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OBJECTIVE—Intestinal lipoprotein production has recently
been shown to be increased in insulin resistance, but it is not
known whether it is regulated by insulin in humans. Here, we
investigated the effect of acute hyperinsulinemia on intestinal
(and hepatic) lipoprotein production in six healthy men in the
presence and absence of concomitant suppression of plasma free
fatty acids (FFAs).

RESEARCH DESIGN AND METHODS—Each subject under-
went the following three lipoprotein turnover studies, in random
order, 4–6 weeks apart: 1) insulin and glucose infusion (eugly-
cemic-hyperinsulinemic clamp) to induce hyperinsulinemia, 2)
insulin and glucose infusion plus Intralipid and heparin infusion
to prevent the insulin-induced suppression of plasma FFAs, and
3) saline control.

RESULTS—VLDL1 and VLDL2-apoB48 and -apoB100 produc-
tion rates were suppressed by 47–62% by insulin, with no change
in clearance. When the decline in FFAs was prevented by
concomitant infusion of Intralipid and heparin, the production
rates of VLDL1 and VLDL2-apoB48 and -apoB100 were interme-
diate between insulin and glucose infusion and saline control.

CONCLUSIONS—This is the first demonstration in humans that
intestinal apoB48-containing lipoprotein production is acutely
suppressed by insulin, which may involve insulin’s direct effects
and insulin-mediated suppression of circulating FFAs. Diabetes
59:580–587, 2010

D
yslipidemia is a well-recognized feature of insu-
lin resistance and type 2 diabetes and is a
common risk factor for atherosclerotic cardio-
vascular disease. Hypertriglyceridemia, low

plasma concentrations of HDL, and qualitative changes in
LDL comprise the typical dyslipidemia, which is felt to
play an important but not exclusive role in accelerated
atherosclerosis of affected individuals (1,2). Overproduc-
tion of large, triglyceride-rich, apolipoprotein (apo)B100-
containing, hepatic VLDL1 particles has been well
documented in animal models and in humans with insulin
resistance and type 2 diabetes and contributes to dyslipi-

demia (3,4). In addition, postprandial hyperlipidemia and
elevated plasma concentrations of intestinal apoB48-con-
taining particles have been demonstrated in insulin-resis-
tant states (5–9). We and others have recently shown that
insulin-resistant animal models and humans have overpro-
duction of intestinal, apoB48-containing lipoproteins (10–
12). Whereas numerous factors are known to regulate
hepatic lipoprotein particle overproduction, less is known
about factors that regulate intestinal lipoprotein produc-
tion in insulin-resistant conditions.

We have recently shown that acute elevation of plasma
free fatty acids (FFAs) stimulates not only hepatic (13) but
also intestinally derived apoB48-containing lipoprotein
particles in fed humans (14), demonstrating that at least
one of the factors involved in the regulation of hepatic
lipoprotein production also regulates intestinal lipoprotein
particle production. Insulin has been shown both in vitro
(9,15,16) and in vivo (13,17–22) in animals and humans to
acutely suppress hepatic apoB100-containing lipoprotein
particle production. This acute suppressive effect on VLDL
in fasting individuals has been shown to be in part
dependent on the FFA suppression induced by acute
hyperinsulinemia in vivo (13,21) and is due predominantly
to suppression of the VLDL1 fraction with no (22) or an
opposite (17) effect on VLDL2. Insulin-resistant hyperinsu-
linemic, obese humans and those with type 2 diabetes are
resistant to the acute inhibitory effect of insulin on VLDL
production (18,20), as are primary cultured hepatocytes
derived from insulin-resistant rats (23). At least part of
the effect of insulin is direct, occurring by co- and post-
translational mechanisms through increasing posttransla-
tional protein degradation (24). Incubation of human fetal
small intestinal cells with insulin has also been shown to
reduce chylomicron secretion (25). Recent studies have
shown that intestinal lipoprotein production in chow-fed
hamsters is responsive to the acute inhibitory effect of
insulin, whereas enterocytes derived from insulin-resistant,
fructose-fed hamsters are resistant to this acute sup-
pressive effect of insulin through an aberrant intestinal
insulin-signaling cascade (26). The responsiveness of in-
testinal lipoprotein secretion to acute hyperinsulinemia
has not previously been examined in humans.

In the present study, we used the euglycemic-
hyperinsulinemic clamp technique to examine the effects
of acute hyperinsulinemia on VLDL1 and VLDL2 intestinal
(apoB48) and hepatic (apoB100) lipoprotein production in
six healthy men in a constant fed state. We found that
insulin infusion suppresses both VLDL1 and 2 apoB48 and
apoB100 concentrations as a result of suppression of
VLDL1 lipoprotein secretion, with consequently less
VLDL2 formed from VLDL1. When Intralipid and heparin
were coinfused to prevent insulin-induced suppression of
plasma FFAs, production rates of these lipoproteins were
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still suppressed, although to a lesser extent. These results
indicate that insulin directly suppresses both intestinal
and hepatic lipoprotein production in humans.

RESEARCH DESIGN AND METHODS

The demographic characteristics and fasting biochemical profiles of the six
healthy, normolipidemic male participants in this study are outlined in Table
1. None of the participants had any previous history of cardiovascular disease,
gastrointestinal or systemic illness, or surgical intervention within 6 months
prior to the studies. No subjects were taking medications, and all had normal
oral glucose tolerance tests performed immediately prior to enrollment in the
study. The Research Ethics Board of the University Health Network, Univer-
sity of Toronto, approved the study, and all subjects gave written informed
consent prior to their participation.

Experimental protocol for lipoprotein kinetic studies. Each subject
underwent three separate lipoprotein kinetic studies as described below, in
random order, 4–6 weeks apart (Fig. 1A). In each study, following an
overnight fast (no food ingested after 5:00 P.M. the night before the kinetic
study), an intravenous catheter was inserted into a superficial vein in each
forearm: one for infusion and one for blood sampling. Kinetic studies were
performed in the constant fed state because apoB48 levels are too low in the
fasted state to accurately assess isotopic enrichments for calculation of
kinetic parameters. To achieve a constant fed state, the subjects ingested
aliquots of a liquid food supplement (Hormel Great Shake Plus from Hormel
Health Labs: total fat 10% by weight, saturated fat 1.5%, trans fat 0%,
monounsaturated fat 2.6%, polyunsaturated fat 5.6%, and cholesterol 0%; 49%
calories from fat, 38% from carbohydrates, and 13% from proteins) every hour
for the first 3 h starting at 4:00 A.M., with each hourly aliquot equivalent to
one-sixteenth of their total daily caloric needs. After the first 3 h (after 7:00
A.M.), the subjects ingested the same formula every half hour for the remainder
of the study, with each aliquot equivalent to 1/34th of their daily caloric intake.
The Harris-Benedict Equation was used to estimate the total daily energy
requirement for each subject.

In the insulin (INS) study, circulating insulin levels were increased through
intravenous infusion of insulin (40 mU/m2 per min, Humulin R; Eli Lilly
Canada, Toronto, ON, Canada), starting at 7:00 A.M. Blood glucose was
assessed at the bedside using a Beckman Glucose Analyser (Beckman Coulter
Canada, Mississauga, Canada) every 5–10 min, and a 20% dextrose solution
was infused at a varied rate to maintain the blood glucose in the 5–6 mmol/l
range. In the saline (SAL) study, saline was infused at 65 ml/h. Because insulin
suppresses circulating FFAs, a second control study (insulin plus Intralipid
and heparin [INS�IH]) was performed, where Intralipid (20% solution at 15
ml/h) and heparin (250 units/h) were coinfused with insulin and dextrose to
prevent a decrease in circulating FFAs. The Intralipid plus heparin infusion
protocol has been routinely used to elevate circulating FFAs (14,27).

Six hours after starting the liquid formula ingestion and 3 h after starting the
saline, insulin, or insulin plus Intralipid and heparin infusions (i.e., 10:00 A.M.), all
subjects received a primed, constant infusion (10 �mol/kg bolus followed by 10
�mol � kg�1 � h�1 for 10 h) of L-[5,5,5-2H3]-leucine (D3-leucine, 98%; Cambridge
Isotope Laboratories, Andover, MA) for assessment of production and clearance

TABLE 1
Demographic characteristics and fasting biochemical parameters
of subjects (n � 6)

Mean � SE Range

Age (years) 44.7 � 4.9 21–54
Weight (kg) 78.3 � 2.6 65.3–81.8
BMI (kg/m2) 24.0 � 0.8 21.7–25.9
Glucose (mmol/l) 4.98 � 0.13 4.4–5.3
Insulin (pmol/l) 39.7 � 1.7 27.0–76.2
Plasma FFA (mmol/l) 0.40 � 0.05 0.3–0.6
Plasma TG (mmol/l) 0.77 � 0.07 0.5–1.00
Plasma total cholesterol (mmol/l) 3.73 � 0.22 3.0–4.2
VLDL1 apoB48 (mg/l) 0.35 � 0.06 0.13–0.48
VLDL1 apoB100 (mg/dl) 1.14 � 0.20 0.8–1.96
VLDL2 apoB48 (mg/l) 0.66 � 0.07 0.38–0.82
VLDL2 apoB100 (mg/dl) 1.22 � 0.23 0.61–1.92

FIG. 1. Study protocol (A) and plasma TG (B), FFA (C), and insulin (D) levels over the time course of the kinetic study. At 4:00 A.M., subjects
started to ingest identical hourly and then half-hourly volumes of a liquid food supplement. Three hours after starting to ingest the formula, an
intravenous infusion of INS, SAL, or INS � IH was started. Three hours after starting the intravenous infusions, a primed, continuous intravenous
infusion of L-[5,5,5-2H3]-leucine was administered for an additional 10 h to enrich apoB48 and -B100 (A). Plasma TG (B), FFA (C), and insulin (D)
levels were measured after an overnight fast and then throughout the 10-h lipoprotein turnover study (0–10 h) in subjects receiving INS, SAL,
or INS � IH (n � 6). Values are means � SEM for each group. Over the time course of the kinetic study, the overall significance between the three
studies was *P < 0.0001 for both plasma TG and FFA concentrations, with TG and FFA concentrations significantly lower in INS vs. SAL and
INS � IH but no significant difference between INS � IH and SAL. The overall significance of insulin concentrations between the three studies was
*P < 0.0001, with insulin concentrations significantly higher in INS and INS � IH vs. SAL but no significant difference between INS and INS � IH.
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rates of the lipoprotein particles as previously described (28). After the start of the
D3-leucine infusion, blood samples were collected at 1, 2, 3, 5, 7, 9 and 10 h for
isolation of lipoproteins. Blood samples for insulin, FFA, and triglyceride (TG)
analysis were collected as previously described (14).
Laboratory methods. Plasma was separated from blood samples within 2 h
and subjected to cumulative flotation gradient ultracentrifugation to isolate
VLDL1 and VLDL2 fractions (29,30). Briefly, plasma was adjusted to d � 1.10
g/ml with NaCl. A discontinuous density gradient consisting of 4 ml of d � 1.10
g/ml of plasma, 3 ml of d � 1.063 g/ml, 3 ml of d � 1.019 g/ml, and 2.8 ml of
d � 1.006 g/ml NaCl solution was created. The Ti40 SW rotor (Beckman, Palo
Alto, CA) was subjected to centrifugation at 40,000 rpm at 4°C. Consecutive
runs were preformed to separate fractions that correspond to chylomicron (Sf
�400 for 38 min), VLDL1 (Sf 60–400 for 3 h and 28 min), and VLDL2 (Sf 20–60
for 17 h). After each step, 1 ml of the gradient containing specific lipoprotein
fraction was aspirated and 1 ml of d � 1.006 g/ml was used to refill the tubes
before the next run.

VLDL fractions with �1,000 �g protein were delipidated and separated by
preparative 3.3% SDS-PAGE. Gel bands corresponding with apoB48 and apoB100
were excised. ApoB48 and apoB100 gel slices were hydrolyzed and derivatized to
allow for the determination of plasma leucine isotopic enrichment as previously
described (11). Briefly, samples were heated at 110°C with 6N HCl and norleucine
as the internal standard for 24 h and dried under vacuum before being derivatized
with 100 �l mixture (1:1) of acetonitrile:N-tert-butyldimethyl-N-methyltrifluora-
cetamide (Sigma-Aldrich). Plasma free amino acids were recovered from 0.25 ml
plasma after precipitation of proteins with 1.8 ml acetone and extraction of the
aqueous phase with hexane (31). The aqueous phase was dried under vacuum and
amino acids derivatized and enrichments determined as described above. Deri-
vatized samples were analyzed by electron impact ionization gas chromatog-
raphy–mass spectrometry (Agilent 5975/6890N; Agilent Technologies Canada,
Mississauga, ON, Canada) using helium as the carrier gas (32). Selective ion
monitoring at m/z � 200 and 203 was performed, and tracer-to-tracee ratios
were calculated from isotopic ratios for each sample according to the
formula derived by Cobelli et al. (33).

Triglycerides were measured using an enzymatic colorimetric kit (Roche
Diagnostics, Mannheim, Germany). This assay eliminates free glycerol in a
preliminary reaction prior to enzymatic hydrolysis of TG and determination of the
liberated glycerol; therefore, the presence of free glycerol in Intralipid does not
affect the TG assay results. Cholesterol was determined using the CHOD-PAP
enzymatic colorimetric kit (Roche Diagnostics). FFAs were determined with the
nonesterified fatty acid (NEFA) colorimetric method (Wako Industrials, Osaka,
Japan). Plasma insulin concentrations were assayed by radioimmunoassay using
a human-specific insulin kit (Linco Research, St. Louis, MO). ApoB100 was
separated by 3–8% SDS-PAGE and quantified using an LDL apoB100 standard as
previously described (34). ApoB48 mass was determined using a human apoB48
ELISA kit with an intra-assay coefficient of variation (CV) of 3.5% and interassay
CV of 5.7% (Shibayagi, Japan).
Calculation of lipoprotein production and clearance rates by compart-

mental modeling. Stable isotope enrichment curves for apoB48 and apoB100
were fitted to a multicompartmental model using SAAM II software (version 1.2;
University of Washington, Seattle, WA). Both apoB48 and apoB100 were modeled

using the same structural model (Fig. 2). Incorporation of leucine into VLDL1 and
VLDL2 occurred via the delay compartment 2. Individual enrichment (tracer-to-
tracee ratios) and apoB masses were used to derive kinetic rate constants that
were independent for the two subsystems. Plasma leucine enrichment was used
as a forcing function. The fractional catabolic rate (FCR) of VLDL1 was the sum
of the conversion from VLDL1 to VLDL2 and the direct loss from the VLDL1
compartment. Adjustment was allowed for all of the parameters except the delay,
which was set to 0.5 h—as used by others (22). Production rates were calculated
using the FCR of VLDL1 and VLDL2 apoB48 or VLDL1 and VLDL2 apoB100
multiplied by pool size measured over the 10 h of the kinetic study, where pool
size � average plasma concentration (mg/l) between 1 and 10 h of the kinetic
study � plasma volume/kg body wt (estimated as 0.045 l/kg).
Statistics. Results are presented as means � SEM. Mean values of the
parameters of interest and statistical comparison between studies were
calculated during the 10-h kinetic study (i.e., from �10:00 A.M. to 8:00 P.M.,
which is the time period during which deuterated leucine was infused).
Repeated-measures ANOVA was used to compare the kinetic experiments
and other results between the three groups, followed by a pairwise
comparison post hoc (Tukey’s and Tamhane’s) to examine the differences
between the groups. All analyses were performed with SPSS (version 15).
For all of the analyses, a P value 	0.05 was considered significant.

RESULTS

Plasma insulin, FFA, and TG concentrations. By de-
sign, INS infusion increased plasma insulin levels by more
than fourfold compared with SAL (INS 348 � 34 and INS �
IH 333 � 32 vs. SAL 64.8 � 19.9 pmol/l; P 	 0.0001), while
insulin concentrations were similar in INS and INS � IH
(P � ns). As a result of the hyperinsulinemia, plasma FFA
concentrations in INS were suppressed by more than
twofold compared with SAL, which was prevented by
INS � IH infusion (INS 0.12 � 0.01 and INS�IH 0.29 � 0.03
vs. SAL 0.25 � 0.05 mmol/l; P � 0.0001) (Fig. 1C; Table 2).
Plasma TG in all treatments increased in response to feeding
and remained constant throughout the 10-h kinetics study.
INS infusion resulted in decreased levels of circulating TG
compared with SAL infusion (P 	 0.0001, INS vs. SAL), while
INS � IH coinfusion prevented the insulin-induced decrease
in plasma TG and caused an additional rise in plasma TG
concentration compared with SAL infusion (P 	 0.0001,
INS � IH vs. SAL) (Fig. 1B; Table 2).
Effect of acute hyperinsulinemia, with and without
decreased plasma FFAs, on VLDL1 and VLDL2
apoB48 and apoB100 concentrations. VLDL1 and
VLDL2 apoB48 concentrations rose after the start of
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FIG. 2. Compartmental model of VLDL1 and VLDL2 apoB metabolism. The same structural model was used for both apoB48 and apoB100. D2,
intracellular delay compartment that accounts for synthesis, assembly, and secretion of apolipoproteins; Q1, plasma deuterated-leucine
enrichment; Q4, isotopic dilution; Q11, VLDL1 lipoprotein output for apoB48 or apoB100; Q12, VLDL2 lipoprotein output for apoB48 or apoB100.
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ingestion of the high-fat liquid formula (at 4:00 A.M.) and
then remained elevated but constant throughout the 10-h
kinetic study (from 10:00 A.M. to 8:00 P.M.). The overall
difference for VLDL1 and VLDL2 apoB48 concentrations
between the three studies was significant at P 	 0.0001
and P � 0.036, respectively. Post hoc analysis revealed
that insulin infusion in INS was associated with a signifi-
cant reduction in both VLDL1 and VLDL2 apoB48 concen-
trations compared with SAL and INS � IH, which were not
different from one another (Fig. 3A and C) (VLDL1
apoB48: INS 0.90 � 0.27, SAL 1.83 � 0.19, and INS � IH
1.63 � 0.15 mg/l; VLDL2 apoB48: INS 1.12 � 0.33, SAL
1.58 � 0.11, and INS � IH 1.56 � 0.15 mg/l) (Table 2).
Similarly, both VLDL1 and VLDL2 apoB100 concentra-
tions differed (P 	 0.0001) between the three studies
over the time course of the kinetic study. Again, with
post hoc comparison, INS was shown to be significantly
different from SAL and INS � IH, whereas no differences
were observed between SAL and INS � IH. (Fig. 3B and
D) (VLDL1 apoB100: INS 0.70 � 0.16, SAL 1.76 � 0.42,
and INS � IH 1.97 � 0.51 mg/dl; VLDL2 apoB100: INS
0.94 � 0.31, SAL 1.96 � 0.56, and INS�IH 1.90 � 0.47
mg/dl) (Table 2).
Effect of acute hyperinsulinemia, with and without
decreased plasma FFAs, on VLDL1 and VLDL2
apoB48 and B100 fractional catabolic and produc-
tion rates. To elucidate the mechanism of hyperinsuline-
mia-associated reductions in both VLDL1 and VLDL2 apoB48
and B100 concentrations, we further examined whether the
reductions were due to increased FCRs or decreased pro-
duction rates. FCRs did not differ significantly between the

three studies for apoB48 or apoB100 in either of the two
VLDL fractions (Table 2; Fig. 4A–D) (individual kinetics
parameters are shown in the supplementary Table, which is
available at http://diabetes.diabetesjournals.org/cgi/content/
full/db09-1297/DC1). Instead, the decreased plasma con-
centrations were due to reduced production, indicated
by lower production rates of apoB48 and apoB100 in
VLDL1 (INS vs. SAL, P � 0.009 for apoB48 and P � 0.029
for apoB100) and apoB48 in VLDL2 (P � 0.01 vs. SAL)
and a trend toward a reduction in VLDL2 apoB100 (P �
0.067 vs. SAL) (Table 2; Fig. 4E–H). VLDL1 and -2
apoB48 and apoB100 production rates in INS � IH were
in all cases intermediate between INS and SAL but were
not significantly different from those in the other two
studies. A further breakdown of the source of produc-
tion indicated that the production of apoB48 in the
VLDL2 fraction was entirely via VLDL1 in all treatment
groups. Insulin-induced suppression of VLDL2 apoB48
concentration was therefore entirely attributable to its
reduced production via VLDL1 (INS vs. SAL, P 	 0.05).
In contrast, a significant proportion of the production of
VLDL2 apoB100 was direct (i.e., not via VLDL1), which
was similar between treatments. Production of VLDL2
apoB100 via VLDL1 was significantly suppressed by
insulin (INS vs. SAL, P 	 0.05), whereas direct VLDL2
apoB100 production was not suppressed by insulin.

DISCUSSION

In this study, we investigated the effect of acute hyperin-
sulinemia on intestinal and hepatic lipoprotein production

TABLE 2
Mean plasma and VLDL1 and VLDL2 lipids, apoB48 and B100 concentrations, FCRs, and production rates during the kinetic study in
three experimental conditions

Variable INS SAL INS � IH

Plasma FFA (mmol/l) 0.12 � 0.01* 0.25 � 0.05 0.29 � 0.03
Plasma TG (mmol/l) 1.03 � 0.16* 1.46 � 0.10 1.91 � 0.23
VLDL1 TG (mmol/l) 0.21 � 0.07* 0.40 � 0.03 0.50 � 0.09
VLDL1 cholesterol (mmol/l) 0.05 � 0.02* 0.10 � 0.01 0.12 � 0.03
VLDL1 apoB48

Concentration (mg/l) 0.90 � 0.27* 1.83 � 0.19 1.63 � 0.15
FCR (pools/day) 17.6 � 5.6 12.3 � 2.4 10.3 � 1.1
Production rate (mg � kg�1 � day�1) 0.44 � 0.14* 0.93 � 0.09 0.73 � 0.06

VLDL1 apoB100
Concentration (mg/dl) 0.70 � 0.16* 1.76 � 0.42 1.97 � 0.51
FCR (pools/day) 11.8 � 3.0 11.7 � 0.9 8.2 � 1.4
Production rate (mg � kg�1 � day�1) 3.40 � 0.93* 8.98 � 2.05 6.09 � 1.08

VLDL2 TG (mmol/l) 0.19 � 0.06* 0.25 � 0.03 0.36 � 0.12
VLDL2 cholesterol (mmol/l) 0.07 � 0.02* 0.11 � 0.02 0.14 � 0.03
VLDL2 apoB48

Concentration (mg/l) 1.12 � 0.33* 1.58 � 0.11 1.56 � 0.15
FCR (pools/day) 10.2 � 1.99 12.9 � 1.5 11.3 � 1.7
Production rate (mg � kg�1 � day�1)

Total 0.44 � 0.14* 0.89 � 0.08 0.75 � 0.05
Direct 0.00 � 0.01 �0.03 � 0.02 0.01 � 0.02
Via VLDL1 0.44 � 0.14* 0.93 � 0.09 0.73 � 0.06

VLDL2 apoB100
Concentration (mg/dl) 0.94 � 0.31* 1.68 � 0.58 1.90 � 0.47
FCR (pools/day) 15.6 � 4.2 16.7 � 2.8 11.7 � 1.7
Production rate (mg � kg�1 � day�1)

Total 5.94 � 1.69 11.2 � 2.5 9.07 � 1.52
Direct 2.54 � 1.36 2.21 � 0.65 2.98 � 0.98
Via VLDL1 3.40 � 0.93* 8.98 � 2.05 6.09 � 1.08

Data are means � SE for the duration of the 10-h kinetic study. *P 	 0.05 vs. SAL.
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in humans in a constant fed state in the presence and
absence of insulin-induced suppression of plasma FFAs.
We have previously shown that insulin acutely suppresses
TG-rich lipoprotein (TRL) total apoB (mainly apoB100) TG
and particle production—at least partly as a result of
hyperinsulinemia-induced suppression of plasma FFAs (13).
We have also recently shown that short-term elevation of
plasma FFAs stimulates hepatic apoB100-containing li-
poprotein production, in both the fasted (13) and fed (14)
states, as well as intestinal apoB48-containing lipoprotein
production in the fed state (14), suggesting that factors
similar to those involved in the regulation of hepatic
lipoprotein production regulate intestinal lipoprotein pro-
duction. Here, in addition to confirming our previous
findings that insulin acutely suppresses hepatic apoB100-
containing lipoprotein production, we also demonstrated for
the first time in humans that insulin acutely suppresses
intestinal apoB48-containing lipoprotein production, which
could only be partly accounted for by insulin-mediated
suppression of plasma FFAs and may involve mechanisms
independent of suppression of plasma FFAs.

We examined apoB48 and apoB100 lipoprotein metabo-
lism in large VLDL1 and small VLDL2 subclasses of TRL,
separately. VLDL1 and VLDL2 were isolated by cumulative
flotation gradient ultracentrifugation, and the chylomicron
fraction was removed before the remaining two fractions
were separated. The chylomicron fraction contains rela-
tively few, very large, TRL particles with considerably less
apoB48 and -B100 content compared with that of VLDL1

and VLDL2 fractions (35,36). In fact, in our study the
apoB48 content in the chylomicron fraction was too low to
be utilized for accurate quantification of stable isotope
enrichment and kinetic modeling. We therefore limited our
kinetic studies to the VLDL1 and VLDL2 fractions. A novel
finding in our study, besides the demonstration that insulin
acutely suppresses lipoprotein production of both the
hepatic and intestinal sources, was that both VLDL1 and
VLDL2 fractions responded to insulin in a qualitatively
similar fashion. Several previous studies have suggested
that these two fractions might possess distinct kinetic
properties. Adiels et al. (17) have reported that insulin
acutely suppresses VLDL1 apoB secretion while stimulat-
ing VLDL2 apoB secretion, demonstrating an inverse re-
sponse between VLDL1 and VLDL2 to insulin. Malmstrom
et al. (22) showed a decrease in VLDL1 apoB production
with INS infusion, similar to the findings of the present
study, while no net response to insulin was noted in the
VLDL2 fraction. One obvious difference between our study
and those of Adiels et al. (17) and Malmstrom et al. (22) is
that our study was performed with subjects in the fed
rather than the fasted state, with ongoing absorption of
luminal fatty acids. Whether this factor accounts for the
difference in insulin’s effects on VLDL2 apoB100 produc-
tion remains to be determined. If direct loss of VLDL1
apoB48 and B100 is minimal and the majority of VLDL1 is
converted to VLDL2, as was the case in the current study,
an intervention such as INS infusion that suppresses
VLDL1 apoB production would subsequently lead to a
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FIG. 3. Plasma VLDL1 and VLDL2 apoB48 and apoB100 concentrations over the time course of the kinetic study. VLDL1 (A and B) and VLDL2 (C

and D) apoB48 (A and C) and -B100 (B and D) concentrations (conc) were measured after an overnight fast and then throughout the 10-h
lipoprotein turnover study (0–10 h) in the three experimental conditions: INS, SAL, and INS � IH (n � 6). Subjects ingested a liquid fat formula
for 16 h to achieve a constant fed state. Values are means � SEM for each group. The overall significance for both VLDL1 and VLDL2 apoB48
concentrations between the three groups was *P < 0.0001, with VLDL1 apoB48 and apoB100 concentrations significantly lower in INS vs. SAL and
IH � INS but no significant difference between INS � IH and SAL. Similarly for VLDL2, the overall significance between the three groups for
apoB48 and apoB100 was *P � 0.036 for apoB48 and *P < 0.0001 for apoB100, with concentrations significantly lower in INS vs. SAL and IH �
INS and no significant difference between INS � IH and SAL.
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reduced production of VLDL2 apoB from VLDL1. Our
study therefore is in agreement with the study of Malm-
strom et al. (22), with extended information on apoB48
production. The dominant effect of acute hyperinsulinemia
is to suppress hepatic and intestinal production of large,
VLDL1-density fraction particle production, whereas the
reduction in VLDL2 apoB48 and -B100 in response to acute
hyperinsulinemia was due to the reduction in production
via VLDL1 apoB48 and -B100 but not their direct produc-
tion. This finding would seem to suggest a similar mecha-
nism of action in hepatocytes and intestinal enterocytes.

Although there were no significant detectable effects of
the three experimental conditions on the FCR of VLDL1
and -2 apoB48 and apoB100, we cannot definitively ex-
clude an effect of these interventions on particle clear-
ance. In fact, both heparin and insulin have been well
described to stimulate lipase activity (37), which would be
anticipated to enhance particle clearance. With the use of
a constant infusion of an endogenous tracer, FCR is
measured as a replacement of unlabeled VLDL with the
endogenous tracer, i.e., the appearance but not the disap-
pearance of the tracer. Although there might be a transient
increase in the initial FCR immediately after INS � IH
infusion, kinetics was measured in our study in a newly
established steady state after 3 h of INS � IH infusion. In
our previous studies that examined the effect of insulin on
VLDL production in humans using a semiquantitative
radiolabeling technique (13,18,19), we noted a rapid de-
cline in VLDL pool size after the infusion of INS � IH, and
this was presumably contributed to by stimulation of
particle clearance (in addition to suppression of produc-
tion), although the kinetics during the non–steady state
initial 3-h window could not be assessed using that exper-
imental method. However, after �3 h a new steady state
was established, which was characterized predominantly
by suppression of production. Therefore, it is possible that
stimulation of TRL clearance by heparin and insulin are

most marked shortly after initial administration of insulin,
heparin, or both. If there was an initial increase in apoB
FCR in the present study, this may not have been detect-
able because the kinetics study was started 3 h after INS �
IH infusion began in order to allow a new steady state to
occur. A second possible factor is the fact that our
subjects were studied in the constant fed state—as op-
posed to the majority of previous studies that have used
similar techniques in humans. Perhaps the constant influx
of lipid in some way masks an effect of heparin and insulin
on particle clearance. A third theoretical possibility that
could explain the absence of a detectable effect on FCR is
that accumulation of synthetic Intralipid TRL particles
may have impaired the clearance of endogenously synthe-
sized apoB-containing TRL particles (38,39), thereby neu-
tralizing any theoretical increase in clearance by insulin or
Intralipid.

The mechanism by which insulin suppresses lipoprotein
production is not clear. Insulin decreases FFA flux to the
liver by its antilipolytic effect in adipose and other extra-
hepatic tissues (40), thereby indirectly suppressing VLDL
biosynthesis and hepatic lipoprotein production in previ-
ous studies (13) and intestinal lipoprotein production as
shown in the present study. However, suppression of
hepatic lipoprotein production was not completely abro-
gated by preventing the insulin-mediated suppression of
FFAs; thus, when Intralipid was coinfused with insulin,
production rates of intestinal and hepatic lipoprotein
particles tended to be intermediate between the INS and
SAL experiments—though not significantly different from
either study. We speculate, therefore, that the effect of
insulin on lipoprotein production is not fully attributed to
its antilipolytic and FFA-mediated effects and that mech-
anisms independent of suppression of plasma FFAs are
also involved, as we have previously demonstrated for
hepatic lipoprotein production (13). Previous studies sug-
gest that insulin regulates hepatic lipoprotein production
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FIG. 4. Effect of insulin infusion on VLDL1 and VLDL2 apoB48 and apoB100 FCRs and production rates. VLDL1 apoB48 (A), VLDL2 apoB48 (B),
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(F) production rates decreased significantly in INS compared with SAL and INS � IH, with the overall significance between the three studies *P �
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apoB100 production rate (H) did not reach significance but showed a strong trend toward reduction (P � 0.067). VLDL1 and -2 apoB48 and B100
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at a co- or posttranslational level because acute hyperin-
sulinemia does not affect apoB mRNA levels (15,41,42),
although it is also noted that direct evidence that insulin
promotes apoB degradation in humans is currently not
available and is still controversial in animal models. For
instance, apoB secretion is increased in mice with com-
plete deficiency of liver insulin receptor (43) but is de-
creased in mice with very low levels of liver insulin
receptor (44). Insulin may mediate VLDL formation in the
liver through regulation of the insulin-signaling cascade
(45–47) and through upregulation of genes responsible for
shifting TG and FFA from VLDL formation into the cyto-
solic storage pool and promotion of cytosolic lipid drop-
lets formation (48,49). Microsomal TG transfer protein
(MTP) is necessary for the assembly of the nascent
lipoprotein particles, and insulin negatively regulates MTP
expression via activation of the mitogen-activated protein
kinase (50), although the time course of insulin regulation
of MTP protein suggests that it is unlikely to be the key
regulatory site of acute insulin action (51). More recently,
in vivo and ex vivo studies in the Syrian Golden hamsters
have demonstrated that intestinal lipoprotein production
in the chow-fed hamsters is responsive to the inhibitory
effect of insulin, whereas in insulin-resistant fructose-fed
hamsters, intestinal lipoprotein production is refractory to
insulin inhibition, suggesting aberrant insulin signaling as
an important factor in intestinal lipoprotein particle over-
production in insulin-resistant states (26). Qin et al. (52)
have recently shown that intestinal insulin resistance
induced by the proinflammatory cytokine tumor necrosis
factor-
 (TNF-
) is associated with overproduction of
intestinally derived lipoproteins in hamsters. TNF-
 acts
via TNF-
 receptors p55 and p75, and the induction of the
p38 mitogen-activated protein kinase pathway could be
one of the mechanisms leading to insulin resistance and
accompanying intestinal lipoprotein overproduction in
those animals. LDL receptor (LDLR) can affect VLDL apoB
production through modulation of intracellular apoB deg-
radation (53,54). VLDL apoB production is increased in
LDLR-null familial hypercholesterolemia patients (55).
Acute administration of insulin upregulates LDLR (56);
thus, acute insulin may suppress VLDL apoB production
through upregulation of LDLR in our study. Future studies
examining the effects of acute insulin on VLDL apoB
production in LDLR-null patients would yield more direct
evidence for this mechanism.

This study has extended previous findings in animal
models of insulin resistance to humans and also from the
liver to the intestine, demonstrating conclusively that
intestinal lipoprotein particle production is inhibited in
vivo by acute hyperinsuliemia. Furthermore, in the present
study we have shown that insulin inhibits hepatic apoB100
production acutely in the constant fed state—not only in
the fasted state, as has previously been shown (13).
Postprandial lipemia and accumulation of intestinally de-
rived apoB48-containing lipoproteins seen in diabetes is
therefore due not only to delayed clearance but also to
increased production of these particles. In this respect, the
intestine is regulated in a fashion that is similar to the liver.
Even though the absolute production rate of hepatic
(apoB100) lipoprotein particles was about eightfold
greater than that of intestinal (apoB48) particles under
these experimental conditions, an increase in apoB48
production may contribute to postprandial lipaemia and
potentially to atherosclerosis, given that those particles
have been shown to be atherogenic (11,30). Future

studies in humans are required to assess whether the
acute suppression of intestinal lipoprotein production
by insulin is blunted in the insulin-resistant state and
diabetes, as has been shown recently in the fructose-fed
Syrian Golden hamsters (26) and as we (18) and others
(20) have previously shown to be the case for hepatic
VLDL secretion. If this is indeed shown to be the case,
then resistance to insulin’s acute suppressive effect may
play an important role in the overproduction of intesti-
nal lipoproteins in insulin-resistant and type 2 diabetic
individuals.

In conclusion, the present study provides evidence that
intestinal apoB48-containing lipoprotein production in hu-
mans is inhibited by acute hyperinsulinemia and that this
effect is in part dependant on insulin-mediated suppres-
sion of plasma FFAs. This study extends previous obser-
vations in animal models to humans and now provides
definitive proof that circulating metabolites (FFAs) and
hormones (insulin) play an important regulatory role in
the secretion of intestinal lipoproteins.
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