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1. Introduction
The evidence for impairment in the ubiquitin proteasome system (UPS) in Parkinson Disease
(PD) is mounting and becoming increasingly more convincing. However, it is presently unclear
whether UPS dysfunction is a cause or result of PD pathology, a crucial distinction which
impedes both the understanding of disease pathogenesis and the development of effectual
therapeutic approaches. Thus recent findings specifically regarding the role of the UPS in PD
are discussed within this review, and offer new insight and provide direction for future research
to conclusively resolve this debate.

2. Parkinson disease (PD)
PD is a progressive neurodegenerative disease clinically characterized by bradykinesia, gait
disturbances, resting tremor, muscular rigidity, and postural instability [1]. Pathological
hallmarks of the disease include loss of dopaminergic neurons in the substantia nigra (SN), as
well as the presence of eosinophilic cytoplasmic inclusions and dystrophic neurites in
remaining neurons, first described by Friederich Heinrich Lewy in 1912 and termed Lewy
bodies (LB) and Lewy neurites (LN) in his honor [2]. The identification of α-synuclein as the
major, filamentous protein component of LBs [3], in addition to the linkage of missense
mutations (A53T, A30P, E46K) and genomic duplication and triplication of the α-synuclein
gene with autosomal dominant PD [4-8], is indicative of a key role for α-synuclein in disease
pathogenesis. However, the detection of LBs in clinically normal individuals upon postmortem
analysis, frequently called incidental Lewy body disease (iLBD), brings into question the
pathological significance of α-synuclein aggregation. Utilizing a unique brain donation
program to control for the inherent biases associated with more conventional case control
studies, a recent population-based study estimates the prevalence of synuclein pathology in
people over 70 years of age is approximately 37%, with synuclein burden a poor predictor of
clinical status/diagnosis [9]. Despite these findings, Dickson and colleagues demonstrate that
iLBD cases exhibit a decrement in tyrosine hydroxylase, a marker of dopaminergic and
noradrenergic neurons and a characteristic feature of PD, in both striatal and epicardial nerve
fibers that is intermediate to control and PD patients [10]. The authors conclude that the absence
of parkinsonian symptoms is the result of a subthreshold-level of pathology, thus further
solidifying the pathogenic role of α-synuclein in PD progression.

3. Ubiquitin proteasome system (UPS)
The UPS regulates the degradation of key regulatory proteins that control signal transduction,
cell cycle progression, apoptosis, as well as cellular differentiation [11]. In addition to
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involvement in these processes, the UPS also degrades misfolded and damaged proteins, thus
collectively implicating the UPS in a wide range of conditions, including neurodegenerative
diseases, cancer, inflammation, and autoimmunity [12,13]. Given the detrimental
consequences of unregulated protein degradation, the UPS utilizes a class of enzymes to
covalently link ubiquitin polypeptide chains to proteins, marking those proteins as substrates
for the proteasome and allowing for targeted and selective degradation (reviewed in [14,15]).
Initially, the carboxyl end of ubiquitin is activated in an ATP-dependent process by the
ubiquitin-activating enzyme (E1), which results in a highly reactive ubiquitin thiolester that is
transferred to a ubiquitin-carrier protein (E2). The E3 class of enzymes, which are also called
ubiquitin protein ligases, recognize and bind proteins to be marked for degradation,
subsequently catalyzing the transfer of ubiquitin chains from the E2 to lysine residues on
protein substrates, which can serve as a signal for proteasome-mediated degradation.

The proteasome is a large, multisubunit complex containing a common proteolytic core, the
20S proteasome, which is composed of 28 subunits arranged in four, heptameric rings
(reviewed in [15,16]. The two outer rings are each composed of seven alpha-type subunits
(α1-α7), while the two inner rings each contain seven beta-type subunits (β1-β7). The
proteolytic activity is enclosed within the inner rings, with only β1, β2, and β5 subunits
possessing caspase-like, trypsin-like, and chymotrypsin-like cleavage specificity, respectively
[17,18]. These active sites have been shown to allosterically regulate one another through
substrate binding or cleavage, leading to a proposed model in which single polypeptide chains
are successively hydrolyzed by a structured and coordinated activation of these catalytic
subunits [19,20]. However, Liu and colleagues present evidence that a disordered polypeptide
loop, such as a β-hairpin structure, can also be permitted entry into the inner canal of the 20S
proteasome, allowing for the endoproteolytic cleavage and partial degradation of unstructured
proteins that is not dependent upon ubiquitination [21]. This describes a novel function of the
proteasome, liberating active peptides from precursor proteins, as well as correcting folding
defects in internal domains of large proteins.

The activity of the 20S proteasome is modulated by a variety of regulators, including the 19S/
PA700 complex, PA200, as well as PA28 α/β and PA28γ [22-24]. The most common regulator,
the 19S/PA700 complex, contains six AAA-family ATPases and is capable of binding both
ends of the 20S proteasome in an ATP-dependent manner, forming the 26S proteasome, which
is involved in the degradation of ubiquitinated proteins [20,25,26]. Given that only the 19S/
PA700 complex possesses ATPase activity and binds to polyubiquitin chains, alternative
regulators of the 20S proteasome are believed to modulate ubiquitin-independent functions of
the proteasome. However, hybrid proteasomes have also been described, in which the 19S/
PA700 and PA28α/β complexes bind opposite ends of the 20S proteasome [27]. The specific
function of these hybrid proteolytic complexes is unclear, and studies evaluating the cellular
localization of the 20S proteasome, which has been detected in both nuclear and cytosolic
compartments, have failed to distinguish between free and bound 20S proteasomes [28,29]. A
recent study has further investigated the modulation of 20S proteasome activity and/or
localization, demonstrating that 20S proteasomes associated with PA28γ complexes are
localized to nuclear speckles and implicated in the intranuclear trafficking of SR proteins
[30]. Additional research of this nature will be needed to more fully characterize the precise
cellular functions of these alternate proteasome-regulator complexes, as well as to decipher
the specific physiological signals that regulate proteasome-regulator composition.

4. UPS and PD
The evaluation of human postmortem brain tissue has provided a considerable amount of
evidence implicating proteasomal dysfunction in PD pathogenesis. Using enzymatic assays to
measure proteasome activity, a significant decrement in chymotrypsin-like, trypsin-like, and
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caspase-like activity was detected in the SN of PD patients when compared to age-matched
controls [31-34]. However, no deficits in proteasomal activity were detected in extranigral
regions, and Furukawa and colleagues actually observed an increase in proteasomal activity
in unaffected regions, specifically the cerebral cortex and striatum, of PD patients compared
to age-matched controls [31]. In line with these findings, immunoblotting and histological
techniques revealed a decrease in subunits of the 20S proteasome and the PA700/19S complex
in the SN of PD patients, while protein levels where unchanged or increased in extranigral
brain regions [31,32,35]. In addition, the accumulation of ubiquitinated proteins, heat shock
proteins/chaperones, and components of the UPS within LBs provides further support for a
central role of UPS dysfunction in the etiopathogenesis of PD [36-41]. However, these findings
must be interpreted with caution, as the above-mentioned studies do not take into account
neuronal loss, nor do they identify the affected cell type (i.e. neuronal vs glial).

The link between proteasomal inhibition and the pathogenesis of PD was further solidified by
the demonstration that treatment with the proteasomal inhibitor lactacystin dose-dependently
leads to the degeneration and the formation of synuclein and ubiquitin-positive inclusions in
rat ventral mesencephalic primary neurons [42,43]. In vivo, McNaught and colleagues reveal
that systemic administration of proteasomal inhibitors in Sprague-Dawley rats produced both
a behavioral and pathological phenotype reminiscent of PD [44]. In addition to the progressive
nature of the motor impairment exhibited by treated rats, administration of dopamine agonists
alleviated behavioral symptoms. Postmortem analysis revealed loss of dopamine in the
striatum, as well as neuronal loss and the presence of eosinophilic, synuclein/ubiquitin-positive
inclusions in remaining neurons of the SN [44,45]. However, this model has since been viewed
with great scrutiny due to the inability of different laboratories to replicate these findings
[46-49]. Although two additional laboratories were able to replicate dopaminergic cell loss
following systemic administration of proteasome inhibitors, only Zeng and associates detected
the presence of synuclein aggregates in the SN, while neither group observed a progressive
motor impairment [50,51]. It is hypothesized that extraneous variables due to differences in
formulation of the proteasomal inhibitors, strain background differences in treated rats and
mice, as well as environmental factors, could account for this variability in findings. However,
the extensive variability in consequences of in vivo proteasomal inhibition casts significant
doubt on the utility of this approach as an accurate model of PD.

Despite the failure of in vivo administration of proteasome inhibitors to consistently produce
a parkinsonian phenotype, an exciting new report from Bedford and associates provides
striking evidence establishing a link between 26S proteasome dysfunction and the development
of α-synuclein neuropathology [52]. In this study, Bedford and colleagues develop and
characterize a novel mouse model expressing a conditional deletion of the Rpt2/PSMC1
subunit, an ATPase of the 19S regulatory complex, spatially restricted to neurons of the
forebrain, or a second model in which the Rpt2/PSMC1 subunit is ablated in TH-positive
neurons. As the Rpt2/PSMC1 subunit is required for both the assembly and activity of the 26S
proteasome, conditional knockdown of Rpt2/PSMC1 expression produced a specific
impairment of 26S proteasome activity, while 20S proteasome activity was unaffected.
Intriguingly, synuclein and ubiquitin-positive inclusions resembling LBs were observed in
either neurons of the forebrain region or the nigrostriatal pathway, with the localization of
pathology coincident with Rpt2/PSMC1 knockdown, and thus 26S dysfunction [52]. Although
no motor impairment or parkinsonian phenotype is reported in this study, genetic ablation of
Rpt2/PSMC1 in the forebrain did produce a learning deficit, as well as progressive
neurodegeneration of forebrain regions. As restriction of Rpt2/PSMC1 knockdown to TH-
positive neurons is particularly relevant to PD pathology, it is disappointing that autonomic
dysfunction leading to premature death by 1 month of age prevents a full behavioral assessment
of these mice [52].
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The relationship between UPS impairment and sporadic PD has also been strengthened by a
number of in vitro studies demonstrating a decrease in proteasome activity following exposure
to pesticides and environmental toxins linked to PD, including rotenone, paraquat, and maneb
[53-55]. Consistent with in vitro findings, the in vivo administration of rotenone led to a
reduction in proteasome activity specifically in the ventral midbrain of rats [53]. Intriguingly,
utilization of osmotic minipumps to continually deliver the PD-linked toxin MPTP to mice for
one month produced a PD-like phenotype, including depletion of striatal dopamine levels and
neuronal loss in both the SN and locus coeruleus, which was accompanied by the formation
of α-synuclein and ubiquitin-positive inclusions [56]. These mice also exhibited a decrease in
proteolytic activity of the proteasome in striatal extracts as assessed by enzymatic assays, as
well as a progressive decline in motor activity that was rescued by administration of dopamine
agonists. Surprisingly, when experiments were replicated in mice lacking α-synuclein,
neuronal loss, behavioral impairments, and the formation of ubiquitin-positive inclusions were
alleviated [56]. Perhaps most telling was the demonstration that impairments in proteolytic
activity following MPTP administration were also alleviated in the absence of α-synuclein,
suggesting that α-synuclein exacerbates the deleterious effects of PD-linked environmental
toxins on UPS function. Furthermore, these findings imply that α-synuclein, and possibly UPS
dysfunction, is critically involved in the manifestation of a PD phenotype.

The demonstration that MPTP treatment alters proteasomal activity has also been replicated
in non-human primates [57]. Specifically, both proteolytic activity and expression of
proteasomal subunits is decreased in extracts from the SN of MPTP-treated marmoset monkeys
similarly to alterations observed in PD patients, though synuclein pathology, neuronal loss,
and behavioral impairments were not assessed in this cohort of monkeys. However, an earlier
study performed by Kowall and colleagues revealed an initiation of α-synuclein aggregation
upon MPTP treatment in baboons, with regrettably no evaluation of either proteasomal activity
or expression performed in this study [58]. Thus the precise involvement of α-synuclein
pathology and UPS impairment in MPTP-linked PD and parkinsonism remains to be more
conclusively established.

5. Genetic links to PD and association with UPS
Although the majority of PD cases are sporadic, a number of genetic loci have been identified
and linked to the inheritance of familial PD. The relationship between these genes is still
presently unclear, as is the connection between familial-linked genes and the etiology of
idiopathic PD. However, the clinical and pathophysiological similarities between familial and
idiopathic forms of PD suggest they may share a common pathogenic mechanism [59]. Given
the considerable evidence implicating a central role for UPS impairment in the development
and progression of sporadic PD, it is intriguing that a number of genetic mutations linked to
PD are also involved in the regulation of UPS function. The direct and indirect relationship(s)
between these PD-linked genes and modulation of the UPS will be discussed below.

5.1. α-Synuclein
α-synuclein is a natively unfolded presynaptic protein initially cloned from the electric lobe of
Torpedo californica [60]. Although the function of α-synuclein is still unknown, it adopts an
α-helical structure upon binding to phospholipids [61], and has been shown to modulate
synaptic transmission through the regulation of synaptic vesicle recycling and the
compartmentalization of neurotransmitters [62-66]. In addition, Fortin and colleagues have
demonstrated that lipid rafts are required for the presynaptic localization of α-synuclein, and
further that both synaptic localization and membrane association of α-synuclein are modulated
by neuronal activity [67,68]. These findings, in concert with evidence that BDNF-TrkB
signaling acts upstream of the UPS to regulate the expression level of key synaptic proteins in
response to neuronal activity, could have significant implications for PD pathogenesis [69]. In
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particular, given the suspected link between PD and UPS dysfunction, a local impairment of
the UPS within the synapse theoretically could promote the accumulation of ubiquitinated
proteins irrespective of BDNF-TrkB signaling, thereby preventing BDNF-TrkB-mediated
synaptic remodeling and leading to a decrease in neuronal activity. A reduction in neuronal
activity would not only decrease BDNF expression and synaptic release [70-73], but based on
the findings of Fortin and associates, would also be expected to increase the amount of
membrane-bound α-synuclein localized to the synapse [67,68]. Taking into consideration the
higher propensity of membrane-bound synuclein to aggregate and seed the aggregation of the
more abundant, cytosolic form of α-synuclein [74], a decrease in neuronal activity and
subsequent increase in membrane-bound synuclein, further exacerbated by a decrement in
BDNF expression, could effectively establish a pathogenic, positive-feedback mechanism
linking neuronal activity and UPS function with synuclein aggregation (Figure 1). In addition,
the demonstration by Dluzen and colleagues that targeted deletion of a BDNF allele potentiates
the age-dependent decline in nigrostriatal dopaminergic function in mice provides a potential
explanation for susceptibility of the nigrostriatal dopamine system to synuclein pathology with
aging [75].

5.1.1. Modulation of aggregation potential of α-synuclein—The precipitating basis
of α-synuclein aggregation in synucleinopathies is controversial, though broadly speculated to
arise from an increase in α-synuclein protein expression (either through gene triplication or
altered transcriptional or translational activities), excessive posttranslational modifications
(including phosphorylation, ubiquitination, oxidation, nitration, truncation), or through
increased interaction with other proteins, all of which could modulate the propensity of α-
synuclein to fibrillize [76-88]. In addition, the negatively-charged C-terminus of α-synuclein,
which has also been shown to bind dopamine derivatives [89], appears to act as a negative
regulator of aggregation [82,84,90]. Thus it is highly likely that posttranslational modifications
to this region, including phosphorylation, ubiquitination, oxidation, nitration, and truncation
[77,78,91], influence the propensity of α-synuclein to aggregate.

Critical evaluation of the various α-synuclein species observed in LBs demonstrates that α-
synuclein is selectively and extensively phosphorylated at Ser129 (pSer129) in these lesions,
and further that this is the predominant modification of α-synuclein in LBs [77,92,93]. In
addition to phosphorylation at Ser129, α-synuclein in LBs is also N-terminally acetylated and
ubiquitinated, as well as C-terminally truncated [92]. Given that both normal and diseased
brains contain trace amounts of soluble α-synuclein pSer129, as well as species that are
truncated at Asp119, it is believed these forms of α-synuclein are generated through normal
metabolism [92]. However, in postmortem brain tissue from synucleinopathy patients, the
majority of pSer129 is detected in insoluble fractions. Because the main ubiquitinated α-
synuclein species found in LBs is also pSer129 α-synuclein, it is hypothesized that an excess
of pSer129 may actually serve as the priming event which ultimately culminates in the
formation of LBs. Anderson and colleagues further posit that pSer129 may serve as a signal
for proteolysis, supported by their observation that all α-synuclein species truncated at Tyr133
were also pSer129 [92].

Given the potential ramifications of modulating phosphorylation at Ser129, a number of
laboratories have investigated prospective kinases that phosphorylate this site, leading to the
identification of casein kinase 1 and 2, as well as G-protein coupled receptor kinases [94-97].
In support of a pathogenic role of pSer129, overexpression of α-synuclein and GRK5 (G-
protein coupled receptor kinase 5), which colocalize in LBs, promotes GRK5-mediated
phosphorylation at Ser129 and leads to the formation of soluble oligomers and aggregates of
α-synuclein [94]. In addition, pSer129 has also been shown to increase the propensity of α-
synuclein to aggregate following exposure to mitochondrial or oxidative stressors [98,99]. In
contrast, Paleologou and colleagues demonstrate that in vitro phosphorylation of α-synuclein
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at Ser129 inhibits fibrillogenesis, but does not perturb the overall conformation of synuclein
and its ability to adopt α-helical conformations upon membrane-binding to synthetic vesicles
[96]. Perhaps most importantly, Paleologou and associates reveal a discrepancy in the structural
and aggregation properties of α-synuclein phosphorylated in vitro and the phosphorylation
mimics S129E, S129D [96], which could explain the inconsistent findings evaluating the
consequences of α-synuclein phosphorylation. Specifically, Gorbatyuk and coworkers report
that the phosphorylation mimic S129D is protective against dopaminergic cell loss when
injected into the SN of rats, while Chen and Feany demonstrate an enhanced toxicity associated
with α-synuclein phosphorylation in Drosophila [76,100]. However, Chen and Feany
substantiate their findings by demonstrating that both the phosphomimetic and kinase-
phosphorylated wild-type synuclein produce a similar phenotype [76]. In addition, Chen and
Feany observe an inverse correlation between α-synuclein phosphorylation and aggregation
potential, which is consistent with the report by Paleologou and colleagues [76,96].

In addition to phosphorylation, α-synuclein present in LBs is also ubiquitinated [77,92].
Recently, the RING-type E3 ubiquitin ligase SIAH (seven in absentia homolog) has been
shown to interact with and monoubiquitinate α-synuclein in vitro and in vivo, thereby
increasing the propensity of α-synuclein to aggregate [101,102]. Although there was no
difference in the ability of SIAH to monoubiquitinate wild-type or mutant α-synuclein,
significantly more inclusions were observed in cells overexpressing the A53T mutant [102].
This suggests that despite an increased tendency of α-synuclein to aggregate upon SIAH-
mediated monoubiquitination, additional factors further modulate this tendency. In addition,
ubiquitination of α-synuclein by SIAH increases cell susceptibility to proteasome impairment
and promotes apoptotic cell death, suggesting that SIAH activity plays a crucial role in
determining the toxicity of α-synuclein under conditions of proteasome dysfunction [101,
102].

An additional substrate of SIAH, synphilin-1, is a synuclein-interacting protein that colocalizes
with α-synuclein in LBs [103-105]. Intriguingly, overexpression of synphilin-1 inhibits
proteasomal function, and also leads to the formation of ubiquitinated cytoplasmic inclusions
positive for both synphilin-1 and α-synuclein [103,105]. SIAH-mediated ubiquitination has
been shown to target synphilin-1 for degradation by the UPS [104], though phosphorylation
of synphilin-1 on serine 556 by GSK3β prevents SIAH-mediated ubiquitination and the
subsequent degradation of synphilin-1 [106]. Prevention of this phosphorylation by either
GSK3β inhibition or mutation of the phospho-residue (S556A) promotes the formation of
synphilin-positive ubiquitinated inclusions that colocalize with increased expression of the
UPS reporter, GFPμ, which may indicate that phosphorylation determines inhibitory potential
of synphilin-1 on proteasome activity [106]. However, the effect of synphilin-1
phosphorylation or ubiquitination on ability to bind and interact with α-synuclein could be a
confounding variable in these studies, in particular with the discovery that α-synuclein is also
a substrate for SIAH [101,102].

Although Anderson and colleagues state that truncated α-synuclein does not appear to be highly
enriched in LBs in comparison to pSer129 α-synuclein [92], earlier studies report that
approximately 15% of α-synuclein in LBs is truncated [34,107,108]. Based on these earlier
findings, as well as the demonstration that truncated human α-synuclein (amino acid residues
1-120) fibrillizes faster than either wild-type or mutant protein [84,90,109], a mouse model
was generated expressing truncated human α-synuclein (1-120) on a synuclein null background
[88]. Surprisingly, synuclein-positive inclusions were detected in dopaminergic neurons in the
substantia nigra and olfactory bulb, and decrements in striatal dopamine levels correlated with
motor impairment [88]. The susceptibility of dopaminergic neurons to synuclein toxicity could
be explained by the observation that dopamine has been shown to inhibit α-synuclein
fibrillization in vitro, leading to the proposal that either dopamine or its metabolites kinetically
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stabilize oligomeric α-synuclein intermediates [89,110-113]. This hypothesis is supported by
a significantly higher α-synuclein oligomer to monomer ratio in the SN compared to cortical
tissue of symptomatic A53T mice [114]. In addition, Mazzulli and associates demonstrate that
increasing catechol levels in SH-SY5Y cells that overexpress mutant A53T α-synuclein by
cotransfecting with tyrosine hydroxylase prevents the formation of insoluble α-synuclein
aggregates and increases the concentration of soluble oligomers [114]. As the amino acid
residues 125-129 in the C-terminus of α-synuclein have been shown to be required for catechol-
mediated inhibition of synuclein aggregation [89,115], it is interesting that a mouse model
overexpressing truncated wild-type α-synuclein (1-120), which lacks the catechol-interaction
site, develops insoluble synuclein aggregates in dopaminergic neurons [88].

Alternatively, a decrease in degradation of the α-synuclein protein could serve as the basis for
pathogenic overexpression. To characterize the degradative pathway for α-synuclein, Bennett
and colleagues demonstrate that both wild-type and mutant A53T α-synuclein are substrates
of the proteasome in SH-SY5Y neuroblastoma cells [116]. However, Ancolio and associates
were unable to observe proteasome-mediated degradation of either wild-type or mutant
synuclein in HEK293 cells, though an effect of calpain inhibition on synuclein expression was
also not detected [117], despite the fact that a number of investigators have observed calpain-
mediated cleavage of α-synuclein [83,118,119]. Given the natively unfolded structure of α-
synuclein, it has now been shown that wild-type α-synuclein can be degraded by a ubiquitin-
independent proteasome pathway [21,120,121]. On the other hand, A53T α-synuclein exhibits
a 50% longer half-life compared to wild-type, suggesting mutant A53T α-synuclein is not
degraded as efficiently by the proteasome [116]. In addition, the metal-catalyzed oxidation of
α-synuclein enhanced the formation of oligomeric and protofibrillar forms, simultaneously
preventing mature fibril formation [120]. Although monomeric α-synuclein was degraded in
a proteasome-dependent manner, the degradation of oxidized oligomeric α-synuclein was
completely prevented [120].

Given that α-synuclein adopts an α-helical conformation upon binding to membranes, and
further that natively unfolded α-synuclein has been reported to be a substrate for the proteasome
[21,120,121], Liu and colleagues demonstrate that only unbound, cytosolic α-synuclein is a
substrate for the proteasome, while membrane-bound, α-helical α-synuclein is not degraded
by the proteasome [122]. This suggests that loss of vesicular or membrane-binding ability due
to mutation [123] or oxidative damage [81,124] would enhance 20S-mediated cleavage of α-
synuclein, increasing the generation of truncated fragments. In vitro, proteasome-mediated
cleavage of α-synuclein yielded three predominant fragments, including 1-119, 1-110, and
1-83, which all adopted a random coil conformation indistinguishable from the full-length
protein [122]. Cotransfection of full-length and truncated variants of α-synuclein in SH-SY5Y
cells increased cell vulnerability to oxidative stress, and induced aggregation of full-length
protein, with A53T mutants aggregating more rapidly than parallel combinations of wild-type
protein [122]. Thus Liu and associates speculate that proteolytic activity of the proteasome
produces highly amyloidogenic α-synuclein fragments via partial degradation of cytosolic
protein, which induces the aggregation of full-length α-synuclein [122]. These hybrid
aggregates further impair proteasome activity, exacerbating the accumulation of truncated and
full-length α-synuclein deposits, creating a vicious cycle of cytotoxicity.

5.1.2. Evaluation of α-synuclein-mediated UPS impairment—A direct inhibitory
effect of synuclein on UPS activity has been reported, though the effects of overexpression,
mutation, aggregation, and posttranslational modifications of the synuclein protein on
proteasome function are still under debate due to conflicting reports, most likely resultant from
methodological differences in sample preparation and analysis. Tanaka and colleagues
demonstrated an impairment in proteasome activity in dopaminergic PC12 cells following the
overexpression of wild-type α-synuclein, with an even greater inhibitory effect observed
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following overexpression of mutant A30P α-synuclein [125]. In contrast, Martin-Clemente and
associates failed to detect an alteration in proteasome activity in stably transfected PC12 cells
with EYFP-tagged α-synuclein constructs, including wild-type, as well as the PD-linked
mutants A30P and A53T [126]. However, the authors fail to demonstrate a significant increase
in exogenous synuclein expression over basal levels, and instead report significant
overexpression of synuclein based on EYFP immunoreactivity, which is not a valid comparison
[126].

An inhibitory effect on proteolytic activity mediated by overexpressed wild-type α-synuclein
has since been replicated in dopaminergic N27 cells and MG63 (osteosarcoma) cells [127,
128], but not in CHO (ovarian) cells [129], which may indicate that effects of α-synuclein are
cell-type specific. In support of this, Petrucelli and associates observed proteasomal
impairment following the overexpression of mutant A53T and A30P α-synuclein, but not wild-
type, in M17 neuroblastoma cells [130]. In addition, Chen and colleagues observed an
inhibition of proteasome-mediated degradation of short-lived proteins in yeast cells
overexpressing wild-type α-synuclein, with an even greater impairment exhibited by cells
expressing mutant A30P α-synuclein [131]. Although there was no change in proteolytic
activity of immunoprecipitated 20S proteasomes from cells overexpressing either wild-type or
A30P α-synuclein, proteasome subunit composition and interaction with regulatory proteins
was significantly altered by both wild-type and A30P α-synuclein overexpression [131]. These
results may indicate that α-synuclein does not directly inhibit the active/catalytic site of the
proteasome, but instead exerts an inhibitory effect through modulation of proteasome activity.
A recent report from the Sudhof laboratory supports this hypothesis, demonstrating a dramatic
alteration in the expression of proteasomal subunits in spinal cord from symptomatic A30P
α-synuclein mice [132]. However, there was significant neuronal loss and gliosis observed in
the spinal cord from symptomatic A30P mice, and as biochemical assessment of proteasome
subunit expression does not differentiate between cell types, it is most likely that neuronal loss
coupled with the significant increase in activated glia accounts for the changes in proteasomal
subunit expression. In addition, a recent report by Emmanouilidou and coworkers detected a
significant impairment in proteasome activity in the cortex of A53T α-synuclein mice, though
expression of proteasomal subunits remained unchanged [133].

The effect of α-synuclein aggregation on proteasome activity has also been evaluated, with
groups consistently reporting a greater proteasomal impairment in the presence of aggregated
compared to monomeric α-synuclein [134-136]. Although both monomeric and aggregated α-
synuclein have been shown to bind the S6'/TBP1 (Tat binding protein 1) subunit of the 19S/
PA700 proteasome complex [135,137], only aggregated α-synuclein inhibits ubiquitin-
dependent and independent 26S proteasomal activity [135]. Zhang and colleagues have also
demonstrated that α-synuclein protofibrils inhibit the ubiquitin-independent degradation of
unstructured proteins by the 26S proteasome, though monomers and dimers have no effect on
the proteolysis of these substrates [136]. In contrast, ubiquitin-dependent 26S proteasome
activity is slightly inhibited by monomeric and dimeric α-synuclein, while protofibrillar α-
synuclein potently inhibits the degradation of polyubiquitinated proteins. Given that α-
synuclein protofibrils bind the 19S/PA700 regulatory complex of the 26S proteasome, as well
as p21 (an unstructured proteasomal substrate) and K48-linked polyubiquitin chains, it is
proposed that α-synuclein protofibrils inhibit 26S proteasome activity by interfering with
substrate translocation into the proteasome core, achieved through direct interactions with the
proteasome, as well as through the sequestration of proteasomal substrates [133,136].

Given that, α-synuclein, Aβ, polyglutamine proteins, prion protein, and other amyloidogenic
proteins adopt a similar structure upon oligomerization, it is hypothesized that these proteins
also share similar pathogenic effects [138]. In agreement with this, impaired proteasomal
function is observed in parallel with the first appearance of soluble Aβ oligomers in the triple
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transgenic mouse model of AD (3× Tg-AD), while proteasome activity is restored at a time
point when soluble Aβ oligomers are converted into insoluble aggregates [139]. This suggests
that soluble oligomeric Aβ species, and not the monomeric or fibrillar form of Aβ, inhibits
proteasomal activity [139]. UPS impairment has also been observed in cell culture and animal
models overexpressing mutant huntingtin protein [129,140-144], and consistent with data
proposing a protective effect of aggregation due to sequestration of toxic species, treatment
with a compound that increases inclusion formation prevents huntingtin-mediated proteasome
inhibition [129]. In addition, the abnormal prion conformer (PrPsc) inhibits the 26S proteasome
in vitro, while either preincubation with an oligomer antibody or heat denaturation of PrPsc
alleviated this inhibitory effect, indicating a specific conformation of an oligomeric PrPsc
intermediate mediates the proteasomal inhibitory effect [145]. Proteasome activity was also
significantly decreased in cells exposed to prion-infected mouse brain homogenates, as well
as in brain regions exhibiting significant prion neuropathology in mice infected with PrPsc,
establishing a solid link between UPS impairment and neurodegeneration associated with prion
infection [145].

Based upon the above findings, as well as the lack of direct in vivo evidence of a link between
α-synuclein pathology and UPS dysfunction, our laboratory has generated a transgenic mouse
model expressing the proteasomal reporter GFPμ [140]. In vitro, expression of GFPμ is dose-
dependently increased in the presence of the proteasome inhibitor MG132, illustrating the
sensitivity of GFPμ to perturbations in proteasomal function [130]. In addition, cotransfection
of GFPμ and mutant A53T or A30P α-synuclein leads to an upregulation of GFPμ,
demonstrating the inhibitory effects of mutant α-synuclein on UPS activity [130]. Thus we are
crossing GFPμ transgenic mice with mutant A53T α-synuclein mice [146], which will allow
us to monitor effects of α-synuclein pathology on UPS function in vivo by evaluating bigenic
mice at various time points. This model will also allow us to determine selective vulnerability
of specific cell populations to synuclein-mediated perturbations in proteasome activity.
Ultimately, following the initial characterization of GFPμ × A53T mice, it is anticipated this
model can be utilized to develop novel therapeutic approaches to preclude inhibitory effects
of α-synuclein on UPS function.

5.2. Parkin
Mutations in the E3 ubiquitin ligase parkin cause early onset PD with an autosomal recessive
inheritance pattern [147,148]. Although various mutations in the parkin gene have been linked
to PD, including missense, nonsense, frameshift point mutations, exon deletions and
duplications, to date there is no noticeable variation in clinical manifestation between the
different mutations [148,149]. Neurodegenerative changes are also relatively similar in
sporadic PD and early onset PD caused by parkin mutations, with both types exhibiting
neuronal loss and gliosis that is primarily restricted to the brainstem. However, LBs are not
typically observed in patients with parkin-linked PD, though the significance of this
observation is still under speculation [150-153].

Despite the lack of LB formation, PD patients with parkin mutations do show an accumulation
of parkin substrates [154-156], which would suggest that α-synuclein is not a substrate for
parkin. However, α-synuclein and parkin do colocalize in LBs [41]. In addition, under basal
conditions, parkin and α-synuclein have been shown to associate and colocalize to the cytosol
and neuritic processes [157,158]. Inhibition of proteasome activity in cells coexpressing α-
synuclein and parkin led to a decrease in parkin solubility accompanied by the formation of
inclusions positive for both α-synuclein and parkin, while knockdown of α-synuclein increased
parkin solubility under conditions of proteasomal impairment [158]. Given that proteasome
inhibition also increases parkin expression [158], and that autoubiquitination of parkin
promotes its degradation by the proteasome [159-162], it is possible that the level of expression
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and/or ubiquitination of parkin may regulate its association with α-synuclein. These alterations
in parkin expression and/or ubiquitination may be further exacerbated by the accumulation of
α-synuclein, which could contribute to the pathogenesis of PD by promoting a decrease in
parkin solubility and in turn, compromising neural function. Mutations in α-synuclein have
also been shown to more efficiently stimulate parkin aggregation in c.elegans [163] and
neuroblastoma cells [158]. Thus it is hypothesized that mutations associated with familial
parkinsonism in combination with exposure to cellular stressors, including proteolytic or
oxidative stress, might facilitate the pathological interactions between α-synuclein and parkin.

The effects of PD-linked mutations in parkin also appear to universally result from alterations
in parkin solubility and intracellular localization, possibly due to misfolding of the mutant
protein [54,164,165]. Wang and colleagues demonstrate that exposure to PD-linked
environmental toxins, as well as oxidative or proteolytic stressors, promotes the depletion of
soluble, functional parkin, which correlates with reduced proteasomal activity and increased
cell death [54]. In addition, Chung and associates observed S-nitrosylated parkin in both mice
exposed to MPTP and human postmortem brain tissue from PD and diffuse LBD patients,
which was negatively correlated with parkin function [166]. Given that parkin has also been
shown to become increasingly more insoluble with age [167], and that risk for PD increases
with age, it would appear that loss of functional parkin is a major, pathogenic mechanism. In
particular taking into consideration that parkin has been shown to exert a significant
neuroprotective effect against various toxic insults, including manganese-induced cell death,
α-synuclein toxicity, proteasomal dysfunction, Pael-R and P38/JTv-1 accumulation, kainate-
induced excitotoxicity, mitochondrial-dependent apoptosis, MPP+/rotenone-induced cell
death, ER stress, and dopamine-mediated toxicity [54,130,154,155,168-175].

In Drosophila, deletion of the parkin gene leads to the progressive degeneration of
dopaminergic neurons in the central nervous system (CNS), a phenotype which is exacerbated
by loss of glutathione-S-transferase [176], a gene which is actually upregulated by the PD-
linked gene DJ-1 in response to oxidative stress [177]. Confirming the specificity of this effect,
the neurodegenerative phenotype in parkin mutants was suppressed by overexpression of
glutathione-Stransferase [176], which suggests that loss of functional parkin increases
sensitivity to oxidative stress. However, given that Drosophila do not express endogenous α-
synuclein or Pael-R, it may not be possible to fully appreciate the consequences of alterations
in parkin function in this model.

The selective vulnerability of dopaminergic neurons in PD could potentially be explained by
the demonstration that dopamine can covalently modify parkin in vitro, decreasing parkin
solubility and E3 ligase activity [178]. In support of these in vitro results, LaVoie and
colleagues also observed a decrease in parkin solubility in PD patients, as well as the presence
of catechol-modified parkin in the SN [178]. In addition, embryonic dopaminergic neurons are
particularly sensitive to deprivation of the growth factors GDNF or BDNF, activating a novel,
apoptotic pathway in their absence [179]. Cell death was shown to be independent of
mitochondria, though caspase activation was still required, as treatment with a caspase
inhibitor, and more specifically inhibition of caspase 8, prevented cell death mediated by
GDNF/BDNF withdrawal. Yu and coworkers were also able to suppress cell death induced by
GDNF/BDNF deprivation by inhibiting Fas or FADD (Fas-associated protein with death
domain), which is an adaptor required for Fas-mediated activation of caspase 8, thus
implicating the death receptor pathway in this phenomenon [179]. Intriguingly, Kahns and
associates demonstrate that while caspases 1, 3, and 8 cleave parkin, both caspase 1 and 8
directly cleave parkin without requiring activation of the effector caspase 3, suggesting that
death receptor activation and inflammatory stress promote the cleavage and inactivation of
parkin [180]. Thus given the suspected link between depletion of neurotrophic factors and PD
pathogenesis [181-183], in addition to the detection of cleaved parkin fragments in LBs isolated
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from the SN of PD patients [41,184], it is possible that caspase 8-mediated cleavage and
resultant inactivation of parkin may play a pathogenic role in PD progression, and additionally
establishes a potential mechanism for the selective vulnerability of dopaminergic neurons in
PD (Figure 1).

5.3. DJ-1
Mutations in DJ-1, an antioxidant, redox-sensitive molecular chaperone [185-188], are linked
to rare forms of autosomal recessive, early-onset PD [189,190]. PD-linked mutations in DJ-1
include missense, truncation, and splice site mutations, as well as large deletions, suggesting
that loss of DJ-1 function leads to neurodegeneration [190-192]. Of particular relevance to PD
neuropathology, DJ-1 inhibits the oligomerization and toxicity of mutant A53T α-synuclein,
while a decrease in DJ-1 expression facilitates the aggregation of α-synuclein [177,193].
Knockdown or deletion of DJ-1 also increases susceptibility to proteasome inhibition in
vitro [194,195]. Through the modulation of glutamate cysteine ligase expression, the rate-
limiting enzyme in glutathione synthesis, wild-type DJ-1, but not the PD-linked mutant L166P,
is protective against oxidative stress, while blocking glutathione synthesis abolishes the
protective effect of DJ-1 [177]. Loss of DJ-1 function is further implicated in PD pathogenesis
by the observation that glutathione levels are decreased in the SN in early stages of PD [196],
as well as the demonstration that depletion of glutathione leads to an age-related
neurodegeneration of the nigrostriatal pathway by oxidation-dependent inhibition of
mitochondrial complex I [197-200].

Recently, a surprising link between expression levels of proteasome subunits and DJ-1 was
identified. In nontransgenic mice, treatment with antioxidants enhances the expression of 20S
and 19S proteasome subunits, as well as proteasome activity [201]. However, no induction of
proteasome activity or expression of proteasome subunits is observed in mice lacking the
transcription factor Nrf2 (nuclear factor erythroid 2-related factor). Further, activity of the
promoter regulating expression of the 20S β5 subunit, PSMB5, is increased with either
overexpression of Nrf2 or exposure to antioxidants [201]. Given that Nrf2 is a component of
the transcription complex that binds to the cis-acting element ARE (antioxidant response
element), which regulates the expression of proteins that are protective against oxidative stress
(e.g. glutathione S-transferases, glutamyl cysteine ligase, and NADPH quinone
oxidoreductase) [202-205], the proximal promoter of PSMB5 was evaluated and an ARE
subsequently identified [201]. Under normal conditions, Nrf2 is sequestered in the cytosol by
the actin-binding protein Keap1 [206]. Exposure to antioxidants causes the dissociation of Nrf2
from Keap1, allowing for the nuclear translocation of Nrf2 and transcription of ARE genes.
Amazingly, DJ-1 actually binds and stabilizes Nrf2, preventing the interaction with Keap1 and
decreasing ubiquitination and subsequent proteasome-dependent degradation of Nrf2 [207,
208]. In the absence of DJ-1, Nrf2 is unstable and rapidly degraded, leading to a decrease in
transcription of ARE genes [207].

These findings could explain the dopaminergic cell loss and motor dysfunction observed in
DJ-1 deficient mice upon exposure to the PD-associated herbicide paraquat [209]. Following
treatment with paraquat, Yang and coworkers report a decrease in Nrf2, as well as the 19S
ATPase Rpt6 and 20S β5 subunits in the ventral midbrain of DJ-1 knockout mice, while no
pathological abnormalities were detected in wild-type mice treated with paraquat [209]. In
addition, proteasome activity in the ventral midbrain was decreased by 30% in DJ-1 deficient
mice treated with paraquat when compared to the saline-treated group, which was accompanied
by an increase in protein ubiquitination. Thus DJ-1 appears to be crucial for the survival of
dopaminergic neurons, in particular under conditions of cellular stress.
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5.4. LRRK2 (Leucine-rich repeat kinase 2
LRRK2, which is detected in both LBs and granular α-synuclein deposits believed to represent
LB precursors [210,211], was originally linked to the PARK8 locus in a large Japanese family
[212]. This linkage was subsequently questioned by the discovery Family SK, carriers of the
most common LRRK2 mutation (G2019S) [213], which clinically present with a slowly
progressive parkinsonism, though no LBs or synuclein pathology was observed in any brain
region evaluated upon autopsy [214]. Further adding to the complexity, a recent case history
details a patient carrying the G2019S LRRK2 mutation with a history of slowly-progressive
PD, though histological assessment revealed nigral degeneration in the absence of both α-
synuclein and tau pathology [215]. However, numerous Marinesco bodies, which are spherical
eosinophilic ubiquitin-positive intranuclear inclusions, were observed in both the SN and locus
coeruleus [215]. Given that proteasome inhibition in vitro can lead to aberrations in ubiquitin
immunoreactivity reminiscent of Marinesco body formation [216], it is possible that mutations
in LRRK2 may disrupt UPS function, though an explanation for the pleomorphic pathology
associated with LRRK2 mutations is still unknown.

A more direct link between LRRK2 and the UPS was established by Smith and associates in
their discovery of an interaction between LRRK2 and parkin, but not DJ-1, α-synuclein, or tau,
consistent with observations by Rajput and coworkers [214,217]. Interestingly, overexpression
of LRRK2 led to the formation of inclusions in a small fraction of cells, which was exacerbated
by the coexpression of parkin [217]. Although LRRK2 mutants displayed a similar cellular
localization, ability to associate with parkin, and tendency to aggregate in comparison to the
wild-type protein, all mutants evaluated (R1441C, Y1699C, G2019S) increased cell death,
which could not be prevented by the coexpression of parkin [217]. As LRRK2 activity increases
the autoubiquitination of parkin [217], thus promoting the proteasome-mediated degradation
of parkin [159-162], and mutations in LRRK2 are predicted to increase kinase activity [218,
219], it is possible that toxicity attributed to LRRK2 mutations could result from the abnormal
modulation of parkin levels and/or activity. In addition, both wild-type and mutant LRRK2
were recently shown to interact with heat shock protein 90 (hsp90), and dissociation of the
LRRK2-hsp90 complex promotes the UPS-mediated degradation of LRRK2 [219,220],
suggesting that proteasome dysfunction could also lead to an increase in LRRK2 expression.

5.5. PINK1 (PTEN-induced putative kinase 1)
PINK1, a highly conserved kinase that is localized to the inner and outer mitochondrial
membranes [221-224], has been identified as the gene locus for PARK6-linked PD, which is
characterized by an earlier age of onset than sporadic PD [224]. The most common PD-
associated mutation in PINK1 (C1366T) decreases mRNA transcript levels by 80-90% [225],
while the mutations G309D, L437P, G386A and G409V have all been shown to reduce kinase
activity in vitro [226,227]. These findings implicate a loss of function or deficiency of the
PINK1 protein in PD pathogenesis, leading to the development and evaluation of PINK1
knockout models. Intriguingly, knockout of the PINK1 gene in Drosophila led to defects in
mitochondrial morphology and degeneration of dopaminergic neurons, a phenotype which was
rescued by parkin overexpression [228,229]. As deletion of the parkin gene produced a similar
phenotype [230,231] that could not likewise be reversed by overexpression of PINK1 [228,
229], and deletion of both the parkin and PINK1 genes does not lead to an exacerbated
phenotype, it is believed that PINK1 is upstream of parkin in a signaling cascade that regulates
mitochondrial function and integrity [228,229].

The effects of PINK1 deficiency on mitochondrial function and morphology have since been
replicated in both human and mouse-derived dopaminergic neurons [232]. The deletion of
PINK1 also leads to an increased activation of the mitochondrial cell-death pathway, as well
as an elevation of ROS levels [232]. Conversely, the overexpression of PINK1 is protective
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against proteasomal inhibition and staurosporine-induced apoptosis, decreasing both
cytochrome c release and caspase 3 activation [233,234]. The overexpression of PINK1 has
also been shown to prevent abnormal depolarization of the mitochondrial membrane in
response to UPS dysfunction [235,236]. The link between PINK1 and the UPS has been further
established by Muqit and colleagues, demonstrating an enhanced cleavage and recruitment of
PINK1 to aggresomes under conditions of proteasomal impairment, with both wild-type and
mutant PINK1 displaying a similar tendency to aggregate [222]. As PINK1 is detected in
approximately 5-10% of LBs in PD [221], the finding that PINK1 colocalizes with parkin,
synphilin-1, and α-synuclein in aggresomes in the presence of the proteasomal inhibitor
MG132 provides additional support for a central role of UPS dysfunction in LB formation
[222].

6. Conclusion
Thus it is becoming increasingly clear that genetic links to PD either promote UPS dysfunction,
or interfere with the normal compensatory response(s) that occur to minimize toxicity from
proteasomal impairment. However, although this review evaluates the existing data from the
viewpoint that a decrement in UPS function is central to the pathogenesis of PD, it is possible
that UPS function itself is actually modulated in response to a central impairment in an alternate
system, such as the mitochondrial or lysosomal/autophagic pathway. Further confounding this
issue, UPS impairment compounded by an inefficient upregulation of autophagy or
mitochondrial protein quality control mechanisms may ultimately yield a similar phenotype to
that observed by lysosomal or mitochondrial dysfunction exacerbated by proteasomal
inhibition. Clarification of this issue will assist in the identification of specific targets that can
be modulated, as it may be possible to rescue neuronal function through the augmentation of
parallel and intersecting pathways, ultimately enhancing the repertoire of therapeutic agents
available to treat PD and other neurodegenerative conditions characterized by abnormal protein
aggregation.
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Figure 1.
A putative mechanism by which the UPS acts downstream of BDNF/TrkB signaling to
ultimately regulate α-synuclein aggregation. According to this hypothetical model, synuclein-
mediated inhibition of the UPS interferes with stimulatory effects of BDNF on synaptic
activity, as well as the inhibitory influence of BDNF signaling on parkin cleavage and
inactivation by the Fas/FADD death receptor pathway.
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