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Abstract
AIM: To investigate the preparation, physicochemical 
characterization and cytotoxicity in vitro  of Gemcitabine-
loaded poly(ethylene glycol)-block-poly(D,L-lactide) 
(PEG-PDLLA) nanovesicles. 

METHODS: The nanovesicle carriers were prepared 
from the amphiphilic block copolymer of PEG-PDLLA 
by a double emulsion technique, and gemcitabine 
was used as the model drug. The morphology of 
the nanovesicles was determined by scanning and 
transmission electron microscopy, and the drug content, 
drug entrapment and drug-release curve in vitro  were 
detected by UV-Vis-NIR spectrophotometry. Cytotoxicity 
in the human pancreatic cancer cell line SW1990 was 
tested by 3-(4,5-dimethyl) ethiazole (MTT) assay.

RESULTS: The gemcitabine-loaded nanovesicles were 
hollow nanospheres with a mean size of 200.6 nm, drug 

loading of 4.14% and drug embedding ratio of 20.54%. 
The nanovesicles showed excellent controlled release 
that was characterized by a fast initial release during the 
first 72 h, followed by a slower and continuous release. 
The MTT assay demonstrated that gemcitabine-loaded 
nanovesicles exhibited dose-dependent and time-
delayed cytotoxicity in the human pancreatic cancer cell 
line SW1990.

CONCLUSION: Gemcitabine-loaded PEG-PDLLA 
nanovesicles prepared by a double emulsion technique 
exhibited good performance for controlled drug re-
lease, and had similar cytotoxic activity to free gem-
citabine.
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INTRODUCTION
Nanovesicles are a new type of  drug carrier, which can 
protect incorporated drugs from in vivo metabolism while 
enhancing their therapeutic effect and reducing their 
toxicity. Compared with other drug delivery systems, 
nanovesicles are more suitable for hydrophilic drugs 
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because of  their hollow structure and internal aqueous 
phase, which can burden high drug loading. 

Gemcitabine has been demonstrated to display anti­
tumor activity against a wide variety of  cancers, including 
pancreatic, colon, lung, breast, bladder and ovarian can­
cer[1-3]. However, gemcitabine is metabolized rapidly in the 
blood. Thus, a major limitation of  this antitumor drug 
is that gemcitabine has a very short plasma half-life and 
strong side effects when administered intravenously[4]. As 
a drug carrier, nanovesicles may promote the efficacy of  
gemcitabine and reduce its side effects.

Polylactic acid (PLA) is the most widely used synth­
etic polymer, which is known to be biocompatible and 
degradable to give the natural product lactic acid[5]. 
However, nanoparticles based on PLA accumulate 
blood proteins on their surface as they circulate through 
the body[6,7]. This nonspecific absorption of  proteins 
attracts attention from immune cells, with the result 
that nanoparticles are often removed from circulation 
before reaching their tumor targets. Modification with 
poly(ethylene glycol) (PEG) chains immobilized on 
the surface forms a hydrophilic palisade, which creates 
repulsion between the nanovesicles, and this repulsion 
can stop the nanovesicles from agglomerating, thus 
increasing their dispersion stability in aqueous media[8-10]. 
Furthermore, PEG is able to prevent proteins from 
adhering to the surface and thus avoids nanovesicles 
being recognized by macrophages[11,12], which prolongs 
the circulation time and facilitates nanoparticle uptake by 
specific cancer cells for cancer therapy[13,14].

  However, there have only been a few studies on the 
incorporation of  gemcitabine into PEG-block-poly(D,L-
lactide) (PEG-PDLLA) nanovesicles. Therefore, we 
prepared gemcitabine-loaded nanovesicles, observed 
their size distribution, morphology and drug-release 
performance, and carried out a preliminary investigation 
of  their cytotoxicity in vitro.

MATERIALS AND METHODS
Materials
The amphiphilic block copolymer of  PEG-PDLLA was 
synthesized by Sun Yat-Sen University. Gemcitabine was 
purchased from Eli Lilly & Co (Indianapolis, IN, United 
States). RPMI1640 and fetal bovine serum (FBS) were 
purchased from Gibco (Grand Island, NY, United States). 

Cell culture
The human pancreatic cancer cell line SW1990 was obtain­
ed from the Second Affiliated Hospital of  Sun Yat-Sen 
University. All cells were cultured as monolayers at 37℃ in 
a 5% CO2/95% humidified atmosphere with RPMI1640 
supplemented with 10% FBS, 100 U/mL penicillin,  
100 µg/mL streptomycin and 2 mmol/L L-glutamine.

Preparation of gemcitabine-loaded nanovesicles
Gemcitabine-loaded nanovesicles were prepared by a 
double emulsion (w/o/w) technique. The preparation 
was performed as follows: (1) An aqueous solution (2 mg 

gemcitabine in 0.2 mL pure water) was added dropwise 
into an organic solution of  the polymer (10 mg PEG-
PDLLA in 2 mL trichloromethane), and the first emulsion 
(w/o) was formed by sonication; (2) The emulsion was 
added dropwise into an organic solution that consisted of  
40 mL polyvinyl alcohol (PVA) solution at 0.5% (w/v) and 
the double emulsion (w/o/w) was obtained by sonication; 
(3) The residual trichloromethane of  the double emulsion 
was removed completely by vacuum distillation with a 
rotary evaporator, and free PVA and non-incorporated 
gemcitabine was removed by dialysis in the pure water 
overnight; and (4) Nanovesicles obtained as a suspension 
were purified by filtration through a syringe filter (pore 
size 0.45 μm), and then subjected to lyophilization to yield 
the solid nanovesicle samples. We repeatedly prepared 
three groups of  gemcitabine-loaded nanovesicle samples 
according to the above processes.

Determination of gemcitabine incorporation efficiency
Three groups of  prepared nanovesicles were redissolved 
in DMSO. Gemcitabine in the solution was measured 
by ultraviolet spectroscopy at 275 nm (Perkin-Elmer 
Lambda 20 UV-Vis spectrophotometer, Beijing, China), 
and its incorporation efficiency was evaluated by drug 
loading (DL) and drug embedding ratio (ER). DL (%) = 
mass of  drug in nanovesicles × 100/mass of  nanovesi­
cles recovered. ER (%) = mass of  drug in nanovesicles 
× 100/mass of  drug used in formulation.

Nanovesicle size and morphology
After dilution with purified water, nanovesicle size was 
determined by photon correlation spectroscopy (PCS) 
(Malvern Autosizer, United States), at a scattering angle 
of  90° and a temperature of  25℃. Values are reported 
as the mean diameter (MD). The morphology of  the 
nanovesicles was observed by transmission electron mi­
croscopy (TEM) (JEOL-100CXII, Japan) and scanning 
electron microscopy (SEM) (XL-30, Holland). A drop of  
the nanovesicles suspension (10 µL) was placed on copper 
electron microscopy grids (Formvar coated) and stained 
with 2% (w/v) phosphotungstic acid solution. After 30 s, 
the sample was washed with purified water and the excess 
fluid was removed with a piece of  filter paper. The dried 
sample was then examined.

In vitro release of gemcitabine from nanovesicles
Phosphate buffer solution (PBS) at pH 7.4 and pH 5 was se­
lected for the release medium. Nanovesicle samples (60 mg  
each) were resuspended in 5 mL PBS (pH 7.4 or 5) and 
transferred into a dialysis tubing (MW cut-off: 14 000 Da).  
The tubing was placed in 45 mL PBS (pH 7.4 or 5). The 
release study was performed at 37℃ in a Shanghai Yi­
heng Scientific DKZ Incubator Shaker. At selected time 
intervals, 5 mL buffered solution outside the dialysis tub­
ing was removed for UV-Vis analysis and replaced with  
5 mL fresh buffer solution. Gemcitabine concentration 
was calculated based on the absorbance intensity at 268 nm.  
The equations were as follows: CpH 7.4 = 34.724A - 0.2971, 
r2 = 0.9999; CpH 7.4 = 38.317A - 0.3289, r2 = 0.9999 (C: 
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drug concentration; A: absorbance at 268 nm). The cu­
mulative percentage of  released gemcitabine (%) could be 
calculated by the equation: Q (%) = (Vo × Ct + V × ∑C) 
× 100%/(W × X) (Q: cumulative percentage of  released 
gemcitabine; Ct: gemcitabine concentration in release 
medium at each time point; Vo: gross removed volume of  
release medium; V: volume of  sample; W: gross mass of  
nanovesicles; X: drug content of  gemcitabine).

In vitro cytotoxicity study against human SW1990 
pancreatic cancer cells 
The inhibition of  cell growth was evaluated by the 
3-(4,5-dimethyl) ethiazole (MTT) method using triplicate 
assays. Gemcitabine and gemcitabine-loaded nanovesi­
cles were diluted in RPMI1640 at 1.0 × 10-3 mol/L, re­
spectively. Then, 100 µL cell solution with 5 × 104 cells/mL 
was seeded in 96-well plates (Costar, Cambridge, MA, 
United States), and allowed to attach overnight. After 
24 h incubation, gemcitabine-loaded nanovesicles with 
concentrations of  10-7, 10-6, 10-5 and 10-4 mol/L were 
added to the cell cultures. Gemcitabine added at the 
same concentration acted as a positive control. PBS was 
added as a negative control. At 24, 48, 72 and 96 h, 20 µL 
MTT and 200 µL RPMI culture medium were added to 
each well and incubated at 37℃ for 4 h. Then MTT and 
culture medium were removed and 200 µL DMSO was 
added. The absorbance of  the converted dye, which cor­
related with the number of  viable cells, was determined 
at 490 nm. Cell viability was determined by the following 
equation: Cell viability (%) = (Abstest cell/Abscontrol cells) × 
100%. Cell inhibitory rate was determined by the follow­
ing formula: Cell inhibitory rate (%) = (1 - Abstest cell/Ab­
scontrol cells) × 100%.

Statistical analysis
Statistical analysis was performed with SPSS for Windows 
version 13.0. Data were expressed as mean ± SD, and 
were compared using one-way ANOVA. P < 0.05 was 
considered statistically significant based on a two-tailed 
test.

RESULTS
Nanovesicle characteristics
The mean diameter of  prepared nanovesicles was 200.6 nm  
(range: 70-250 nm). As shown by SEM (Figure 1) and 
TEM (Figure 2), it was clear that the nanovesicles were 
spherical in shape, and hollow in structure, with a large 
central cavity in which gemcitabine was loaded.

Vesicle loading capacity 
The DL and ER in three groups of  gemcitabine-loaded 
nanovesicles are shown in Table 1. The mean value of  
DL was 4.14% ± 0.13%, and ER was 20.54% ± 0.92%, 
which indicated good duplication of  the nanovesicle 
preparation.

In vitro gemcitabine release study
The in vitro release of  gemcitabine-loaded nanovesicles 

in two different buffered solutions (pH 7.4 and 5.0) is 
shown in Figure 3. A typical two-phase-release was ob­
served in both solutions. A rapid release was observed 
from gemcitabine-loaded nanovesicles in the first 4 d, 
and a relatively slower and sustained release was ob­
served in the following days. By comparison with the 
release at pH 5.0, gemcitabine-release from nanovesicles 
at pH 7.4 was much slower. In the first 18 d, the cumula­
tive percentage of  released gemcitabine at pH 7.4 was 
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Figure 1  Scanning electronic microphotographs of poly (ethylene glycol)-
block-poly (D,L-lactide) (PEG-PDLLA) nanovesicles. A: × 40 000; B: × 
20 000.
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Figure 2  Transmission electron micrographs of PEG-PDLLA nanovesicles.

20 nm
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Table 1  Drug incorporation efficiency of Gemcitabine-load 
nanovesicles (%)

Sample 1 2 3 mean ± SD

Drug content   4.23   3.99   4.19   4.14 ± 0.13
Drug encapsulation efficiency 21.34 19.54 20.75 20.54 ± 0.92



< 30%, whereas released gemcitabine at pH 5.0 was 
92.70%.

In vitro cytotoxicity study
Table 2 shows the cell inhibitory rate of  gemcitabine-loaded 
nanovesicles and free gemcitabine at a concentration range 
of  10-7 to 10-4 mol/L. With increasing drug concentration, 
pancreatic cancer cells were decreased in the gemcitabine-
loaded nanovesicles and free gemcitabine groups. At 
each drug concentration, the cell inhibitory rate in the 
gemcitabine-loaded nanovesicles group was lower than 
that in the free gemcitabine group, however, no statistically 
significant difference was observed (all P > 0.05). 

The IC50 (50% inhibiting concentration) of  gem­
citabine-loaded nanovesicles and free gemcitabine in hu­
man SW1990 pancreatic cancer cells at four time points 
is shown in Figure 4. IC50 gradually decreased with time 
in both groups. In the first 48 h, IC50 in the gemcitabine-
loaded nanovesicles group was significantly higher than 
that in the free gemcitabine group (P < 0.05). At 72 h, 
IC50 was also higher in the gemcitabine-loaded nanoves­
icles group than in the free gemcitabine group, but this 
difference was not statistically significant (P > 0.05). Up 
to the end point at 96 h, IC50 was very similar in the two 
groups. 

DISCUSSION
Gemcitabine is an anticancer nucleoside analogue that is 
active against various solid tumors. However, with intra­
venous administration, this drug is inactivated rapidly by 
enzymatic deamination, and it has a short biological half-
life that necessitates the administration of  high doses, 
which leads to unwanted side effects[15-17]. Therefore, as a 
carrier for gemcitabine delivery, nanovesicles, which are 
superior to other drug delivery systems for encapsulat­
ing hydrophilic drugs and can be subjected to surface 
modification, are used to overcome the above problems. 
Many advantages can be found in gemcitabine-loaded 
nanovesicles, including the possibility of  targeting spe­
cific sites, controlled drug release, and protection of  the 
encapsulated drug[18-24]. 

Our prepared nanovesicles were spherical in shape 
with a hollow structure, and gemcitabine was incorporated 
in the core of  the nanovesicles. Generally, nanovesicles 
< 500 nm are considered ideal for drug delivery systems, 
because this size allows more effective systemic circulation 
than smaller molecules, and they can access places in the 
human body that larger particles cannot reach. At the 
same time, nanoparticles of  this size can penetrate tumors 
because of  the leaky nature of  their microvasculature. 
This classic effect, which is referred to as the “enhanced 
permeation and retention effect”, results in prolonged 
circulation and accumulation of  a therapeutic agent within 
the tumor[25]. Meanwhile, the modification by PEG allows 
nanoparticles to escape from the vasculature through the 
leaky endothelial tissue that surrounds the tumor, and 
therefore accumulate in certain solid tumors[26,27]. As a 
result, nanoparticles can target the tumor through blood 
vessels and enhance the anticancer activity of  the drug.

As shown in Figure 3, these nanoparticles have a 
stable release profile. The release of  gemcitabine from 
nanovesicles exhibited a biphasic pattern that was char­
acterized by a fast initial release during the first 72 h,  
followed by a slower continuous release. The fast release 
of  gemcitabine was probably the result of  rapid de­
sorption of  gemcitabine from the external layer of  the 
nanovesicles and diffusion of  the drug located near the 
surface, whereas the slower and continuous release may 
be attributed to slow trans-layer permeation kinetics and 
diffusion from the interior, together with erosion of  the 
polymer. It has been shown that the aqueous medium 
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Figure 3  Release of gemcitabine from nanovesicles at pH 7.4 and 5.0. 
Data are presented as mean ± SD. P < 0.05 at every point of pH 5.0 vs pH 7.4.
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Figure 4  IC50 of gemcitabine-loaded nanovesicles and free gemcitabine in 
human SW1990 pancreatic cancer cells. Data are presented as mean ± SD. 
aP < 0.05, cP > 0.05 vs free gemcitabine group.

Table 2  The inhibitory effect of Gemcitabine-loaded 
nanovesicles and free gemcitabine on human SW1990 
pancreatic cancer cells

Drug 
concentration 
(mol/L)

Gemcitabine-loaded 
nanovesicles

Free gemcitabine P  value

Cell inhibitory rate 
(%)

Cell inhibitory rate 
(%)

10-7 18.3 ± 1.6 21.7 ± 2.5 0.480
10-6 46.2 ± 2.7 49.5 ± 4.1 0.619
10-5 82.3 ± 5.4 78.8 ± 4.2 0.592
10-4 93.2 ± 5.3 95.2 ± 3.7 0.552
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slowly penetrates the internal structure of  the particles 
and causes progressive degradation of  the polymer 
chains. 

Another phenomenon was that gemcitabine release 
from nanovesicles at pH 5.0 was much faster than that 
at pH 7.4, which indicated that faster degradation of  
nanovesicles appeared at lower pH. This pH-dependent 
release is of  particular interest in achieving tumor-targeted 
gemcitabine delivery with nanovesicles. It is expected that 
most of  the gemcitabine encapsulated in nanovesicles will 
remain in the nanovesicle core for a considerable time pe­
riod, when the injected nanovesicles remain in the plasma 
at normal physiological conditions (pH 7.4). However, 
faster release occurs once the nanovesicles reach the solid 
tumor site, where the pH value is lower than that in nor­
mal tissue[28]. In addition, particles are usually internalized 
inside the cells by endocytosis[22]. Therefore, further ac­
celerated release inside the endosome/lysosome of  tumor 
cells may occur as a result of  the decreased pH values.

Moreover, in our study, gemcitabine-loaded nan­
ovesicles were similar to free gemcitabine in terms of  
their cell inhibitory effect at different drug concentrations. 
Besides, time-delayed cytotoxicity was exhibited by 
gemcitabine-loaded nanovesicles in the human pancreatic 
cancer cell line SW1990. In the first 48 h, IC50 of  
gemcitabine-loaded nanovesicles was significantly higher 
than that of  free gemcitabine. However, in the following 
48 h, IC50 of  gemcitabine-loaded nanovesicles gradually 
approached that of  free gemcitabine. Up to the end of  
our experiment, IC50 was very similar in the two groups. It 
is estimated that the cell inhibitory effect of  gemcitabine-
loaded nanovesicles is more obvious during the period of  
sustained release because of  its time-dependent release 
and delayed nuclear uptake in human SW1990 pancreatic 
cancer cells, which is consistent with in vitro gemcitabine 
release studies. Therefore, our future studies will involve 
in vivo experiments and related research on gemcitabine-
loaded nanovesicles.

In summary, using the double emulsion technique, 
small, spherical and submicron sized (< 210 nm) PEG-
PDLLA nanovesicles loaded with gemcitabine were 
prepared which did not change the drug structure or 
cytotoxicity. Compared with free gemcitabine, the gem­
citabine-loaded nanovesicles elicited a time-dependent 
improvement in cytotoxic effect that was related to de­
layed release. This may possibly improve the administra­
tion of  gemcitabine to pancreatic cancer patients.
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