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Insulin-Sensitizing Therapy Attenuates Type 2
Diabetes—Mediated Mammary Tumor Progression

Yvonne Fierz, Ruslan Novosyadlyy, Archana Vijayakumar, Shoshana Yakar, and Derek LeRoith

OBJECTIVE—Type 2 diabetes increases breast cancer risk and
mortality, and hyperinsulinemia has been identified as a major
factor linking these two diseases. Thus, we hypothesized that
pharmacological reduction of elevated insulin levels would at-
tenuate type 2 diabetes—mediated mammary tumor progression.

RESEARCH DESIGN AND METHODS—We studied mam-
mary tumor development in MKR*'" mice, a nonobese, hyperin-
sulinemic mouse model of type 2 diabetes. MKR™* mice were
either crossed with mice expressing the polyoma virus middle T
oncogene specifically in the mammary gland or inoculated ortho-
topically with the mouse mammary tumor cell lines Met-1 and
MCNeuA. MKR™™* or control mice harboring tumors were
treated with CL-316243, a specific fs-adrenergic receptor agonist,
which sensitizes insulin action but has no direct effect on the
mouse mammary epithelium or Met-1 and MCNeuA cells.

RESULTS—CL-316243 treatment significantly reduced the ele-
vated insulin levels in MKR"™'* mice and, as a consequence,
attenuated mammary tumor progression in the three tumor
models tested. This effect was accompanied by reductions in
phosphorylation of insulin and IGF-I receptors in transformed
mammary tissue.

CONCLUSIONS—Insulin-sensitizing treatment is sufficient to
abrogate type 2 diabetes—mediated mammary tumor progression.
Therefore, early administration of insulin-sensitizing therapy
may reduce breast cancer risk and mortality in patients with type
2 diabetes. Diabetes 59:686-693, 2010

ype 2 diabetes has become a major public health

problem worldwide and is associated with se-

vere acute and chronic complications. Recently

it has been shown that the disease increases
breast cancer risk and mortality (1-4). In our previous
studies, we have identified hyperinsulinemia as the pre-
dominant factor responsible for diabetes-mediated mam-
mary tumor progression (5). Elevated insulin levels are
observed mainly at early stages of the disease, where
peripheral insulin resistance results in a compensatory
increase in insulin secretion by the pancreatic B-cells to
meet the higher insulin demand. Thus, before the onset of
clinically overt type 2 diabetes, patients are often hyper-
insulinemic but euglycemic, and hence unaware of their
disease for many years. There is growing evidence that the
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risk for the development of breast cancer is substantially
increased in patients with early stage type 2 diabetes (6,7).

Pharmacological treatment of type 2 diabetes may have
an impact on cancer risk and mortality. Early stage type 2
diabetes is treated by two main approaches: insulin secre-
tagogues (e.g., sulfonylureas) stimulate insulin secretion
from the pancreatic B-cells and thus increase insulin
levels. Conversely, insulin-sensitizing agents (e.g., met-
formin and thiazolidinediones [TZDs]) improve insulin
action in peripheral tissues and, as a consequence, reduce
hyperinsulinemia. There is growing evidence that antidia-
betic therapy elevating insulin levels increases cancer risk
as well as cancer-related mortality (8,9), whereas insulin-
sensitizing drugs may reduce cancer risk, morbidity, and
mortality (8—14) in patients with type 2 diabetes. However,
it is as yet unclear whether the antineoplastic effects of the
two mainly used insulin-sensitizing agents (metformin and
TZDs) are a result of their direct action on tumor cells
(156-23) or an indirect effect via a reduction of insulin
levels.

Our study was aimed to explore whether lowering
insulin levels in type 2 diabetes would mitigate mammary
tumor progression, independent of any direct effect of the
applied drug. To address this question, we used the
insulin-sensitizing drug CL-316243 (24), a potent Bs-adren-
ergic receptor (3-AR) agonist with no known direct
effects on breast cancer, in a nonobese mouse model of
type 2 diabetes (MKRJ’/2 * mice). MKR™" mice develop
severe insulin resistance and hyperinsulinemia at an early
age due to overexpression of muscle creatine kinase—
driven dominant-negative IGF-I receptors (IGF-IRs), and
subsequent abrogation of IGF-I and insulin signaling in
skeletal muscle (25). Female MKR™* mice develop only
mild dysglycemia but display marked insulin resistance
and hyperinsulinemia, similar to early stages of type 2
diabetes in humans (5). The nonobese hyperinsulinemic
phenotype of these mice makes them an ideal model to
specifically study the effect of insulin reduction on mam-
mary tumor progression, independent of numerous con-
founding factors originating from obesity or overt type 2
diabetes (e.g., adipokines, proinflammatory cytokines, ad-
ipose tissue—derived sex steroids, hyperglycemia) (26). To
initiate mammary tumors, we used three different ap-
proaches: polyoma virus middle T (PyVmT) transgenic
mice (27) served as a model for early stages of cancer
development. To study solid tumor formation, PyVmT- and
NewErbB2-expressing tumor cells (28,29) were used in
syngeneic orthotopic cell injection experiments.

Here we demonstrate that chronic CL-316243 treatment
is capable of reducing insulin levels in female MKR™'*
mice, leading to an abrogation of the accelerated mam-
mary tumor progression in all three cancer models tested.
Furthermore, we show that this effect is accompanied by a
reduced activation of the insulin receptor (IR) and the
IGF-IR in transformed mammary tissue. Our findings indi-
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cate that insulin-sensitizing therapy is sufficient to abro-
gate the tumor-promoting activity of early stage type 2
diabetes. Thus, we propose that early treatment of hyper-
insulinemia might contribute to lower breast cancer risk,
morbidity, and mortality in patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS

All mice were on the FVB/N background. The generation and characterization
of MKR™* mice (5,25) as well as mouse mammary tumor virus (MMTV)-
PyVmT"~ mice (27) was described previously. The mice were housed in a
clean mouse facility, had free access to a standard mouse chow (Picolab
rodent diet 5053; LabDiet, St. Louis, MO) and fresh water ad libitum and were
kept on a 12-h light/dark cycle. Animal care and maintenance were provided
through the Mount Sinai School of Medicine Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC) accredited animal facil-
ity. All procedures were approved by the Animal Care and Use Committee of
Mount Sinai School of Medicine.

Metabolic assays. Body weight and food intake were measured twice a
week. Food intake was normalized to body weight and expressed as grams of
food per grams of body weight®™ per day. Blood glucose levels were
measured weekly in the nonfasting state between 9:00 a.m. and 12:00 p.M. with
an automated glucometer (Elite; Bayer, Mishawaka, IN). Plasma and serum
were obtained in the nonfasting state and collected in heparinized and
nonheparinized capillary tubes, respectively. Plasma insulin levels were
measured by a radioimmunoassay according to the manufacturer’s instruc-
tions (Linco, St. Charles, MO). Serum leptin, adiponectin, tumor necrosis
factor-a (TNF-a), and interleukin (IL)-6 levels were measured by ELISA
(Millipore, Billerica, MA [leptin] and R&D systems, Minneapolis, MN [adi-
ponectin, TNF-o, and IL-6]). Serum free fatty acids (FFAs) and serum
triglycerides were measured by a colorimetric assay (Roche Applied Science,
Indianapolis, IN [FFAs] and BioVision, Mountain View, CA [triglycerides]).
Body composition was determined in nonanesthetized mice using an
EchoMRI 3-in-1 NMR system (Echo Medical Systems, Houston, TX).
Transgenic mammary tumor model. PyVmT"/~ male mice were interbred
with MKR*"* or wild-type female mice to generate cohorts of PyVmT "'~ and
PyVmT*~/MKR"* female mice. CL-316243 (Sigma Aldrich, St. Louis, MO)
was dissolved in sterile saline and administered daily intraperitoneally at a
dose of 1 mg/kg body wt (30) from 3 to 6 weeks of age. Control mice received
an equal amount of vehicle (sterile saline). After euthanasia, inguinal mam-
mary glands (no. 4) were subjected to whole-mount analysis or immediately
snap-frozen in liquid nitrogen for further studies.

Syngeneic orthotopic tumor models. Met-1 and MCNeuA mouse carcinoma
cells were derived from MMTV-PyVmT (FVB/N) and MMTV-Neu (FVB/N)
transgenic mice, respectively (28,29). The cells were allowed to grow until
confluence in Dulbecco’s modified Eagle’s medium supplemented with 10%
FBS and were detached by a nonenzymatic cell dissociation solution, and
Met-1 cells (0.5 X 10%) or MCNeuA cells (10%) were injected into the left
inguinal mammary fat pad (no. 4) of 8-week-old female MKR™* and wild-type
mice. One week after tumor cell inoculation, CL-316243 (1 mg - kg body wt ™ -
day ™! i.p.) was administered for 21 days. Tumor growth was monitored by
palpation and tumor volume was measured in a three-coordinate system using
calipers. Tumor volume was calculated by the formula: 4/3 X m X r; X r, X
r; (r = radius).

Protein extraction and Western blot analysis. Tissues were lysed in buffer
(pH 7.4) containing 50 mmol/l Tris, 150 mmol/l NaCl, 1 mmol/l1 EDTA, 1.25%
CHAPS (Roche Applied Science), 1 mmol/l sodium orthovanadate, 2 mmol/l
sodium fluoride, 10 mmol/l sodium pyrophosphate (Sigma Aldrich), 8 mmol/1
B-glycerophosphate (VWR, West Chester, PA), and Complete Protease Inhib-
itor Cocktail (Roche). After denaturation, the proteins were subjected to
SDS-PAGE (8% Tris-glycine gel; Invitrogen, Carlsbad, CA) and transferred to a
nitrocellulose membrane (Bio-Rad, Hercules, CA). The membrane was se-
quentially blocked and probed with primary and secondary antibodies and
then analyzed by direct infrared fluorescence detection using an Odyssey
Infrared Imaging System (Li-cor, Lincoln, NE). Densitometric analysis was
performed using MacBAS V2.52 software (Fuji PhotoFilm, Valhalla, NY). The
antibodies were purchased from the following sources: Phospho-IRg™ 1551/
IGF-IRB™™ 13536 (Cell Signaling Technology, Danvers, MA) and IRB (Santa
Cruz Biotechnology, Santa Cruz, CA).

Whole-mount analysis of mammary glands. The no. 4 inguinal mammary
glands were carefully excised, spread out on a glass slide, and fixed for 2-4 h
in Carnoy fixative (60% ethanol, 30% chloroform, 10% glacial acetic acid). The
fixed glands were hydrated in decreasing concentrations of ethanol (100, 95,
70, 50, and 30% for 15 min each), rinsed in double-distilled water, and stained
overnight in carmine alum staining. After dehydration in increasing ethanol
concentrations (30, 50, 70, 95, and 100% for 15 min each) and clearing in
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xylene overnight (Fisher Scientific, Pittsburgh, PA), the glands were covered
by Mount-Quick mounting medium (Daido Sangyo, Tokyo, Japan) and photo-
graphic documentation was performed using a stereomicroscope and MicroSuite
FIVE imaging software (Olympus, Center Valley, PA). Quantification of the
hyperplastic mammary lesion as a ratio of the total glandular area was performed
using ImageJ software (National Institutes of Health, Bethesda, MD).
Determination of P;-AR expression. RNA was extracted from Met-1,
MCNeuA, and mammary epithelial cells (MECs) derived from FVB/N mice
using the NucleoSpin RNA II kit (Clontech Laboratories, Mountain View, CA).
After RT, the resulting cDNA was amplified by PCR using the following
primers (Operon, Huntsville, AL): B;-AR: forward: 5" ATGGCTCCGTGGCCT
CAC 3’ and reverse: 5 CTGGCTCATGATGGGCGC 3’ (31); 18S rRNA: forward:
5" TTGACGGAAGGGCACCACCAG 3’ and reverse: 5" GCACCACCACCCACG
GAATCG 3'.

Statistical analysis. Results are expressed as means = SEM. Statistical
analyses were conducted using ANOVA followed by a Fisher test, with P =
0.05 considered significant. All analyses were performed using STATVIEW
version 5.0 (SAS Institute, Cary, NC).

RESULTS

Mammary epithelial cells, mammary tumor cells, and
mammary gland development are not affected by
CL-316243. CL-316243 has potent antiobesity and antidi-
abetic effects in various rodent models (30,32-34). The
action of CL-316243 is highly specific to B;-AR—expressing
cells, which are predominantly the white and brown
adipocytes (35,36). Chronic activation of the Bs-AR in-
creases fatty acid oxidation and energy expenditure,
thereby reducing adiposity. Subsequently, chronic Bs;-AR
stimulation leads to improved insulin sensitivity and re-
duced insulin levels (30,33,34).

To address whether CL-316243 has direct effects on the
mammary epithelium or tumor cells, we determined the
expression levels of the Bs;-AR. As shown in Fig. 1A4,
RT-PCR revealed undetectable levels of B5-AR transcripts
in normal mouse MECs and in the two mammary tumor
cell lines: Met-1 and MCNeuA.

Chronic Bs-AR activation with CL-316243 leads to an
increased formation of brown adipose tissue in the mam-
mary gland (37). Thus, we assessed whether treatment
with CL-316243 affects mammary gland development in
vivo through alteration of the mammary fat pad. Four-
week-old female wild-type mice were subjected to intra-
peritoneal injections of CL-316243 (1 mg - kg body wt ! -
day 1) or an equal volume of vehicle for 3 weeks. Whole-
mount analyses of mammary glands obtained from these
animals at the age of 7 weeks demonstrated no significant
changes in mammary ductal outgrowth and side branching
(Fig. 1B).

These data suggest that CL-316243 has a minimal effect
on mammary gland development and that a direct effect of
CL-316243 on mammary tumor cells via activation of the
Bs-AR is unlikely.

CL-316243 treatment affects food intake and body
composition in female wild-type and MKR*'* mice
and reduces hyperinsulinemia in female MKR*/*
mice. We have previously shown that chronic treatment
with CL-316243 effectively reverses the diabetic phenotype
in male MKR™* mice, which, in contrast to female
MKR*"* mice, develop overt type 2 diabetes (30). To test
whether the predominantly hyperinsulinemic phenotype in
female MKR*'* mice would respond in a similar manner,
we treated 8-week-old female MKR*'* and wild-type mice
chronically with CL-316243 (1 mg - kg body wt ' - day 1)
or vehicle for 3 weeks. Female MKR™" mice exhibit
reduced body weight and body adiposity compared with
wild-type mice (5). As observed in our previous study in
male wild-type and MKR*’* mice (30), we found that
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FIG. 1. Normal MECs, mammary tumor cells, and mammary gland development are not affected by CL-316243. A: Determination of f;-AR
expression in MECs (derived from FVB/N mice), Met-1, and MCNeuA tumor cells analyzed by PCR followed by agarose gel electrophoresis (for
primers, see RESEARCH DESIGN AND METHODS section). Negative control, NIH/3T3 fibroblasts; positive control, mouse white adipose tissue. 18S rRNA
was used as a loading control. B: Representative whole-mount images of the no. 4 mammary gland obtained from 7-week-old wild-type mice. The
mice were treated from 4 to 7 weeks of age with CL-316243 (1 mg - kg body wt™! - day ! i.p.) or a vehicle control. n = 4-5 mice/group. LN, lymph
node. Original magnification x4. (A high-quality color representation of this figure is available in the online issue.)

CL-316243 treatment did not affect body weight (Fig. gonadal fat pads (supplemental Fig. 1, available in an
2A), but increased food intake (Fig. 2B) and decreased online appendix at http:/diabetes.diabetesjournals.org/
body adiposity (Fig. 2C), predominantly affecting the cgi/content/full/db09-1291/DC1). Additionally, we found

688

A 25

Body weight (g)
o 5 o S

o

days after start of treatment

(@)

304

20

10+

Whole body fat
(% of total body weight)

WT

10

Plasma insulin (ng/ml) m

MKR

WT

DIABETES, VOL. 59, MARCH 2010

MKR

21

* 3

B o054
0.4-
0.3-

0.2+

Food intake
(9/gBWO-75/d)

0.1+

0.0

O

200

100+

Blood glucose (mg/dl)

WT MKR

FIG. 2. Chronic CL-316243 treatment abrogates the diabetic phenotype in
female MKR*'* mice. MKR*'* and wild-type (WT) mice were treated with
CL-316243 (CL, l) or vehicle (V,[]) from 9 to 12 weeks of age. Body weight
(A) and food intake (B) were measured twice a week. The average food
intake over 3 weeks of treatment is presented. Body adiposity (C) was
measured 10 days after the onset of treatment in nonanesthetized mice
using an EchoMRI 3-in-1 NMR system; glucose (D) and insulin (E) levels
were measured in whole blood and plasma, respectively, 1 week after
initiation of treatment in the nonfasting state. Data are expressed as
means * SEM. *P = 0.05 for CL-316243 vs. vehicle group; #P =< 0.05 for
wild-type vs. MKR** from the same treatment group. n = 6-8 mice/group.
These data have been reproduced in three independent experiments.
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TABLE 1
Effect of chronic treatment with CL-316243 on serum lipids, adipokines, and proinflammatory cytokines in female wild-type and
MKR™* mice
Wild-type mice MKR™* mice

Vehicle CL-316243 Vehicle CL-316243
FFAs (mmol/l) 0.34 + 0.04 0.16 * 0.03* 0.29 + 0.05 0.17 + 0.03*
Triglycerides (mmol/l) 1.40 = 0.09 1.01 = 0.08* 1.83 = 0.147 1.13 + 0.15%
Leptin (ng/ml) 3.11 = 0.44 2.04 = 0.19* 2.02 = 0.287 1.00 = 0.06*F
Adiponectin (pg/ml) 8.39 + 0.58 9.61 + 0.34 9.74 + 0.38+ 9.16 + 0.42
TNF-a (pg/ml) 20.95 + 1.23 19.54 + 0.81 18.48 = 0.47% 18.27 + 0.66
IL-6 (pg/ml) 4.26 = 0.51 5.03 = 1.82 6.75 = 1.96 7.32 + 3.27

Data are means = SEM. Serum was obtained in the nonfasting state at the end of the study, 21 days after the onset of treatment with
CL-316243 (1 mg - kg - day 1). *P = 0.05 for CL-316243 vs. vehicle group; TP < 0.05 for wild type vs. MKR*/* from the same treatment group.
FFA and triglycerides: » = 10-16 mice/group; adiponectin, leptin, IL-6, and TNF-a: » = 5-7 mice/group.

that after 1 week of CL-316243 treatment, the moderately
elevated blood glucose levels (~20%) in MKR™* mice
were significantly lowered (Fig. 2D). Importantly, we show
that female MKR ™" mice display severely elevated plasma
insulin levels, which were significantly reduced upon
CL-316243 treatment, whereas no effect of the drug on
insulin levels was seen in wild-type mice (wild type,
vehicle: 0.42 = 0.01 vs. wild type, CL-316243: 0.43 * 0.02;
MKR*"*, vehicle: 13.12 = 3.74 vs. MKR"'*, CL-316243:
3.28 = 0.85 ng/ml) (Fig. 2F).

As chronic CL-316243 treatment lowers body adiposity
in both wildtype and MKR''* mice, serum levels of
circulating lipids, adipokines, and proinflammatory cyto-
kines were determined (Table 1). Serum levels of FFAs
were unchanged in female MKR"'* mice compared with
wild-type mice, whereas there was a moderate (~30%)
increase in triglyceride levels. Upon chronic treatment
with CL-316243, FFAs and triglycerides were significantly
reduced to a similar level in both MKR*™* and wild-type
mice. Serum leptin levels were lower in MKR*'* mice
compared with wild-type mice, and CL-316243 treatment
significantly reduced leptin levels in both MKR** and
wild-type mice. The levels of adiponectin and the proin-
flammatory cytokines TNF-a and IL-6 were not affected by
CL-316243 treatment.

Taken together, these data show that chronic treatment
with CL-316243 effectively reduces insulin levels in female
MKR*'* mice alone while having a comparable effect on
food intake, relative body adiposity, circulating lipids, and
leptin levels in both wild-type and MKR*/* mice. This
allows us to study the effect of insulin reduction on
mammary tumor progression in MKR ™" mice.
CL-316243 treatment abrogates the accelerated for-
mation of hyperplastic mammary lesions in PyVmT*/~/
MKR** mice. To investigate the effect of insulin-
sensitizing therapy on early stages of mammary tumor
development, we used a PyVmT-induced transgenic tumor
model (27). PyVmT"~ transgenic mice express the
PyVmT oncogene exclusively in the mammary epithelium
under the control of the MMTV promoter. PyVmT-induced
mammary tumors recapitulate many morphologic and
pathophysiological processes found in human breast can-
cer, and their development begins with the formation of a
single hyperplastic focus in the lateral part of the mam-
mary gland at 3-4 weeks of age (38).

To assess the effect of antidiabetic therapy on mammary
tumor development, we treated PyVmT* /MKR*'* and
PyVmT*~ mice with CL-316243 (1 mg - kg body wt ! -
day 1) or vehicle from 3 to 6 weeks of age. The metabolic
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effects of CL-316243 treatment were similar to those
observed in adult mice (supplementary Fig. 2). The ingui-
nal mammary glands (no. 4) were dissected after treat-
ment at 6 weeks of age. Whole-mount analyses of vehicle-
treated PyVmT* " /MKR"/" mice revealed a larger area of
hyperplastic mammary lesions (increase of 57%) com-
pared with the PyVmT*~ mice (Fig. 34 and B) due to
accelerated formation of hyperplasia in a hyperinsuline-
mic milieu. In contrast, pharmacological correction of
hyperinsulinemia in PyVmT*~/MKR "™ mice resulted in a
tumor phenotype similar to nondiabetic PyVmT*/~ mice
(Fig. 3A and B). Note that the CL-316243—treated nondia-
betic PyVmT*'~ mice show no changes in mammary
transformation. To determine whether the attenuation in
tumor progression in the CL-316243-treated mice resulted
from an inhibition of insulin signaling, we analyzed the
phosphorylation of the IR/IGF-IR in the hyperplastic mam-
mary tissue of vehicle-and CL-316243-treated mice (Fig.
3C and D and supplementary Fig. 3). We found that
hyperinsulinemia led to an increased activation of the
IR/IGF-IR in transformed mammary tissue of PyVmT* "/
MKR** mice, whereas pharmacological correction of
insulin levels by CL-316243 treatment significantly reduced
this effect. Taken together, we demonstrate that lowering
insulin levels in type 2 diabetic PyVmT* /MKR"" mice
reduces IR/IGF-IR activation and abrogates the acceler-
ated formation of hyperplastic mammary lesions.
Treatment with CL-316243 abrogates the accelerated
growth of advanced mammary tumors in MKR*/*
mice. To investigate whether CL-316243 treatment would
also affect growth of fully transformed tumor cells, we
injected estrogen receptor-negative PyVmT-transformed
mammary tumor cells (Met-1 cells [28]) orthotopically into
the no. 4 mammary fat pad (0.5 X 10° cells) of 8-week-old
female MKR*'* or wild-type mice. Starting 7 days after
tumor cell inoculation, when tumors were palpable, the
animals were treated with CL-316243 (1 mg - kg body wt ! -
day ') for 3 weeks. As shown in Fig. 44, tumor volume
increased in vehicle-treated MKR™" mice, whereas
MKR ™" mice treated with CL-316243 displayed a signifi-
cant reduction in tumor growth and were similar in size to
wild-type controls. Importantly, CL-316243 treatment had
no effect on tumor growth in the wild-type mice. These
findings were confirmed by measuring wet tumor weight at
the end of the study (Fig. 4B).

To ascertain that our findings were not limited to
PyVmT-induced mammary carcinogenesis, we also studied
estrogen receptor-negative Neu-transformed mammary
tumor cells (MCNeuA cells [29]) in a similar manner as the
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FIG. 3. Treatment with CL-316243 prevents the accelerated formation of hyperplastic mammary lesions in diabetic mice and attenuates IR/IGF-IR
activation. A: Whole-mount analysis of the no. 4 mammary gland of 6-week-old virgin PyVmT*~/MKR*'* mice and PyVmT*'~ mice. Both groups
were treated with CL-316243 or vehicle from 3 to 6 weeks of age. LN, lymph node; PF, primary focus. Arrows indicate secondary foci. Original
magnification X10. Representative whole mounts are presented. B: Quantification of the area of hyperplastic lesions is presented as percentage
of the total gland area (n = 6—8 mice/group). CL-316243, l; vehicle, []. C: Proteins extracted from hyperplastic mammary tissue of 6-week-old
PyVmT*~/MKR** and PyVmT*/~ mice treated with either CL-316243 (CL) or vehicle were size fractioned by SDS-PAGE and immunoblotted
against phospho-IRBY!'*5/IGF-IRBY'13%/3¢ and the IRB. Representative Western blot analysis is shown. D: Densitometric analysis of the relative
IR/IGF-IR phosphorylation (normalized to the IR) is presented as a fold change compared with the vehicle-treated control group (PyVmT*'~,
vehicle) (n = 6-8 mice/group). CL-316243, Hl; vehicle, []. Data are expressed as means = SEM. *P < 0.05 for CL-316243 vs. vehicle group; #P <
0.05 for PyVmT*'~ vs. PyVmT*~/MKR*'* from the same treatment group. (A high-quality color representation of this figure is available in the

online issue.)

Met-1 cells. Neu is the rodent analog of the ERBBZ gene,
which is amplified and/or overexpressed in 30% of human
breast carcinomas (39). MCNeuA cells were inoculated
orthotopically into the no. 4 mammary fat pad (10° cells)
and the treatment protocol and follow-up of tumor growth
were performed as described above. As shown in Fig. 5A
and B, tumor volume and weight were increased in vehi-
cle-treated MKR™'" mice compared with wild-type con-
trols, however, after CL-316243 treatment and subsequent
decreases in insulin levels, we observed a significantly
reduced tumor size in MKR™" mice. These data suggest
that insulin-sensitizing therapy can abrogate insulin-medi-
ated tumor progression independent of the tumor-inducing
oncogene.

DISCUSSION

There is an increasing interest in the effect of insulin-
sensitizing therapy on breast cancer risk and mortality.
The current study demonstrates that treatment with the
insulin-sensitizing drug CL-316243, a highly selective 35-AR
agonist, reverses diabetes-induced mammary tumor pro-
gression in hyperinsulinemic, type 2 diabetic MKR™'*
mice. Our findings corroborate a major role of insulin in
type 2 diabetes—-mediated mammary tumor progression,
which is in concert with our previous findings (5).

High concentrations of insulin are known to activate the
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IGF-IR (40) and our previous findings demonstrate that the
IR, and to lesser extent the IGF-IR, are activated in
hyperplastic mammary tumor tissue extracted from type 2
diabetic mice (5). Moreover, pharmacological blockade of
the IR/IGF-IR using BMS-536924, a small-molecule ty-
rosine kinase inhibitor, led to abrogation of diabetes-
induced mammary tumor progression in MKR™™" mice;
however, it also worsened insulin resistance and hyperin-
sulinemia (5). Here we demonstrate that insulin-sensitiz-
ing treatment has a comparable effect on tumor
progression but simultaneously exerts antidiabetic activ-
ity. Our results imply that elevated insulin levels should be
targeted pharmacologically at early stages of the disease
to lower breast cancer risk and progression in patients
with type 2 diabetes.

The effect of antidiabetic medications on cancer devel-
opment is poorly understood and no prior experimental
studies have thoroughly investigated whether pharmaco-
logical reduction of insulin levels reduces mammary tumor
growth in a type 2 diabetic organism. The reason for this is
that the most widely used insulin-sensitizing drugs (met-
formin and TZDs) are known to exert direct, predomi-
nantly antineoplastic, effects on cancer cells, both in vitro
and in vivo in nondiabetic animals (15-17,19-23,41). Thus,
we decided to use CL-316243, a highly selective (B;-AR
agonist with no known direct effect on mammary tumors,

diabetes.diabetesjournals.org



Y. FIERZ AND ASSOCIATES

0.75

0.50

0.25

3
Tumor volume (cm’) >

°
o
=)
*

o
-
N
w
g

weeks after cell inoculation

0.75 -

0.50 -

0.25 4

Tumor weight (g)

0.00

WT MKR

FIG. 4. Treatment with CL-316243 reverses the accelerated growth of
advanced PyVmT-induced mammary tumors. Met-1 cells (0.5 x 10°%)
were orthotopically injected into the no. 4 mammary fat pad of
8-week-old virgin wild-type or MKR** mice. Seven days after cell
injection, treatment with either CL-316243 (CL) or vehicle (V) was
initiated. A: Tumor growth was followed by measuring tumor volume
weekly and was calculated as indicated in the RESEARCH DESIGN AND
METHODS section. Arrow indicates the beginning of treatment. B: Wet
tumor weight was determined at the end of the study. CL-316243, H;
vehicle, [J. Data are expressed as means = SEM. *P = 0.05 for
CL-316243 vs. vehicle group; #P < 0.05 for wild-type vs. MKR*'* from
the same treatment group. n = 7-8 mice/group.

to study the consequence of lowering insulin levels on
diabetes-mediated mammary tumor progression. How-
ever, it should be noted that Bs;-AR agonists (unlike
metformin and TZDs) have not yet been developed for
clinical use in humans due to various problems including a
lack of selectivity and poor pharmacokinetics (42).

Algire et al. (18) have reported that metformin attenu-
ates the effect of high-energy diet-induced insulin resis-
tance on growth of Lewis lung LLC1 carcinoma cells. Both,
the insulin-sensitizing action as well as the direct antineo-
plastic activity of metformin may be involved in this
finding. However, in the setting of excess energy intake
and obesity, other factors besides hyperinsulinemia can
promote tumor growth, such as adipokines, proinflamma-
tory cytokines, adipose tissue—derived sex steroids, or
altered levels of circulating carbohydrates and lipids (43),
some of which may be affected by metformin treatment
(44,45).

Thus, as an experimental model for insulin resistance
independent of obesity, we used a lean, hyperinsulinemic
mouse model of type 2 diabetes, the female MKR™* mice.
These mice develop severe insulin resistance and hyper-
insulinemia but have only mild dysglycemia and thus
recapitulate the early stages of type 2 diabetes. As these
mice display reduced body adiposity and show no increase
in serum FFAs, leptin, or the proinflammatory cytokines
TNF-a or IL-6 and only a moderate elevation in serum
triglycerides, they serve as an ideal model to study mam-
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FIG. 5. Treatment with CL-316243 reverses the accelerated growth of
advanced NewErbB2-induced mammary tumors. MCNeuA cells (10°)
were orthotopically injected into the no. 4 mammary fat pad of
8-week-old virgin wild-type or MKR** mice. At 7 days after cell
injection, treatment with either CL-316243 (CL) or vehicle (V) was
initiated. A: Tumor growth was followed by measuring tumor volume
weekly and was calculated as indicated in the RESEARCH DESIGN AND
METHODS section. Arrow indicates the beginning of treatment. B: Wet
tumor weight was determined at the end of the study. CL-316243, H;
vehicle, []. Data are expressed as means * SEM. *P = 0.05 for
CL-316243 vs. vehicle group; #P < 0.05 for wild-type vs. MKR*'* from
the same treatment group. n = 7-8 mice/group.

mary tumor progression uncoupled from obesity-related
tumor-promoting factors.

Apart from reducing insulin levels, chronic treatment
with CL-316243 also decreases blood glucose levels in
MKR*"* mice. Hyperglycemia has been proposed to pro-
mote tumor growth through the increased flux of glucose,
which fuels tumor cells (46). However, a major pathophys-
iological role of elevated blood glucose levels in the
tumor-promoting action of type 2 diabetes in MKR™'" mice
is unlikely because of the following: 1) female MKR™/*
mice display only mild dysglycemia (~20% increase in
blood glucose levels compared with wild-type mice), 2) in
animals with type 1 diabetes, which are insulin deficient
because of immune destruction of the pancreatic B-cells,
tumors regress despite severe hyperglycemia (47,48), 3)
although some epidemiologic studies show a correlation
between elevated blood glucose levels and cancer risk, the
studies may be confounded by preexisting hyperinsulin-
emia (49). Chronic CL-316243 treatment reduces serum
FFA, triglyceride, and leptin levels in both MKR*'* and
wild-type mice. As this decrease is observed in both
genotypes and the antineoplastic effect of CL-316243 is
specific to MKR™" mice, these factors are most likely not
major players in the tumor-reducing effect of CL-316243.
Nevertheless, we cannot fully exclude that changes in lipid
or leptin levels may, at least in part, have an impact on
breast tumor progression in MKR™* mice. Taken to-
gether, our experimental approach allowed us to test the
effect of insulin-sensitizing therapy on tumor progression
in a setting in which obesity-associated confounding fac-
tors are minimal.
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Our findings demonstrate that hyperinsulinemia in mice
with type 2 diabetes significantly increases IR/IGF-IR
activation in transformed mammary tissue, whereas phar-
macological reduction of insulin levels attenuates this
effect. Law et al.(560) reported that phosphorylation of the
IR/IGF-IR was present in nearly 50% of all analyzed human
primary breast tumors and was predictive for a poor
outcome. However, the authors did not obtain information
on the insulin levels in the patients studied. It remains to
be evaluated whether the extent of IR/IGF-IR activation in
breast cancer specimen correlates with underlying type 2
diabetes and hyperinsulinemia in breast cancer patients. If
this is the case, then insulin lowering therapy could reduce
breast cancer risk and mortality.

In conclusion, we demonstrate that the administration
of insulin-sensitizing therapy using a Bs-AR agonist abro-
gates the accelerated mammary tumor progression in a
nonobese mouse model of type 2 diabetes. This effect is
accompanied by a reduction of insulin levels leading to a
decrease in the phosphorylation of the IR/IGF-IR in trans-
formed mammary tissue. These results demonstrate that
insulin-lowering therapy is an important modifier of breast
cancer progression. Our findings thus provide a rationale
for early administration of insulin-sensitizing therapy in
patients with hyperinsulinemia and/or type 2 diabetes, as
such treatment may have a significant impact on breast
cancer risk, morbidity, and mortality.
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