieu to bind to acceptor proteins such as albumin or
lipoproteins [114]. Recent work by Chalfant and co-work-
ers [115] showed that CerK specifically utilizes ceramide
transported to the trans-Golgi apparatus by ceramide
transport protein (CERT). In fact, downregulation of
CERT by RNA interference resulted in strong inhibition
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of newly synthesized C1P, suggesting that CERT plays a
critical role in C1P formation. By contrast, Boath et al
[114] recently reported that the transport of ceramides to
the vicinity of CerK was not dependent on CERT. The
reason for such discrepancy is unknown at present, but it
might be possible that different cell types might have dif-
ferent subcellular distribution of CerK, and that expres-
sion of this enzyme might not be equal in all cell types.
Concerning regulation of the enzyme activity, the depen-
dency on Ca2+ ions is well established. CerK was also pro-
posed to be regulated by phosphorylation/
dephosphorylation processes [116]. In addition, CerK
location and activity seem to require the integrity of its
PH domain, which includes a myristoylation site [116].
Another interesting aspect is that although CerK is the
only enzyme so far described for generation of C1P in
mammalian cells, bone marrow-derived macrophages
(BMDM) from CerK-null mice (CerK-/-) still produced
significant levels of C1P, suggesting the existence of a
metabolic pathway, other than ceramide/CerK, for gener-
ation of C1P [114]. In particular, formation of C16-C1P,
which is a major species of C1P in cells, was not abolished
in (CerK-/-) BMDM. We have previously speculated that
two alternative pathways for generation of C1P in cells
might be the transfer of a long acyl-CoA chain to S1P by a
putative acyl transferase, or cleavage of SM by a PLD-like
activity, similar to the existing arthropod or bacterial
SMase D. However, work from our own lab [117] and that
of others [114] have shown that acylation of S1P to form
C1P does not occur in mammalian cells. In addition, we
found no evidence for intervention of SMase D activity
when using rat fibroblasts. Nonetheless, these possibili-
ties should be further explored in other cell types. Human
CerK was cloned by Sugiura and co-workers [118]. The
protein sequence has 537 amino acids with two protein
sequence motifs, an N-terminus that encompasses a
sequence motif known as a pleckstrin homology (PH)
domain (amino acids 32-121), and a C-terminal region
containing a Ca2+/calmodulin binding domain (amino
acids 124-433). It was found that leucine 10 in the PH
domain is essential for its catalytic activity [119]. Also, it
was shown that interaction between the PH domain of
CerK and phosphatidylinositol 4,5-bisphosphate regu-
lates the plasma membrane targeting and C1P levels
[120]. More recently, the existence of a conserved
cysteine motif in CerK that is also essential for its func-
tion was reported [121]. Also, it has been suggested that
subcellular localization of CerK requires the interplay of
their PH domain-containing N-terminal regions together
with the C-terminal domains [122]. Concerning substrate
specificity, phosphorylation of ceramide by CerK is ste-
reospecific [123]. It was reported that a minimum of a 12-
carbon acyl chain is required for normal CerK activity,
whereas the short-chain ceramide analogues C8-cer-

amide, C4-ceramide, or C2-ceramide were poor substrates
for this enzyme. It was concluded that CerK phosphory-
lates only the naturally occurring D-erythro-ceramides
[123]. However, Van Overloops and co-workers [124]
observed that C2-ceramide is a good substrate for CerK,
when albumin is used as a carrier, and that C2-ceramide
can be converted to C2-C1P within cells. This raises the
possibility that C2-C1P is also a natural sphingolipid,
capable of eliciting important biologic effects, as previ-
ously demonstrated (i.e. stimulation of cell proliferation
[125]). The importance of CerK in cell signaling was
highlighted using specific RNAi to inhibit this enzyme
activity. This treatment blocked arachidonic acid (AA)
release and PGE2 production in response to ATP, the cal-
cium ionophore A23187 and interleukin 1-β [19,126].
The relevance of this enzyme in cell biology was also
highlighted in studies using CerK-/- mice; specifically,
Bornancin and co-workers found a potent reduction in
the amount of neutrophils in blood and spleen of these
mice, whereas the amount of leukocytes, other than neu-
trophils, was increased in these animals. These observa-
tions pointed to an important role of CerK in neutrophil
homeostasis [127]. Recently, a human ceramide kinase-
like (CerKL) enzyme was identified in retina [128], and
subsequently cloned [129]. However, this enzyme was
unable to phosphorylate ceramide, or other related lipids,
under conditions commonly used to measure CerK activ-
ity, and therefore its role in cell biology remains unclear.
Importantly, intracellular formation of C1P was observed
after challenging A549 lung adenocarcinoma cells with
interleukin 1-β [126], and after treatment of bone mar-
row-derived macrophages with M-CSF [130]. Also of
importance, C1P levels were substantially decreased in
apoptotic macrophages, suggesting that C1P plays an
important role in cell survival [18,117].
Role of ceramide 1-phosphate in cell growth and survival
We recently reported that the mechanisms by which C1P
exerts its mitogenic effects involve stimulation of the
mitogen-activated protein kinase kinase (MEK)/Extracel-
lularly regulated kinases 1-2 (ERK1-2), phosphatidylinos-
itol 3-kinase (PI3-K)/Akt (or PKB), and c-Jun terminal
kinase (JNK) pathways [130]. We also found that C1P
causes stimulation of the DNA binding activity of the
transcription factor NF-κB, and increases the expression
of glycogen synthase kinase-3β (GSK-3β) leading to up-
regulation of cyclin D1 and c-Myc, which are important
markers of cell proliferation. Moreover, we have evidence
suggesting that C1P-stimulated macrophage prolifera-
tion, implicates activation of SMS as well as translocation
and activation of PKC-α [34], and that phospholipase D
(PLD), intracellular calcium levels, or cAMP are not
involved in this process [125,131].
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In addition to its mitogenic effect, we also observed
that C1P is a potent inhibitor of apoptosis [117,132]. This
finding was further supported by Mitra and co-workers
[133] who found that down-regulation of CerK in mam-
malian cells reduced growth and promoted apoptosis in
lung epithelial cells. However, Graf and co-workers
reported that exogenous addition of the cell permeable
C2-ceramide to cells overexpressing CerK led to C2-C1P
formation and induction of apoptosis [134]. This contra-
dictory observation can be explained by the fact that
overexpression of CerK in the presence of abnormally
high concentrations of ceramide (exogenously supplied)
would cause and overwhelming increase in the intracellu-
lar levels of C1P, thereby reaching C1P concentrations
that are toxic for cells. In fact, we observed that in con-
trast to relatively low concentrations of C1P, which stimu-
late cell growth and inhibit apoptosis, relatively higher
concentrations of C1P are toxic and can kill the cells
[117,125]. Concerning apoptosis, we also found that
apoptotic bone marrow-derived macrophages have high
acid SMase activity and high levels of ceramides com-
pared to healthy cells [135,136]. Investigation into the
mechanism whereby C1P exerts its anti-apoptotic effects
led us to demonstrate that C1P caused potent inhibition
of acid SMase and subsequent depletion of ceramide lev-
els in intact macrophages [117]. C1P also blocked the
activity of acid SMase in cell homogenates suggesting that
inhibition of this enzyme occurs by direct physical inter-
action with C1P. It was concluded that C1P is a natural
inhibitor of acid SMase, and that inhibition of this
enzyme is a major mechanism whereby C1P promotes
cell survival [117]. Also, this observation suggests that
inhibition of acid SMase by C1P is not mediated through
receptor interaction. Acid SMase was also inhibited by
S1P in intact macrophages [136], but the mechanism by
which this action is brought about remains to be estab-
lished. Recent work from our lab [137] shows that cer-
amide levels are also increased in apoptotic alveolar
NR8383 macrophages. However, contrary to bone mar-
row-derived macrophages, there was little activation of
neutral and acid SMases in the alveolar macrophages,
suggesting that ceramides were generated through a dif-
ferent pathway in these cells. Investigation into the mech-
anisms whereby ceramide levels increased in alveolar
macrophages revealed that activation of SPT, which as
mentioned above is the key regulatory enzyme of the de
novo pathway of ceramide synthesis, was a major factor
in this process. Like for SMases, inhibition of SPT activa-
tion by treatment with C1P substantially decreased cer-
amide generation, and prevented the macrophages from
entering apoptosis. It was concluded that C1P promoted
macrophage survival by blocking ceramide accumulation
through inhibition of either SMase activity, or SPT,
depending on cell type. The physiological relevance of the

prosurvival effect of C1P was underscored by the demon-
stration that the intracellular levels of C1P were substan-
tially decreased in apoptotic macrophages. It can be
hypothesized that the decrease in C1P concentration
could result in the release of acid SMase, or SPT, from
inhibition, thereby triggering ceramide generation an
apoptotic cell death.

A well-established mechanism by which growth factors
promote cell survival is through activation of phosphati-
dylinositol 3-kinase (PI3-K), which can lead to stimula-
tion of the transcription factor NF-κB, and expression of
antiapoptotic genes. Using two different experimental
approaches, we demonstrated that PI3-K was a target of
C1P in bone marrow-derived macrophages [132]. PI3-K
activation was demonstrated by immunoprecipitation of
the enzyme from whole cell lysates and assayed in vitro
using 32P-phosphatidylinositol. In addition, an in vivo
approach provided evidence of phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) formation in intact cells that
were prelabeled with 32P-orthophosphate [132]. Interest-
ingly, PIP3, which is a major product of PI3-K activity,
was shown to directly inhibit acid SMase [138]. There-
fore, PI3-K activation may potentiate the inhibitory effect
of C1P on acid SMase through generation of PIP3. We
also observed that C1P stimulated phosphorylation of
PKB, which is a target of kinases from different signaling
pathways including PI3-K [139,140], cAMP or cAMP-
dependent protein kinase (PKA) [141,142], and PKC-ζ
[143]. C1P-induced phosphorylation of PKB was sensitive
to inhibition by wortmannin or LY294002, which are
selective inhibitors of PI3K. These two inhibitors also
blocked the prosurvival effect of C1P indicating that PKB
is downstream of PI3-K in macrophages, and important
for the antiapoptotic effect of C1P [132]. C1P also caused
IκB phosphorylation and stimulation of the DNA binding
activity of NF-κB in primary cultures of mouse mac-
rophages [132], and up-regulated the expression of anti-
apoptotic Bcl-XL, which is a downstream target of NF-κB.
The latter results provided the first evidence for a novel
biological role of natural C1P in the regulation of cell sur-
vival by the PI3-K/PKB/NF-κB pathway in mammalian
cells [132].

As mentioned above, C1P can be metabolized to cer-
amide by phosphatase activity, and then further con-
verted to sphingosine and S1P by ceramidases and
sphingosine kinases. Therefore, it could be speculated
that the effects of C1P might be mediated through C1P-
derived metabolites. However, ceramides and C1P are
antagonistic signals, and C1P is unable to mimic many of
the effects of sphingosine or S1P (i.e. PLD activation, ade-
nylyl cyclase inhibition, or Ca2+ mobilization)
[7,64,125,131]. Also, ceramides can decrease the expres-
sion of Bcl-XL [19], whereas C1P causes its up-regulation
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[132]. Finally, no ceramidases capable of converting C1P
to S1P have so far been identified, and S1P and C1P
inhibit acid SMase by different mechanisms [117,136].
Therefore, it can be concluded that C1P acts on its own
right to regulate cell functions. The above observations
suggest that the activity of the enzymes involved in cer-
amide and C1P metabolism must be strictly regulated.
Any alteration in the balance between ceramides and C1P
could potentially result in metabolic dysfunctions, and
could be fatal for cells.
Ceramide 1-phosphate and the control of inflammatory 
responses
C1P has been demonstrated to be proinflammatory,
which in principle is beneficial for protecting the organ-
ism against infection or injury. Inflammatory mediators
include chemokynes, cytokines, vasoactive amines, prod-
ucts of proteolitic cascades, phospholipases, different
forms of eicosanoids, and some sphingolipids. Genera-
tion of proinflammatory metabolites, however, should be
blocked or at least reduced when inflammation becomes
out of control, so as to protect the organism from major
damage. Concerning phospholipases, a key mediator of
inflammatory responses is cytosolic PLA2 (cPLA2), an
enzyme that has been involved in receptor-dependent
and independent release of arachidonic acid and eico-
sanoid production. With regards to sphingolipids, some
of them have also been described as important mediators
of inflammatory responses. For instance, ceramide was
initially described as pro-inflammatory for different cell
types [144-147], and more recently it has been implicated
in the development of allergic asthmatic responses and
airway inflammation [148]. In addition, exogenous addi-
tion of the short-chain cell permeable C2-ceramide, to
cultured astrocytes upregulated the expression of 12-
lipoxygenase, thereby leading to generation of reactive
oxygen species (ROS) and the initiation of inflammatory
responses [149]. Acid sphingomyelinase-derived cer-
amide has also been involved in PAF-mediated pulmo-
nary edema [150]. Subsequently, it was proposed that at
least some of the pro-inflammatory effects of ceramides
might in fact be mediated by its conversion to C1P. The
first report on the regulation of arachidonic acid (AA)
release and the production of prostaglandins by C1P was
by Chalfant's group [126]. These authors demonstrated
that C1P potently and specifically stimulated AA release
and prostanoid synthesis in A549 lung adenocarcinoma
cells. In the same report, the authors showed that C1P
could be generated intracellularly through stimulation of
CerK by the action of interleukin 1-β. In a later report,
the same group demonstrated that the mechanism
whereby C1P stimulates AA release occurs through direct
activation of cPLA2 [151]. Subsequently, Subramanian
and co-workers [152] found that C1P is a positive allos-

teric activator of group IV cPLA2, and that it enhances
the interaction of the enzyme with phosphatidylcholine.
The authors concluded that C1P may function to recruit
cPLA2α to intracellular membranes and that it allosteri-
cally increases the catalytic ability of the membrane-asso-
ciated enzyme [152]. In addition, recent studies
demonstrated that activation of group IV cPLA2 by C1P is
chain length-specific. In particular, C1P with acyl chains
equal or higher than 6 carbons were able to efficiently
activate cPLA2α in vitro, whereas shorter acyl chains (in
particular C2-C1P) were unable to activate this enzyme.
C1P was suggested to act in coordination with S1P to
ensure maximal production of prostaglandins [153]. For
details on the role of C1P in inflammatory response the
reader is referred to elegant reviews by Lamour and Chal-
fant [115]; Wijesinghe et al [154] and Chalfant and Spie-
gel [19]. It should also be pointed out that C1P is involved
in other inflammatory processes including stimulation of
phagocytosis in neutrophils [21,22], activation of degran-
ulation in mast cells [113], and more recently, stimulation
of macrophage migration [155]. Nonetheless, apart from
its clearly proinflammatory actions, C1P might act as
antiinflammatory under specific conditions. In this con-
text, it was postulated that activation of acid SMase plays
an important role in pulmonary infections as it facilitates
internalization of bacteria into lung epithelial cells [156].
Therefore, the recent finding that C1P potently inhibits
acid SMase [116] could be important to reduce or prevent
infection in the lung, an action that would obviously
result in the inhibition of inflammatory responses.
Ceramide 1-phosphate mediates macrophage migration
Macrophages are involved in a number of chronic dis-
eases that are characterized by unregulated chronic
inflammation. These include autoimmune diseases, ath-
erosclerosis, or multiple sclerosis [157], as well as tumor
progression and metastasis [158]. Using Raw 264.7 mac-
rophages, our group has recently demonstrated that
exogenous addition of C1P potently stimulated cell
migration [155]. This action could only be observed when
C1P was applied exogenously, but not when C1P was gen-
erated intracellularly. The intracellular levels of C1P were
enhanced using different experimental approaches,
including agonist stimulation of CerK, or delivery of C1P
using the photolabile caged-C1P compounds 7-(dieth-
ylamino)-coumarin (DECM), or 4-bromo-5-hydroxy-2-
nitrobenzhydryl (BHNB) [159] to the cells in culture but
macrophages failed to migrate (A. Ouro et al., unpub-
lished work). These observations led to identify a specific
plasma membrane receptor that stimulates chemotaxis
upon ligation with C1P. This receptor had low affinity for
C1P, with a Kd value of approximately 7.8 μM. In addition,
studies using GTPγS, and pertussis toxin, which potently
blocks Gi proteins, provided evidence that the C1P recep-
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tor is coupled to a Gi protein. Interestingly, ligation of the
receptor with C1P caused potent phosphorylation of
ERK1-2 and PKB, suggesting that these kinases are down-
stream of receptor activation. Of importance, inhibition
of these pathways with selective inhibitors of MEK, the
enzyme that phosphorylate ERK, and selective inhibitors
of PI3-K, completely abolished C1P-stimulated mac-
rophage migration. Furthermore, C1P stimulated the
DNA binding activity of NF-κB, which is downstream of
PKB or ERK, and blockade of this transcription factor
also resulted in complete inhibition of macrophage
migration. These observations suggested that MEK/
ERK1-2, PI3-K/PKB (Akt) and NF-κB are crucial compo-
nents of the cascade of events leading to stimulation of
cell migration by C1P. It is possible that this newly identi-
fied receptor as well as the enzymes responsible for C1P
generation might be important targets for treatment of
illnesses that are associated to inflammation and cell
migration, such as atherosclerosis or cancer. In this con-
nection, two inhibitors of CerK have been recently
described. One of these inhibitors is an analog of a previ-
ously reported SphK inhibitor named F-12509A [160],
which inhibits CerK at μmolar concentrations without
affecting the activities of SphK or diacylglycerol kinases.
A second compound named NVP-231 (adamantane-1-
carboxylic acid (2-benzoylamino-benzothiazol-6-yl)
amide) [161], inhibited CerK potently in a competitive
and reversible manner at low nanomolar concentrations.
Interestingly, when NVP-231 was combined with tamox-
ifen, a drug that is commonly used for treatment of breast
cancer [162,163], it synergistically increased ceramide
levels and blocked cell growth [161]. Also of interest,
recent work by Zor and co-workers has produced a C1P
analogue named phosphoceramide analogue-1 (PCERA-
1), which has potent anti-inflammatory properties [164].
The activity of PCERA-1 seems to be mediated by a cell
membrane receptor that is distinct to the C1P receptor
described here. PCERA-1, and perhaps other compounds
that may be eventually derived from modification of its
original structure, might turn to also be useful tools for
developing alternative strategies for treatment of inflam-
matory diseases.

Concluding Remarks
Detailed knowledge of the mechanisms controlling cer-
amide and C1P levels, including expression of the
enzymes involved in their metabolism, and the receptors
implicated in their actions, may be essential for develop-
ing molecular strategies to counteract metabolic disor-
ders. Specifically serine palmitoyltransferases, ceramide
synthases, sphingomyelinases, ceramide kinase, cerami-
dases, and the different sphingolipid receptors are likely
to be major targets for controlling sphingolipid actions,
and metabolism. Finding selective inhibitors of these

enzymes, as well as agonists and antagonists of these
receptors will enhance our knowledge and understanding
on how these molecules can control physiological and
pathological processes including cell growth, differentia-
tion, migration, neurodegeneration, cell death, inflamma-
tion, and cancer.
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