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Cécilia Prado,

1,2,3
Karen K. Takane,

4
Françoise Lasnier,

1,2,3

Adolfo Garcia-Ocana,
4

Pascal Ferré,
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OBJECTIVE—Ceramide is now recognized as a negative regu-
lator of insulin signaling by impairing protein kinase B (PKB)/Akt
activation. In different cells, two distinct mechanisms have been
proposed to mediate ceramide inhibition of PKB/Akt: one involv-
ing atypical protein kinase C zeta (PKC�) and the other the
protein phosphatase-2 (PP2A). We hypothesized that ceramide
action through PKC� or PP2A might depend on plasma mem-
brane (PM) structural organization and especially on caveolin-
enriched domain (CEM) abundance.

RESEARCH DESIGN AND METHODS—We have used differ-
ent PKC� mutant constructs or the PP2A inhibitor, okadaic acid
(OKA), to selectively inhibit PKC�- and PP2A-dependent path-
ways in cells expressing different caveolin-1 levels and evaluated
the impact of insulin and ceramide on PKB/Akt activity in
different PM subdomains.

RESULTS—Although the PKC�-mediated negative effect of cer-
amide on insulin-stimulated PKB/Akt was dominant in adipo-
cytes, a ceramide action through PP2A outside CEMs, prevented
by OKA, was also unraveled. To test the importance of CEM to
direct ceramide action through the PKC� pathway, we treated
3T3-L1 preadipocytes devoid of CEMs with ceramide and we saw
a shift of the lipid-negative action on PKB/Akt to a PP2A-
mediated mechanism. In fibroblasts with low CEM abundance,
the ceramide-activated PP2A pathway dominated, but could be
shifted to a ceramide-activated PKC� pathway after caveolin-1
overexpression.

CONCLUSIONS—Our results show that ceramide can switch
from a PKC�-dependent mechanism to a PP2A pathway, acting
negatively on PKB/Akt, and hence revealing a critical role of
CEMs of the PM in this process. Diabetes 59:600–610, 2010

I
nsulin is a hormone essential for tissue develop-
ment, growth, energy storage, and maintenance of
glucose homeostasis. Defects in insulin secretion
and action are key factors in the development of

metabolic diseases such as diabetes, obesity, hyperten-
sion, atherosclerosis, and cardiovascular diseases (1).

The mechanism by which insulin resistance develops in
peripheral tissue is not yet fully solved. Recent work has
suggested that forcing cells to store fatty acids beyond
their capacities could promote insulin resistance by induc-
ing the accumulation of intracellular signaling molecules
able to inhibit the action of insulin (2). Among these fatty
acid–derived lipids, ceramides are the most active to
negatively regulate intermediates of the insulin-signaling
pathway and to inhibit insulin-dependent pathways such
as the uptake of glucose into muscle and adipocytes (3,4).

The process of insulin signal transduction is initiated by
the activated insulin receptor kinase, which tyrosine phos-
phorylates intracellular target substrates, in particular the
family of insulin receptor substrates (IRS 1–4 proteins)
(5). Although numerous proteins can dock on activated
IRS, it is generally accepted that phosphoinositide 3-ki-
nase (PI 3-kinase) and signaling effectors that lie down-
stream from it, in particular protein kinase B (PKB, also
known as Akt) and atypical protein kinase C �/� (aPKCs),
play crucial roles in glucose homeostasis (6). PI 3-kinase–
generated membrane phosphatidylinositol-3,4,5-triphos-
phates (PIP3s) recruit to the plasma membrane (PM) and
activate both aPKCs and PKB/Akt (7,8). Once recruited,
aPKCs are phosphorylated by a 3-phosphoinositide–de-
pendent protein kinase-1 (PDK1) on their Thr410/403 site
(9). On the other hand, binding of PIP3s to the pleckstrin
homology (PH) domain of PKB/Akt induces conforma-
tional changes in the kinase that expose two regulatory
sites, Thr308 and Ser473 (for PKB�/Akt1). Phosphoryla-
tion of Thr308 is mediated by PDK1 and Ser473 phosphor-
ylation by TORC2 (mammalian target of rapamycin)-rictor
(rapamycin-insensitive companion of mTOR) complex
(10). The importance of the activation of aPKCs and
PKB/Akt by insulin in mediating glucose metabolism is
now well documented in insulin-sensitive tissues. Mice
lacking PKB� (Akt2) become insulin resistant and develop
severe diabetes (11), and recently, Farese et al. (12) have
demonstrated the importance of PKC� in skeletal muscle
by selectively ablating this kinase in a mouse model. They
showed that these mice developed insulin resistance,
reduced glucose tolerance, and dyslipidemia, all common
features of the metabolic syndrome.

A consensus now exists that PKB/Akt is the primary
target of ceramide. Indeed, defects in activation of this
kinase induced by ceramide have been observed in cell
types, such as white and brown adipocytes, skeletal and
smooth muscles, mammary cells, and nerve cells (13). In
some cells, ceramide acts on PKB/Akt through the direct
activation of phosphatases such as the protein phospha-
tase-2A (PP2A) (14), a cytosolic serine/threonine phospha-
tase responsible for dephosphorylating PKB/Akt (15).
Treatment of several cell types such as C2C12 muscle
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cells, PC12 nerve cells, and brown adipocytes with the
PP2A inhibitor okadaic acid (OKA) (16) prevents the
negative effects of ceramide on PKB/Akt (13). However, in
L6 muscle cells and white adipose tissue, we and others
have shown that ceramide inhibited insulin-stimulated
glucose transport through a mechanism that does not
involve a phosphatase (17,18). Ceramide activates PKC�
(19,20), which interacts and phosphorylates the PH do-
main of PKB/Akt on a Thr34 residue, preventing PKB/Akt
to be recruited and activated at the PM in response to
insulin (19).

Thus, two mechanisms by which ceramide can inhibit
PKB/Akt are described in different cell types. We hypoth-
esized that a PKC�- or PP2A-mediated action of ceramides
might be dependent on the structure and compartmental-
ization of the PM that differs among cell types. It is now
well recognized that the PM is not uniform but composed

of subdomains with unique lipid compositions. In particu-
lar, specialized domains called caveolin-enriched domains
(CEMs) have been shown to be important in mediating
insulin action (21) and are enriched in ceramide (22,23).
Moreover, we, as well as others, have shown that ceramide
induced the recruitment of both PKC� and PKB/Akt in
CEMs (22,23). Thus, PKC�- and PP2A-mediated mecha-
nisms are likely to occur in different compartments. As a
unifying hypothesis to explain why two different mecha-
nisms by which ceramide inhibits PKB/Akt exist, we
propose that the structure of the PM in different cell types,
particularly the relative abundance of CEMs, might be a
determining factor to direct the action of ceramide toward
either the PKC� or the PP2A mechanism. To test this
hypothesis, we have used different PKC� mutant con-
structs or OKA, to inhibit PKC�- and PP2A-dependent
pathways and evaluated the impact of both insulin and
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FIG. 1. Effects of insulin and ceramide on the insulin-signaling pathway in 3T3-L1 adipocytes. A: 3T3-L1 adipocytes were preincubated with 100
�mol/l C2-ceramide for 2 h and then with 100 nmol/l insulin for 30 min. 2-Deoxy-D-glucose uptake was then assessed as described in RESEARCH

DESIGN AND METHODS. Values represent means � SEM of three separate experiments. *Significant change from the control value (P < 0.05). B:
3T3-L1 adipocytes were preincubated with 100 �mol/l C2-ceramide for 2 h followed by 100 nmol/l insulin for the last 10 min. Cell lysates were
immunoblotted with antibodies against either native PKB/Akt, Ser473 PKB/Akt, Thr410/403 PKC�/�, or Tyr307 PP2A. C: HA-WT-PKC�
construct–infected 3T3-L1 adipocytes were treated with 100 �mol/l C2-ceramide for 2 h and then incubated with 100 nmol/l insulin for 10 min.
Plasma membrane lawns were prepared as described in RESEARCH DESIGN AND METHODS and subjected to confocal fluorescent microscopy using an
HA antibody. D and E: HA-WT-PKC�–infected 3T3-L1 adipocytes were treated with 100 nmol/l insulin for 10 min, 100 �mol/l C2-ceramide for 2 h,
and then with or without 100 nmol/l insulin for 10 min and lysed prior to immunoprecipitation of (D) HA or (E) PKB/Akt. HA and PKB/Akt
immunoprecipitates were then immunoblotted for the presence of PKC�, PP2A, and native PKB/Akt. Scanning densitometry was performed to
quantify changes in PP2A abundance in PKB/Akt immunoprecipitates. Bars represent mean � SEM. *Significant change P < 0.05 relative to the
untreated control. Blots shown are representative of three separate experiments. IP, immunoprecipitation. (A high-quality color representation
of this figure is available in the online issue.)
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ceramide on PKB/Akt activity in CEMs and non-CEMs.
Using cells with different levels of expression of caveolin,
we demonstrated that ceramide switches from one mech-
anism to the other to inhibit the insulin activation of
PKB/Akt.

RESEARCH DESIGN AND METHODS

Materials. All reagent-grade chemicals, insulin, methyl-isobutylmethylxan-
thine, palmitate, dexamethasone, protein A–Sepharose 4B, and BSA were
purchased from Sigma-Aldrich. C2-ceramide was obtained from Tocris and
OKA from Calbiochem. Complete protein phosphatase inhibitor tablets were
obtained from Boehringer-Roche Diagnostics. Antibodies against caveolin-1
were purchased from BD Biosciences; native PKB/Akt, Ser473-PKB, Thr308-
PKB, Ser21/9–glycogen synthase kinase 3�/� (GSK3�/�), and Thr410/403-
PKC�/� were from Cell Signaling (New England Biolabs); and Tyr307-PP2A,
PP2A A-subunit, PKC�, and hemagglutinin (HA) were from Santa Cruz
Biotechnology. Horseradish peroxidase anti-rabbit, -mouse, and -sheep/goat
IgGs were from Jackson ImmunoResearch Laboratories and the enhanced
chemiluminescent substrate was from Pierce-Perbio Biotechnology. [3H]2-
deoxy-D-glucose was obtained from PerkinElmer.
Preparation of recombinant adenovirus. Adenovirus containing the cDNA
of wild-type PKC� (WT-PKC�), myristoylated PKC� (myr-PKC�), or kinase-
dead PKC� (KD-PKC�) (24) was prepared as previously described (25). All
PKC� constructs contain an HA tag for monitoring their expression. Caveo-
lin-1 enhanced green fluorescent protein (EGFP) adenovirus was constructed
according to He et al. (26). Fully differentiated adipocytes were infected with
either construct at 150 multiplicity of infection.
Cell culture. 3T3-L1 cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM; Life Technologies) and differentiated into mature adipocytes

as described previously (22). Differentiated cells were usually harvested at
days 10–12 after confluence. Human fibroblasts were cultured in DMEM/F-12
(Life Technologies) until confluence.
Preparation of whole-cell lysates. Cells were lysed after experimental
manipulation (see figure legends) in an appropriate volume of lysis buffer (27).
Preparation of detergent-resistant membranes. Detergent-resistant mem-
branes (DRMs) were prepared as described previously (22). Cells were
homogenized into 25 mmol/l MES (2-[N-Morpholino]ethanesulfonic acid), pH
6.0, 150 mmol/l NaCl, 1% (wt/vol) Triton X-100, complete inhibitor tablet, and
lysate ran on a sucrose gradient. The gradient was centrifuged at 120,000g for
20 h at 4°C. DRM fractions were then collected and frozen at �20°C until
required.
Immunoblotting. Cell lysates and membrane fractions were subjected to
SDS-PAGE on polyacrylamide gels and immunoblotted as previously reported
(27). Nitrocellulose membranes were probed with various antibodies as
described in the figure legends. Detection of primary antibodies was per-
formed using appropriate peroxidase-conjugated IgGs, and protein signals
were visualized using enhanced chemiluminescence (Thermo Scientific
Pierce) by exposure to Kodak autoradiographic film.
Plasma membrane lawns. Adipocyte plasma membrane lawns were pre-
pared as described (28). The PKC� antibody was detected with cyanin 3
anti-rabbit antibody.
2-Deoxy-D-glucose uptake in 3T3-L1 adipocytes. 3T3-L1 adipocytes were
incubated in serum-free DMEM 5 h before transport studies and then were
exposed to 100 �mol/l C2-ceramide for 2 h, before being treated with 100
nmol/l insulin in the last 30 min. The uptake of glucose was assessed as
described before (4).
HA-WT-PKC� and PKB/Akt immunoprecipitation from 3T3-L1 adipo-

cyte lysates. HA-WT-PKC� or PKB/Akt was immunoprecipitated from 500 �g
of 3T3-L1 adipocyte lysates. Immunocomplexes were captured by incubation
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FIG. 2. Mechanism of ceramide action on insulin-induced phosphorylation of PKB/Akt in 3T3-L1 adipocytes. A: Control 3T3-L1 adipocytes and
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lysates. Bars represent mean � SEM. *Significant change P < 0.05 relative to the untreated control. Blots shown are representative of three
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being lysed. Cell lysates were immunoblotted with antibodies against either native PKB/Akt, Ser473 PKB/Akt, or PKC�. Scanning densitometry
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CERAMIDE ACTION IN ADIPOCYTES

602 DIABETES, VOL. 59, MARCH 2010 diabetes.diabetesjournals.org



with protein A–agarose beads and solubilized in Laemmli sample buffer prior
to SDS-PAGE and immunoblotting as described above.
Statistical analysis. Statistical analysis was carried out using a Student t

test. Data were considered statistically significant at P values �0.05.

RESULTS

Ceramide activates both PKC� and PP2A in 3T3-L1
adipocytes. Figure 1A recapitulates insulin and ceramide
effects on one of the most important end points of the
insulin-signaling pathway in adipocytes. Glucose uptake in
3T3-L1 adipocytes was increased 4.5-fold after insulin
treatment, an effect repressed in the presence of ceramide
(Fig. 1A). It is well established that both ceramide and
insulin act through PKB/Akt to mediate their actions
(17,22). Indeed, 100 nmol/l insulin for 10 min induced the
phosphorylation of PKB/Akt on its Ser473 site in 3T3-L1
adipocytes, and this effect is completely blunted by pre-
treating the cells with 100 �mol/l C2-ceramide for 2 h (Fig.
1B). To investigate the involvement of the PKC� and PP2A
in the effects of ceramide, we examined whether these
proteins were activated in the presence of insulin and
ceramide. 3T3-L1 adipocytes were infected with an adeno-
virus vector containing a WT-PKC� construct tagged with
HA. A weak membrane association in the basal state (Fig.
1C) was observed by confocal immunofluorescence mi-
croscopy of plasma membrane lawns. Both insulin and
ceramide, added to the cells alone or together, induced an

increase in the amount of PKC� at the PM (Fig. 1C). As
observed previously in L6 muscle cells (19), treatment of
3T3-L1 adipocytes with either 100 nmol/l insulin for 10 min
or 100 �mol/l ceramide for 2 h induced the phosphoryla-
tion of PKC� (using a PKC�/� antibody that recognizes the
kinase phosphorylation sites Thr410/403 of both PKC� and
�) (Fig. 1B). Insulin and ceramide added together had no
additive effect on PKC�/� phosphorylation, indicating that
these two factors targeted a similar pool of PKC�/� (Fig.
1B). It has been shown in fibroblasts that insulin inhibited
the constitutive activity of PP2A by phosphorylating its
catalytic subunit on a Tyr307 residue (29,30). In 3T3-L1
adipocytes, we observed a similar effect of the hormone
(Fig. 1B). However, pretreatment of the cells with cer-
amide completely abolished the insulin-induced phosphor-
ylation of PP2A (Fig. 1B), indicating that the phosphatase
is fully active in the presence of ceramide. These results
indicate that both PKC� and PP2A are targets for insulin
and ceramide in 3T3-L1 adipocytes.

To find out whether both PKC� and PP2A could associ-
ate with PKB/Akt in response to ceramide in our adipocyte
culture system, coimmunoprecipitation experiments were
performed. 3T3-L1 adipocytes were infected with an ade-
novirus expressing an HA-tagged WT-PKC� construct. In-
fected cells were treated with insulin and ceramide, and
WT-PKC� was immunoprecipitated with an anti-HA anti-
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body. Resulting immunocomplexes were analyzed by
Western blotting for PKB/Akt. Figure 1D shows that, as
observed before (22), ceramide, alone or combined with
insulin, induced an increased association between PKC�
and PKB/Akt. As negative controls, the use of nonimmune
serum or untransfected lysates did not detect any PKB/Akt
in the immunoprecipitates (Fig. 1D). Interestingly, PP2A
was absent from these immunocomplexes (Fig. 1D). Sub-
sequently, we used the same cell extracts to immunopre-
cipitate PKB/Akt. Figure 1E shows that, whereas insulin
did not induce any association between PP2A and PKB/
Akt, ceramide, alone or in the presence of insulin, trig-
gered it. Altogether, these results show that, in response to
ceramide, both PKC� and PP2A can associate with PKB/
Akt, possibly targeting different pools of the kinase, be-
cause PP2A is not detected in a ceramide-induced PKC�-
PKB/Akt complex (Fig. 1D).
The inhibition of insulin-stimulated PKB/Akt by cer-
amide is mediated by PKC� in 3T3-L1 adipocytes. It is
now well accepted that in 3T3-L1 adipocytes ceramide acts
mainly, if not exclusively, on PKB/Akt through the PKC�
pathway (13,17). This is confirmed in Fig. 2, which shows
that preincubation of 3T3-L1 adipocytes with ceramide,
and then with insulin, led to a significant reduction in the
ability of the hormone to phosphorylate PKB/Akt on its
Ser473 residue. In line with previous work (17), treatment

of the cells with 500 nmol/l OKA for the last 30 min of the
ceramide incubation time had no effect on the action of the
lipid on PKB/Akt. In contrast, infection of cells with an
adenovirus-mediated transfer of an inactive dominant neg-
ative PKC� mutant (KD-PKC�) into these cells counter-
acted the action of ceramide on PKB/Akt, and on one of its
physiological downstream targets, GSK3�/� (Fig. 2A).
However, in contrast to data we previously obtained in
muscle cells (19), overexpression of the KD-PKC� in
adipocytes did not affect the basal and insulin-stimulated
PKB/Akt phosphorylation state compared with what was
observed in untransfected adipocytes or in WT-PKC�–
overexpressing adipocytes (Fig. 2B). It is interesting to
note, however, that the preventive effect of the KD-PKC�
on PKB/Akt was slightly potentiated in the presence of
OKA (Fig. 2A). Overall, these data indicate that, whereas a
PP2A activity is present in 3T3-L1 adipocytes, the involve-
ment of the phosphatase to mediate ceramide action
remains minimal.
PKC� mediates the ceramide inhibitory effect on
PKB/Akt within CEMs. To understand why the PKC�
pathway predominates on the PP2A pathway in 3T3-L1
adipocytes, we investigated the compartmentalization of
these two pathways within the cell membrane, keeping in
mind that adipocytes are rich in CEM subdomains where
ceramides are concentrated (23,31,32). Thus, we isolated
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lipid raft–containing CEMs by taking advantage of the
capacity of lipid rafts to resist nonionic detergent solubi-
lization at 4°C and purified these domains on discontinu-
ous sucrose density gradient (22). Caveolin-1 enrichment
is a characteristic of these domains that are usually
recovered in the low-density fractions 3–6 of the sucrose
gradient (22). In contrast to caveolin-1, PP2A was not
found within CEMs at the basal state or after insulin or
ceramide treatment (Fig. 3A). Insulin did not provoke any
recruitment of WT-PKC� to CEMs (Fig. 3A). Interestingly,
as already described in H9c2 cardiomyoblasts (33), the
total amount of PKB/Akt did not change in response to
insulin in these subdomains and the hormone induced only
a weak phosphorylation of the kinase on both Ser473 and
Thr308 (Fig. 3A). In contrast to insulin, treatment of these
cells with ceramide induced both the translocation and
more than a threefold increase in the phosphorylation of
WT-PKC� on its Thr410 site, and the recruitment of
PKB/Akt to these domains (Fig. 3A). These data confirmed
that the activation of PKC� by ceramide takes place in
CEMs. However, it appears that PP2A is absent from these
subdomains.

We used a membrane-associated myr-PKC� mutant to
understand whether the presence of a constitutive PKC�
into CEMs could mimic ceramide action. As expected, Fig.
3B showed that the myr-PKC� construct was associated
with the CEMs in the basal state and that ceramide could
not induce a further increase in myr-PKC� content in these
domains (Fig. 3B). However, a minimal phosphorylation of
the kinase was observed at the basal state and ceramide
needed to be added to the cells to induce both myr-PKC�
phosphorylation and PKB/Akt recruitment to CEMs (Fig.
3B). In summary, these data show a crucial role for CEMs
in the activation of PKC� by ceramide and the subsequent
sequestration of PKB/Akt.
Ceramide activates PP2A outside CEMs. The heavy
non-CEM fractions (high-density fractions 10–12 of the
sucrose gradient) do not contain caveolin-1 (data not
shown) (22) and are a mixture of proteins contained in
detergent-soluble cellular membranes and in the cytosol.
In contrast to what was observed in CEMs, PP2A was
detected in these fractions (Fig. 4A). In addition, both
PKC� and PKB/Akt were robustly phosphorylated in re-
sponse to insulin in these fractions (Fig. 4A). The lack of
phosphorylation of PKC� by ceramide in these fractions
(Fig. 4A) confirmed that this lipid is principally present in
CEMs and acts on a different PKC� intracellular pool.
Surprisingly, a more than 70% decrease in PKB/Akt basal
phosphorylation on its two sites was always observed in
ceramide-treated fractions (Fig. 4A). This process was
independent of PKC� because the inactivation of PKB/Akt
was still visible in cells overexpressing the KD-PKC�
mutant (Fig. 4B).

Given the presence of PP2A in these non-CEM fractions,
we then decided to investigate whether a ceramide-acti-
vated PP2A mechanism could be responsible here for the
inhibitory effect of ceramide on PKB/Akt by using OKA.
OKA has previously been shown to inhibit PP2A activity
and therefore increase PKB/Akt basal phosphorylation in
adipocytes (15). We treated 3T3-L1 adipocytes with cer-
amide for 2 h and added 500 nmol/l OKA during the last 30
min of the incubation before assessing the basal phosphor-
ylation state of PKB/Akt in non-CEM fractions. Figure 5A
showed that incubation of 3T3-L1 adipocytes with OKA
was able to reverse the inhibitory effect of ceramide on
PKB/Akt basal phosphorylation and to induce the phos-

phorylation of the kinase to a level observed after OKA
treatment alone, suggesting that the whole bulk of PP2A
was inhibited in basal and ceramide-treated cells. Further-
more, OKA was also able to prevent an inhibitory effect of
ceramide on insulin-induced PKB/Akt phosphorylation ob-
served in non-CEM fractions (Fig. 5B). These results show
that in non-CEMs, an active PP2A pathway for PKB/Akt
inhibition exists in 3T3-L1 adipocytes. The fact that the
PP2A pathway is only marginally involved in 3T3-L1 adi-
pocytes when considering the global effect of ceramide in
cells (Fig. 2) may be explained by the overabundance of
CEMs in these cells.
The PP2A mechanism mediates ceramide action in
cells lacking CEMs. We have shown that both ceramide-
activated PKC� and PP2A pathways coexist in 3T3-L1
adipocytes, although in different membrane subdomains
and only to a small extent for the latter. Our hypothesis is
that the relative abundance of CEMs versus non-CEMs
might determine the route by which ceramide acts on
PKB/Akt. To test this hypothesis, we modulated the rela-
tive abundance of CEMs by manipulating caveolin-1 ex-
pression because this protein is a key structural
component required for CEM formation (34). First, to test
the effect of caveolin-1 downregulation, we used undiffer-
entiated 3T3-L1 preadipocytes that expressed much lower
quantities of caveolin-1 than fully differentiated 3T3-L1
adipocytes (35) (Fig. 6A). Total expressions of PKC�,
PP2A, and PKB/Akt did not differ significantly in differen-
tiated and undifferentiated 3T3-L1 (Fig. 6A). As expected,
Fig. 6B shows a near-complete absence of CEMs in 3T3-L1
preadipocytes compared with differentiated 3T3-L1 adipo-
cytes. Interestingly, in these cells, OKA did not potentiate
the insulin effect on PKB/Akt, suggesting that both insulin
and OKA were targeting the same pool of PKB/Akt into the
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cell (Fig. 6C). In both adipocytes (Fig. 2) and preadipo-
cytes (Fig. 6D), ceramide completely inhibited the Ser473
residue phosphorylation of PKB/Akt by insulin. However,
unlike in adipocytes, treatment of the preadipocytes with
OKA prevented the ceramide effect on PKB/Akt by 60%,
whereas overexpression of the KD-PKC� mutant did not
change the ability of ceramide to suppress the hormonal
activation of PKB/Akt (Fig. 6D). Identical results were
observed on both GSK3 isoforms (Fig. 6D). Thus, decreas-
ing the relative abundance of CEMs in adipocytes favors
the ceramide-activated PP2A pathway over the ceramide-
activated PKC� pathway.

To further substantiate the physiological importance of
ceramide on PKB/Akt, we reproduced the latter experi-
ment using palmitate (Fig. 6E). Palmitate can produce
long-chain ceramide de novo by a pathway that is depen-
dent on serine palmitoyl transferase. Generated ceramide
has been shown to promote the inactivation of the insulin-
induced PKB/Akt activation by the same mechanism de-
scribed above with short-chain ceramides (4). Figure 6E
showed that incubation of preadipocytes with 0.75 mmol/l

palmitate for 20 h downregulated the phosphorylation of
PKB/Akt by insulin. Pretreatment of the cells with a serine
palmitoyl transferase inhibitor, myriocin, completely pre-
vented the inhibitory effect of palmitate on PKB/Akt (Fig.
6E), indicating that the lipid was acting on PKB/Akt
through the synthesis of ceramides. As observed with
C2-ceramide–treated cells, if OKA prevented the action of
palmitate on PKB/Akt, overexpression of the KD-PKC�
mutant was not effective (Fig. 6E).

We then examined the effects of an increase of CEM
relative abundance by overexpressing caveolin-1 in human
fibroblasts. In contrast to adipocytes, only 3–5% of the PM
of fibroblasts is of CEM origin (36), and it has been shown
that overexpressing caveolin-1 could induce the formation
of more of these membrane domains (34). We used a
caveolin-1–GFP adenoviral construct that is known to
retain the functional characteristics and intracellular dis-
tribution of the endogenous caveolin-1 (37). Caveolin-1–
GFP overexpression in human fibroblasts did not change
the endogenous expression of PKC�, PP2A, and PKB/Akt
(Fig. 7A). In human fibroblasts, like in preadipocytes, OKA
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did not increase further the phosphorylation of PKB/Akt
by insulin, suggesting that both insulin and OKA act on the
same pool of PKB/Akt (Fig. 7B). Caveolin-1 overexpres-
sion did not affect the ability of ceramide to inhibit
insulin-induced activation of either PKB/Akt or GSK3�/�
(Fig. 7C). In untransfected cells, OKA prevented ceramide
from having an effect, pointing to involvement of a PP2A
pathway, whereas in cells overexpressing caveolin-1, OKA
was much less efficient (Fig. 7C). Conversely, although the
KD-PKC� had no effect on control fibroblasts, it was able
to partially abolish ceramide effects in caveolin-1–overex-
pressing cells. Thus, the differential effects of both OKA
and the KD-PKC� in cells overexpressing caveolin-1 and in
control cells underscore the importance of CEMs in sup-
porting ceramide action via PKC�. Furthermore, the re-
sults show that the lipid can switch from one mechanism
to another, in order to act negatively on PKB/Akt, depend-
ing on the submembrane domain composition of the PM of
the cells.

DISCUSSION

In the present study, we investigated the mechanisms by
which the sphingolipid-derived second messenger cer-
amide induced insulin resistance. As it is established that
ceramide does not act directly on its PKB/Akt target
(17,18), two distinct mechanisms have been proposed to
mediate the inhibitory action of the lipid, one involving
PKC� and the other PP2A. Although not mutually exclu-
sive, it was unclear, until now, why one mechanism was
favored over the other in a given cell type. Our present
data provide an explanation for the alternative use of these
pathways toward PKB/Akt inhibition by ceramide. We
demonstrate that compartmentalization of the PM into
subdomains, and particularly the abundance of CEMs, is a
crucial determinant of the pathway used by ceramide to
inhibit PKB/Akt phosphorylation. We show that in CEM-
enriched PM, ceramide acts through the recruitment of
both PKC� and PKB/Akt within these membrane domains,
whereas in cells with low caveolin expression, hence
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basically devoid of these domains, ceramide inhibits PKB/
Akt mainly via PP2A.

The PM has been shown to be heterogeneous in its lipid
composition, and some lipid species, such as cholesterol
or sphingolipids, are known to segregate into specific
subdomains called lipid rafts that form more ordered and
less fluid regions within the PM (38). One specific subset of
lipid rafts, called CEMs, is composed of membrane regions
characterized by the presence of caveolins. These CEMs
are believed to act as platforms for conducting a variety of
cellular functions by recruiting or excluding specific sig-
naling molecules and also regulating the accessibility of
these proteins to other regulatory or effector molecules
(38). CEM abundance is largely determined by the level of
caveolin expression that is detectable in most cell types
but is very abundant in adipocytes and endothelial cells
where caveolae invaginations can occupy nearly 30% of
the cell surface (39). Ceramide has been shown to accu-
mulate largely in these domains (40), but it is as yet
unclear how they could modulate signaling. The inability
of ceramide to transfer rapidly between lipid bilayers (41)
implies that downstream signaling targets with which
ceramide interacts could be recruited to the PM, rather
than ceramide itself being translocated internally. One of
the best targets of ceramide to be characterized in vitro
has been PKC� (42,43), and very recently a specific protein
fragment of the kinase has been demonstrated to bind

ceramide (44). Here, we have shown that whereas cer-
amide directs PKC� to CEMs to be activated specifically in
response to the lipid, insulin promotes the recruitment of
PKC� outside these membrane subdomains where the
kinase is activated through phosphorylation by PDK1 (45).
Our results suggest that the whole insulin-signaling pro-
cess occurs outside these CEMs. Submembrane compart-
mentalization of PKC�, depending on the stimulus, could
explain the two opposite roles that this kinase plays to
regulate the insulin-signaling pathway (positive with insu-
lin and negative with ceramide). Some studies suggest that
CEMs could also play a role in insulin signaling. Indeed,
contradictory data have been published, some showing
that insulin receptor and GLUT4 could be localized in
CEMs (46), whereas others did not (47,48). More work will
be necessary to solve this discrepancy.

We have also shown that the PP2A pathway for cer-
amide inhibition of PKB/Akt takes place outside the CEMs
of the PM. In agreement with this, one study performed in
3T3-L1 adipocytes has shown that ceramide-activated
PP2A was able to dephosphorylate a cytosolic insulin-
stimulated PKB/Akt construct lacking its PH domain (49).
Our present data, in which the endogenous form of
PKB/Akt has been studied, demonstrate that at least in
adipocytes, a ceramide-stimulated PP2A pathway coexists
with the dominant ceramide-activated PKC� pathway. The
fact that the overexpression of the KD-PKC� mutant did
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not completely prevent the ceramide effect on PKB/Akt in
adipocytes could be explained by the fact that 1) the lack
of PKC� activity in these cells amplified the PP2A pathway
activated by ceramide, and 2) the transfection efficiency of
adipocytes is known to be quite poor (50). By manipulat-
ing caveolin-1 expression levels, we demonstrated that the
relative abundance of CEMs within the PM represents a
switch for one pathway at the expense of the other. The
PP2A pathway is operating only in preadipocytes or fibro-
blasts with low CEM abundance and to a much smaller
extent in CEM-containing cells such as adipocytes. Our
previous results on mice adipocytes treated with ceramide
suggested a similar shift from a PKC�-dependent machin-
ery in wild-type adipocytes to a mechanism involving
PP2A in caveolin-1 knockout adipocytes (22). Indeed,
adipocytes lacking CEMs, although partly resistant to
ceramide action, still displayed a 60% reduction in insulin-
induced PKB/Akt phosphorylation, suggesting that the
ceramide-activated PP2A pathway substituted for the one
involving PKC� in these cells.

In summary, this study points to the importance of
membrane composition and CEM abundance to determine
the molecular mechanisms by which ceramide inhibits
insulin-stimulated PKB/Akt. In adipocytes, the stimulation
of glucose transport by insulin requires the activation of
both PKC� and PKB/Akt (Fig. 8A). In these cells, the
preferential sublocalization of ceramide within abundant
CEMs drives its negative action on PKB/Akt nearly exclu-
sively through the mechanism involving PKC� (Fig. 8B).
However, in cells lacking CEMs, ceramide inhibits insulin-
activated PKB/Akt through its dephosphorylation by PP2A
(Fig. 8C). These data highlight that redundant pathways
exist within cells to mediate negative actions of ceramide
on insulin sensitivity. This clearly indicates that targeted
approaches to a single pathway (either PKC� or PP2A)
would not be efficient strategies to fight ceramide-induced
insulin resistance. Instead, efforts to prevent ceramide
accumulation in insulin-sensitive tissues would be a more
accurate approach.
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