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Abstract
We propose a new method to segregate concurrent speech sounds using an auditory version of a
channel vocoder. The auditory representation of sound, referred to as an “auditory image,”
preserves fine temporal information, unlike conventional window-based processing systems. This
makes it possible to segregate speech sources with an event synchronous procedure. Fundamental
frequency information is used to estimate the sequence of glottal pulse times for a target speaker,
and to repress the glottal events of other speakers. The procedure leads to robust extraction of the
target speech and effective segregation even when the signal-to-noise ratio is as low as 0 dB.
Moreover, the segregation performance remains high when the speech contains jitter, or when the
estimate of the fundamental frequency F0 is inaccurate. This contrasts with conventional comb-
filter methods where errors in F0 estimation produce a marked reduction in performance. We
compared the new method to a comb-filter method using a cross-correlation measure and
perceptual recognition experiments. The results suggest that the new method has the potential to
supplant comb-filter and harmonic-selection methods for speech enhancement.
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I. INTRODUCTION
Human listeners can segregate speakers in a multispeaker environment, and the mechanisms
whereby humans perform speech segregation are important for automatic speech
recognition. It is a major topic in the field of computational auditory scene analysis (CASA)
(e.g., [1]). Typically, CASA models proposed for solving segregation problems are directly
or indirectly based on models of auditory processing [2]-[5]. Nevertheless, most speech
segregation systems still use nonauditory forms of spectral analysis like the short-time
Fourier transform (STFT) and its relatives. There are several reasons for this: the STFT
involves far less computation than an auditory model; performance is not necessarily
improved by the use of an auditory model when it is restricted to frame-wise processing with
window averaging; the STFT and sinusoidal models have advantages when using harmonic
enhancement methods (including comb filtering and harmonic selection [6], [7]), since the
harmonics appear regularly spaced on a linear frequency axis. However, systems that focus
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on extracting harmonics at strict integer multiples of a fundamental frequency, F0, have
serious limitations, because F0 estimation is imperfect when the signal-to-noise ration
(SNR) between the target speech and background noise is low, and the error increases in
proportion to harmonic number.

From the production point of view, a voiced speech sound is a stream of glottal pulses, each
of which is followed by a complex resonance with information about the shape of the vocal
tract at the time of the pulse. It has been argued that the auditory system extracts the pitch of
the sound from neural spike times using a process analogous to auto-correlation) [8]-[10],
and the “correlogram” has been proposed as a basis for speaker segregation, and for the
reconstruction of the target speech [3], [11]. However, auto-correlation involves frame-wise
processing which smears temporal fine structure, including both the pulse-resonance
structure and aspects of temporal asymmetry that we hear [12]-[16].

We propose a new method for speaker segregation and target-speaker resynthesis based on
the auditory image model (AIM) [17], [18]. AIM was developed to provide a representation
of the “auditory images” we perceive in response to everyday sounds [19], [20]. The
auditory representation preserves fine temporal information, unlike conventional window-
based processing, and this makes it possible to do synchronous speech segregation. We
describe a procedure for extracting the glottal events of a target speaker using F0
information, which are then used, first to enhance the auditory image of the target speaker,
and then to resynthesize the target speech. The system is a form of channel vocoder [21],
[22] that will be referred to as an “auditory vocoder.” We also illustrate the robustness of the
system in situations where competing sources cause errors in the fundamental frequency
estimation.

II. AUDITORY VOCODER
The system has three components (Fig. 1): the AIM [17], [18], a robust F0 estimator (e.g.,
[22], [23]), and a synthesis module based on the channel vocoder concept. In Section II-A,
we describe an event-synchronous version of AIM and show how it can be used for speaker
separation. In Section II-B, we describe a method for signal resynthesis from the auditory
image (AI) using a channel vocoder.

A. Event-Based Auditory Image Model
We briefly summarize the conventional stabilized auditory image [17]-[20], [24] and
describe the new concept of “event-synchronous strobing” and the resultant enhancement.

1) Stabilized Auditory Image—AIM performs its spectral analysis with a gammatone, or
gammachirp, filterbank [17], [25]-[29] on a quasilogarithmic (ERB) frequency scale [30].
The impulse response of the gammachirp auditory filter is

(1)

where a, b, c, and n are parameter values, φ is phase, fr is the asymptotic frequency of the
filter, and ERB(fr) denotes the equivalent rectangular bandwidth at frequency, fr. The
gammachirp filter with peak (or center) frequency, fc, is denoted gc(fc, t) because fc is
different from the asymptotic frequency, fr when c ≠ 0. When c = 0, (1) is a gammatone
filter. In the following experiment, we used a linear gammatone filter. The output of the
filterbank, SB(fc, t). is AIM’s simulation of basilar membrane motion (BMM). If the signal
is s(t), then SB(fc, t) is
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(2)

In the cochlea, the mechanical vibration is dynamically compressed and the inner hair cells
convert the motion into neural pulse trains. In the model, the output of (2) is half-wave
rectified and compressed to convert it into a simulated neural activity pattern (NAP), SN(fc,
t). So, the NAP has detailed temporal information about the decay of formant resonances
within glottal periods. Note that we do not apply compression in the current auditory
vocoder because informal listening indicated that the sound quality was better without it.

We assume that the brainstem performs a time-interval analysis of the temporal structure; in
AIM, the process is simulated by a form of “strobed temporal integration” (STI). It is this
processing that converts the neural pattern into an AI. Briefly, the activity in each neural
channel is monitored to identify local maxima in the neural activity, and these local maxima
are used to control temporal integration. The process is controlled by the derivative of the
envelope of the activity. The derivative of the envelope is decomposed into the convolution
of the input signal and the derivative of the gamma function in the gammachirp. So, it is
referred to as “delta gamma” [15], [16]. The local maxima occur regularly when the signal is
periodic or quasiperiodic, as in the voiced parts of speech. Temporal integration is strobed
on each of the local maxima and consists of taking the current segment of the NAP (about
35 ms in duration) and adding it into the corresponding channel of the AI with whatever is
currently in that channel, point by point. Mathematically, if the signal s(t − ktp is strictly
periodic with period tp, and strobing is ideal, then the SAI has the form

(3)

where fc is the peak-frequency of one auditory filter, τ is the time-interval axis of the SAI,
and k is an integer. The exponential scalars, ξ and η, delimit the maximum time-interval and
the persistence of the AI. So, each channel of the SAI is the decaying sum of a sequence of
segments of neural activity that have been shifted by one pitch period. The process is similar
to measuring time intervals from the largest NAP pulses to smaller NAP pulses that are
nearby in time, and making a dynamic interval-histogram of the results, that is, an interval
histogram with a continuous decay appropriate to the decay of auditory perception. The half
life of the auditory image is estimated to be about 30 ms [17]-[20].

STI converts the time dimension of the NAP [e.g., Fig. 2(a)] into the time-interval
dimension of the AI [e.g., Fig. 2(b)]. At the same time, it removes the propagation lag
associated with auditory filtering; it aligns the peaks of the responses to the glottal pulse
across frequency and assigns peaks from the most recent glottal pulse to the origin of the
time-interval dimension. STI is applied separately to each channel of the filterbank output,
and the SAI is the complete array of stabilized neural patterns. The combination of strobing
and a 30-ms half-life stabilizes the vowel pattern for as long as the sound is stationary. In
this way, AIM constructs an auditory image of the signal automatically based on its internal
structure.

2) Event Detection—To effect segregation of concurrent speakers, we identify the stream
of strobe pulses from the target speaker and use them to enhance the AI for the target
speech. To this end, we introduce an event-detection mechanism in the NAP processing to
locate the glottal pulses of the target speaker. These events are used as strobe signals to
convert the NAP into a SAI. Fig. 3(a) shows about 30 ms of the NAP of a male vowel. The
abscissa is time in milliseconds; the ordinate is the center frequency of the gammatone
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auditory filter in kilohertz. The mechanism identifies the time interval associated with the
repetition of the neural pattern, and the interval is the fundamental period of the speech at
that point. Since the NAP is produced by convolution of the speech signal with the auditory
filter, and the group delay of the auditory filter varies with center frequency, it is necessary
to compensate for group delay across channels when estimating event timing. Fig. 3(b)
shows the NAP after group delay compensation; the operation aligns the responses of the
filters in time to each glottal pulse. The solid line in Fig. 3(c) shows the temporal profile
derived by summing across channels in the compensated NAP in the region below 1.5 kHz.
The peaks corresponding to glottal pulses are readily apparent in this representation.

We extracted peaks locally to reduce spurious responses due to noise in the NAP. The
algorithm is similar to pitch period estimation using a threshold function with an exponential
decay [31]. If the amplitude is x(t), then the threshold value xT(t) is

(4)

where Δt is the sampling time, and Th is the half-life of the exponential decay. The dashed
line is the threshold used to identify peaks, which are indicated by circles on vertical lines in
Fig. 3(c). After a peak is found, the threshold decreases gradually to locate the next peak.
We also introduced a form of prediction to make the peak detection robust. The threshold is
reduced by a certain ratio when the detector does not find activity at the expected period,
defined as the median of recent periods. This is indicated by the sudden drop in threshold
toward the end of each cycle. The time of the event is defined as the time of the local peak
of xT(t). Tests with synthetic sounds confirmed that this algorithm works sufficiently well
when the input is clean speech. It is, however, difficult to apply this method under noisy
conditions particularly when the SNR is low. This is why we enlisted F0 information to
improve event–time estimation.

3) Robust F0 Estimator for Event Detection—It is easier to estimate fundamental
frequency F0 than event times for a given SNR. The latest methods for F0 estimation are
robust in low SNR conditions and can estimate F0 to within 5% of the true value in 80% of
voiced speech segments of babble, at SNRs as low as 5 dB [23]. So, we developed a method
of enhancing event detection with F0 information.

Fig. 4 shows a block diagram of the procedure. First, candidate event times are calculated
using the event detection mechanism described in the previous section. The half-life of the
adaptive threshold is reduced to avoid missing events in the target speech. The procedure
extracts events for both the target and background speech when both are voiced. Then we
produce a temporal sequence of the pulses located at the candidate times. For every frame
step (e.g., 3 ms), the value of F0 for the target speech in that frame is converted into a
temporal function consisting of a triplet of gaussian functions spaced at 1/F0; the standard
deviation of the gaussians in this example was 0.3 ms. The triplet function is, then, cross-
correlated with the event–pulse sequence to find the best matching lag time. At this best
point, the temporal sequence and the triplet of gaussians are multiplied together so as to
derive a value similar to the likelihood for each event. The likelihood–like value becomes
very large when the periods of the two sequences match. However, it is not necessarily the
case when the estimate of F0 contains an error, or when the candidate event is derived from
regular glottal pulses. Nevertheless, we must have event times for strobing, and so, the
likelihood–like value is accumulated until it exceeds a criterion threshold value. Then, the
candidate event time is taken to be the event time for the target speech signal. The number
of the event times increases as the threshold value decreases and vice versa. The threshold
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value was set manually in the following experiment, but it should be possible to introduce a
statistical model to set the threshold optimally.

4) Event Synchronous Strobed Temporal Integration—Using the target event
times, we can enhance the AI for the target speech. Fig. 2(a) shows a schematic of a NAP
after group delay compensation, for a segment of speech where there are concurrent vowels
from two speakers. The target speech with a 10-ms glottal period is converted into the black
activity pattern, while the background speech with a 7-ms period is converted into the gray
pattern. For every target event time (every 10 ms), the NAP is converted into a two-
dimensional AI as shown in Fig. 2(b). The horizontal axis of the AI is time-interval (TI)
from the event time; the vertical axis is the same as the NAP (i.e., the tonotopic dimension
of the cochlea). As shown in Fig. 2(b), the activity pattern for the target speech always
occurs at the same time–interval, whereas that for the background speech changes position.
So, we get a “stabilized” version of the target speech pattern in this “instantaneous” AI.
Thus, (3) becomes

(5)

where te is the time of the event, and τ is the time–interval axis of the SAI. When the event
detection contains errors, the image deteriorates. So, reliable event-detection is essential for
this process.

Temporal integration is performed by weighted averaging of successive frames of the
instantaneous AI as shown in Fig. 2(c), and this enhances the pattern for the target speech
relative to that for the background speech. Specifically, the weighting is

(6)

In this way, the fine structure of the target pattern is preserved and stabilized when the event
detector captures the glottal events of the target speech correctly. The weighted averaging is
essentially equivalent to conventional STI where the weighting function WA(t) is a ramped
exponential with a fixed half-life. We initially used a hanning window spanning five
successive SAI frames; tests indicated that window shape does not have a large effect as
long as the window length is within a reasonable range. Simple weighted averaging is not
necessarily the best method to reduce the noise in the two-dimensional image, particularly
when the response to concurrent speech appears at essentially random time intervals in the
instantaneous SAI [e.g., Fig. 2(b)]. In the following evaluation, we applied simple median
filtering over five successive event-frames since we found it reduces the noise level. It
should be possible to improve the sound quality more by applying advanced image
processing techniques for noise reduction to the fine structure in the SAI.

B. Synthesis Procedure
Having obtained the SAI for the target speech, we then need to resynthesize the sound from
the SAI. The synthesis module was developed using the concept of the channel vocoder
[21], [22].

1) Auditory Channel Vocoder—A channel vocoder consists of a bank of band-limited
filters and pulse/noise generators controlled by previously extracted information about
fundamental frequency and voicing. In the current case, there was a pair of gammachirp/
gammatone filterbanks for analysis and synthesis (the leftmost and rightmost boxes in Fig.
1) because of the temporal asymmetry in the filter response. But the synthesis filter-bank is
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not essential when we compensate for the group delay of the analysis filter. What is essential
for effective resynthesis is a good estimate of BMM which has to be recovered from the
amplitude information in the SAI and the phase information generated from the F0
information.

2) Mapping Function From SAI to NAP—The synthesis module of Fig. 1 shows that
the mapping from SAI to NAP is essential for resynthesizing the enhanced speech sounds.
Previously [32], [33], we used the fine temporal structure in both the SAI and NAP to design
a mapping function using nonlinear, multivariate, regression analysis, MRA. Statistical
training was required to formulate the mapping between multiple inputs and a single output.
It would be ideal when there is sufficient data for the training and sufficient time for the
training, but oftentimes there is not. In this paper, we made a simple, fixed circuit for the
mapping to provide the baseline performance of the auditory vocoder. We assumed that the
frequency profile of the SAI would provide a reasonable representation of the main features
of the target speech, if the profile mainly represents the activity of the target speech in the
SAI. The first two-dimensional image in Fig. 2(c) shows that the target feature is
concentrated in the time-interval dimension when the filter center frequency fc is high, and it
overlaps the next cycle when the center frequency is low. The activity of the interfering
speech appears at a low level in the rest of the SAI. So, when we cumulate the activity
within the area of the target feature, it would produce a reasonable profile. The formula for
converting the activity from a SAI to a NAP is

(7)

where WS(fc, τ) is a weighting function that produces a flat NAP from a regular SAI. The
range of accumulation [Tmin, Tmax] on the time-interval axis was

(8)

Tmax is 5 ms when fc is low and 1.5 ms when fc is high. The frequency-dependent range is
intended to contain the ridges of activity shown in the first image of Fig. 2(c). At this point,
the constant values, −1, 1.5, and 5 ms, were selected manually in accordance with
preliminary simulations. When the values increase, the activity includes more distracter
components, When the values decrease, the resonance information of the target reduces
gradually.

The amplitude of the NAP SS(fc, te) is recovered by (7) for every event time. The amplitude
between successive events was recovered by linear interpolation which is sufficient for good
quality resynthesized sound. Then, the amplitude of the BMM is recovered using the inverse
function.

3) Phase Retrieval and Resynthesis—Since the phase information is completely lost
in this process, it is necessary to generate phase information for resynthesizing the sounds.
We use F0 information to generate the glottal pulse and noise in accordance with the target
speech sound, as shown in the bottom box of the synthesis module in Fig. 1. We employed
the generator in STRAIGHT [22], since it is known to produce pulses and noise with
generally flat spectra, and it does not affect the amplitude information. The waveform of the
pulse and noise sequence is analyzed by the complex version of the analysis filterbank in
AIM. Then the phase information is calculated and multiplied with the amplitude of the
recovered BMM. Finally, a temporally-reversed auditory filterbank is applied to reintroduce
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the group delay of the original analysis filterbank. The resynthesized sounds are then
derived by simply summing up the channel outputs.

The resulting resynthesized sounds were reasonably good even though a simple, fixed circuit
was used for the mapping function between the SAI and the NAP.

III. EVALUATION
Segregation methods based on harmonic selection require precise F0 information. However,
this is unrealistic; natural vocal vibration contains jitter and there is commonly background
noise. So F0 estimation is never error-free in practice, and it is important to evaluate how
robust the system is to jitter and errors in F0 estimation. In this section, we compare the new
method to a comb-filter method using sound mixtures in three ways:

1. with visual inspection of spectra (Section III-A);

2. with an objective measure involving cross-correlation (Section III-B);

3. with perceptual experiments (Section III-C).

First, we estimated F0 and the degree of voicing in advance from the clean target speech
using an algorithm in STRAIGHT [22]. The F0 errors were a proportion of the estimated
values, and the proportion was varied. Then a mix of target speech and background noise
was produced with either babble or concurrent speech to evaluate the auditory vocoder
relative to the comb-filter method. The target and concurrent speech sounds were selected
randomly from a database of four-mora Japanese words, using the same male speaker to
make the task difficult. The babble was produced by adding speech from ten speakers; a
segment of a few minutes was produced, and samples with the appropriate duration were
extracted with random start times. The unvoiced parts of these speech sounds were a
problem for both methods, and so they were passed through without processing in Sections
III-A and III-C, and they were removed when evaluating the cross-correlation in Section III-
B.

A. Comparison Based on the Spectrogram
Fig. 5(a) and (b) shows the original isolated target-speech wave for the Japanese word
“imafu” and its spectrogram, respectively. The target sound was mixed with babble at an
SNR of 0 dB to produce the wave in Fig. 5(c). At this level, a listener needs to concentrate
to hear the target speech in the distracter. The spectrogram in Fig. 5(d) shows that the
features of the target speech are no longer distinctive. When the F0 error is 5%, the target
speech extracted by the auditory vocoder [Fig. 5(e)] was distorted but it was still intelligible;
the distracter speech was disrupted to the point where it no longer sounded like speech, and
this alteration of the perception greatly reduced the interference that it would otherwise have
produced. The spectrogram in Fig. 5(f) shows that vocoder resynthesis restores the harmonic
structure of the target speech but not that of the distracter speech. It is easier to listen to the
target sound than the mix of target speech and distracter speech, or the mix of target speech
and babble. This is partially because the pitch pattern is regenerated using F0 information.

For comparison, we applied a comb-filter method based on the STFT to the same sound,
again with an F0 error of 5%. The target speech extracted in this way has a hollow character
and the babble is relatively strong. The target speech wave in Fig. 5(g) is noisier than that in
Fig. 5(e). The spectrogram in Fig. 5(f) shows that much of the harmonic structure is lost by
the comb-filter method, particularly for the higher harmonics. This follows directly from the
fact that the error in this method increases in proportion to harmonic number. As F0 error
increased, the quality of the target speech sounds degraded and the background noise
increased. This is a fundamental defect of comb-filter and harmonic-selection methods.
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B. Objective Evaluation
This section describes an objective measure designed to quantify the observations in Section
III-A and the difference in performance between the auditory vocoder and the comb-filter
method.

1) Cross-Correlation Measure—It is difficult to define the SNR at the output of the
auditory vocoder because it is difficult to separate the components of the target speech and
background noise due to the nonlinear processing. Moreover, it is difficult to define an ideal
binary mask or “oracle” mask [1] to quantify the degree of segregation. However, we can
calculate a cross-correlation function between the output sound and the original input (either
the target speech or the background noise). When they are highly correlated, a large peak is
observed at the appropriate delay. Since the auditory vocoder introduces nonuniform time
delays, we defined a measure referred to as the “peak concentration” of the cross-correlation
function. It is

(9)

where , x(t) is the input signal, y(t) is the output signal, Ts is the
signal duration, and Tp is a window that defines acceptable time delays. The width of Tp was
20 ms in this case; its value did not have much effect on the results. The peak concentration
value is calculated only during the voiced parts of speech. When there is F0 error, the F0
trajectories are different in the target speech and the output of the auditory vocoder, and this
mismatch leads to inaccurate estimation of the peak concentration. So, the target sound was
given the same F0 trajectory using STRAIGHT [22].

2) Results—We calculated the peak concentration of the cross-correlation function
between the system output and the original target speech (designated “Target”), or between
the system output and the original background sound (designated “Background”), for a set
of 50 words drawn from a database [34], [35]. The background was babble or concurrent
speech at an SNR of 0 dB. The system outputs were the output of the auditory vocoder with
F0 error levels of 0%, 5%, and 10% (“AVoc”); the output of the comb filter with F0 error
levels of 0%, 5%, and 10% (“Comb”); and a simple mix of the original target speech and
background noise (“Mix”) to establish the baseline.

Fig. 6 shows peak concentration as a function of F0 error in percent, when the background
was babble. The peak concentration values for “Mix-Target” and “Mix-Background” are
almost the same because the SNR is 0 dB. Both of the original sounds are highly correlated
with the mixed sounds. As SNR increases, the peak concentration value for “Mix-Target”
increases and the value for “Mix-Background” decreases. So, the ratio of the peak
concentration values is a form of SNR.

When the F0 error is 0%, the peak concentration value for “Comb-Target” is high and the
value for “Comb-Background” is low. This implies that the target is enhanced and the
background noise is suppressed at the output of the comb-filter. The difference is smaller
when the F0 error is 5%, and the peak concentration values are reversed when the F0 error is
10%. This implies that the SNR is very low (sometimes negative) at the output of the comb
filter. The components of the background noise leak through the harmonic filters when they
are misaligned by F0 error, and the components of the target are reduced by these same
filters.
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In contrast, the peak concentration values for “AVoc-Target” are consistently high (about
4.5) and the values for “AVoc-Background” are constantly low, independent of the level of
F0 error. This indicates that the component corresponding to the background noise at the
output of the auditory vocoder does not sound similar to the original background noise, as
observed in Section III-A. The auditory vocoder prevents the background noise leaking
through in its original form giving the vocoder an advantage over the comb-filter method.

Fig. 7 shows peak concentration when the background was a single, concurrent speaker with
an SNR of 0 dB. Although the variability is greater, and some of the values are larger, the
general pattern of results is the same as when the background was babble (Fig. 6). The peak
concentration of the cross-correlation function provides a rough estimate of the SNR in the
output speech, and as such, it provides an objective measure for nonlinear speech
processors. The cross-correlation function corresponds to the cross-power spectrum between
two extended sounds. However, it does not necessarily reflect local distortion due to
nonlinear processing. Accordingly, we also performed an experiment to evaluate the
perceptual effect of the distortion.

C. Perceptual Experiments
Speech intelligibility experiments were performed with Japanese four-mora words randomly
selected from a database, which is controlled for word familiarity and phonetic balance [34],
[35].

1) Conditions, Subjects, and Task—There were five conditions: (1) a simple mix of
the original target and background (designated “Mix”), (2,3) the output of the auditory
vocoder with F0 errors of 0% (“AVoc (0)”) and 5% [“AVoc (5)”], and (4,5) the output of
the comb filter with F0 errors of 0% [“Comb (0)”] and 5% [“Comb (5)”]. For each
condition, 25 words were selected from one male speaker. There was no overlap of words in
these experiments. The background noise was either babble or concurrent speech at an SNR
of 0 dB. The SNR was defined using the root mean square (rms) value of the whole sound.
The SNR of 0 dB was chosen to make the task moderately difficult. It was very difficult to
identify the words even for a simple mix with babble when the SNR was −5 dB; it was easy
to identify the words for this mix when the SNR 5 dB or more.

The signal level was digitally equalized in terms of the equal loudness level, or LAeq, which
is the rms level of the entire speech sound after A-weight filtering. The sounds were played
back using M-audio FireWire 410 at 48 kHz and presented to the subjects in a sound-proof
room through headphones (Sennheiser HD-580) at a level of 70 dBA. The words were
presented singly in random order and followed by a 5-s response interval.

Four young adults with normal hearing thresholds between 250 and 8000 Hz participated in
the experiments. The subjects were instructed to write down the words in Japanese “kana”
characters, which uniquely identify the CV and V syllables of Japanese words. The response
sequence was compared with the sequence presented to produce recognition scores,
separately, for words, vowels, and consonants.

2) Results—The speech recognition scores for the five conditions when the background
noise was babble at an SNR of 0 dB are presented in Fig. 8. The word recognition score for
the original mix is 64% which is better than the scores for processed sounds. The
degradation due to signal processing has been repeatedly reported [7]. The word recognition
scores for the comb-filter are 55% and 14% when the F0 error is 0% and 5%, respectively.
The F0 error greatly affects the quality of the output sounds. The word recognition scores
for the auditory vocoder are 11% and 31% when the F0 errors are 0% and 5%, respectively.
We do not understand the reason why the score is worse when there is no F0 error. It results
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from poor consonant recognition; the vowel recognition scores are as high as 59% and 67%,
although the vowels were always processed. In contrast, the word and vowel recognition
scores for the comb-filter are 14% and 47% when the F0 error is 5%. The results show the
auditory vocoder has the potential to outperform the comb-filter when there is error in F0
estimation.

The speech recognition scores for the five conditions when the background noise is
concurrent speech at an SNR of 0 dB are presented in Fig. 9. For the original mix, the
subjects were required to answer with one of the two words which were presented
simultaneously and were almost equally loud. Although there is no correct target, the score
was calculated assuming one of them, chosen arbitrarily, was the target speech. When we
allow either of the words was the target speech, the score almost doubles as indicated by the
dashed bar in the left most column.

The comb-filter with no F0 error successfully draws the attention of the subjects to the target
sound. The other conditions, “AVoc (0),” “AVoc (5),” and “Comb (5),” produce roughly the
same results. The performance of the comb-filter is affected by the F0 error while the
performance of the auditory vocoder is almost independent of F0 error.

IV. CONCLUSION
We have proposed an auditory vocoder for speech segregation. Unlike many conventional
signal processing methods, the auditory vocoder does not apply a windowing function
directly to the sound wave. Instead, it produces a temporal sequence of two-dimensional
frames similar to video signals by an event-synchronous procedure. The representation is
referred to as the auditory image. The procedure enables us to preserve fine structure in the
speech signals and to apply image processing techniques to enhance important features.

We compared the performance of the auditory vocoder with a popular comb-filter method,
using visual inspection of spectrograms, an objective cross-correlation measure, and
perceptual recognition experiments. The cross-correlation measure indicated that the
performance of the auditory vocoder was independent of the degree of F0 error up to 10%,
whereas the performance of the comb-filter method degrades progressively as F0 error
increases. The perceptual experiments showed that the auditory vocoder was better than the
comb-filter method whenever there was F0 error. The comb-filter method was better when
there was no F0 error, but the normal situation always involves some degree of F0 error. The
processing introduces perceptual distortion that limits the recognition score to values less
than those of the original mix.

The event-synchronous enhancement was only applied to the voiced parts of the target
speech in the evaluation. If it is applied to the unvoiced parts of speech, it introduces a little
more degradation of speech quality because the event-detection mechanism would operate
even if there were no glottal pulses. It should be noted, however, that the comb filter disrupts
sound quality badly in the unvoiced parts of the speech. So the auditory vocoder is more
effective in the unvoiced parts of speech, and particularly so around the voicing boundaries
of the target speech, which are generally difficult to detect in background noise.

Although the performance of the auditory vocoder was better than that of the comb-filter,
the advantage was not as great as might have been expected. The analysis of speaker
segregation presented in this paper suggests there are several aspects of the processing that
could be improved, and which would lead directly to better performance. First, the strobing
that segregates the speakers by their glottal events is a crucial part of the processing, but the
current version is clearly not as robust to background noise as human speech recognition.
Auditory scene analysis indicates that a more sophisticated form of cross-channel integration
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would improve the robustness and thus the sound quality. Second, it should be possible to
improve the enhancement of target features in the sequence of auditory images; specifically,
advanced image processing techniques could be used to enhance the important features and
determine the optimal range for the accumulation of information [(8)] in the synthesis of
voiced features. For the unvoiced parts of speech, we need to find a way of introducing
knowledge about speech features as they appear in the auditory image, as a means of
constraining recognition decisions. Finally, it is essential to develop a robust method of F0
estimation that can accurately estimate the degree of voicing in the target speech in the
presence of background noise.

In summary, the auditory vocoder provides a good framework for the incorporation of
knowledge about auditory signal processing, in a form that can support incremental progress
on CASA problems like speaker segregation.
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Fig. 1.
Configuration of the auditory vocoder for speech segregation.
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Fig. 2.
Schematic plot for event-synchronous strobing and the enhancement of a target speaker in
concurrent speech. (a) Compensated NAP for a segment of target speech (black lines; 10-ms
pitch period) with concurrent vowels (gray lines; 7-ms pitch period). (b) Time sequence of
two-dimensional auditory images (AIs) generated from the NAP by event-synchronous
strobing every 10 ms. (c) SAI after temporal integration across successive frames.
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Fig. 3.
Auditory event detection for clean speech. (a) Neural activity pattern (NAP) of a male
vowel. (b) NAP after group delay compensation. (c) Temporal profile of the compensated
NAP in the region below 1.5 kHz (solid line). The dashed line is a threshold used to identify
peaks; the circles and vertical lines shows the estimated event times.
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Fig. 4.
Schematic representation of the estimation of glottal events for the target speaker. Events for
the target sound (solid arrows) and background speech (dashed arrows) were first estimated
from the compensated NAP. The target event (rightmost box) was estimated from the
compensated NAP by cross-correlating with the triplet of Gaussians.
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Fig. 5.
Waveforms and spectra when the error rate of the F0 estimation is 5%. (a) and (b) Original
waves for the Japanese word “imafu.” (c) and (d) Mix of sound and babble (SNR = 0 dB).
(e) and (f) Segregated target speech from the auditory vocoder. (g) and (h) Segregated target
speech from the comb-filter.
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Fig. 6.
Peak concentration of the cross-correlation function when the background is babble and the
SNR is 0 dB. The abbreviations “AVoc,” “Comb,” and “Mix” indicate the outputs of the
auditory vocoder, the comb-filter, and the original mix, respectively. “Target” and
“Background” are the original target speech and background sounds. So, for example,
“AVoc-Target” indicates the output of the auditory vocoder was cross-correlated with the
clean target speech.
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Fig. 7.
Peak concentration of the cross-correlation function when the background is concurrent
speech and the SNR is 0 dB.
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Fig. 8.
Intelligibility of words, vowels, and consonants when the background is babble and the SNR
is 0 dB. “Mix” indicates the original mix of target speech and babble. “AVoc (0)” and
“AVoc (5)” indicate the output of the auditory vocoder when the F0 error was 0 or 5%,
respectively. “Comb (0)” and “Comb (5)” indicate the output of the comb-filter when the F0
errors was 0 or 5%, respectively.
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Fig. 9.
Intelligibility of words, vowels, and consonants when the background was concurrent speech
and the SNR was 0 dB.
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