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ABSTRACT

Most methods for studying divergence with gene flow rely upon data from many individuals at few loci.
Such data can be useful for inferring recent population history but they are unlikely to contain sufficient
information about older events. However, the growing availability of genome sequences suggests a
different kind of sampling scheme, one that may be more suited to studying relatively ancient divergence.
Data sets extracted from whole-genome alignments may represent very few individuals but contain a very
large number of loci. To take advantage of such data we developed a new maximum-likelihood method for
genomic data under the isolation-with-migration model. Unlike many coalescent-based likelihood
methods, our method does not rely on Monte Carlo sampling of genealogies, but rather provides a precise
calculation of the likelihood by numerical integration over all genealogies. We demonstrate that the
method works well on simulated data sets. We also consider two models for accommodating mutation rate
variation among loci and find that the model that treats mutation rates as random variables leads to better
estimates. We applied the method to the divergence of Drosophila melanogaster and D. simulans and
detected a low, but statistically significant, signal of gene flow from D. simulans to D. melanogaster.

IN the study of speciation researchers often inquire of
the extent that populations have exchanged genes

as they diverged and on the time since populations
began to diverge. Answers to questions about historical
divergence and gene flow potentially lie in patterns of
genetic variation that are found in present day
populations. To bridge the gap between population
history and current genetic data, population geneticists
can make use of a gene genealogy, G, a bifurcating tree
that represents the history of ancestry of sampled gene
copies. The probability of a particular value of G can be
calculated for a particular parameter set using co-
alescent models. Then given a particular genealogy,
genetic variation can be examined using a mutation
model that is appropriate for the kind of data being
used. Finally by considering multiple values of G, the
connection can be made between the population evo-
lution history and the data. A mathematical represen-
tation that treats G as a key interstitial variable was given
by Felsenstein (1988),

LðQ jX Þ ¼ PrðX jQÞ ¼
ð

C

PrðX jGÞPrðG jQÞdG ; ð1Þ

where X represents the sequence data, G represents
gene genealogy, C represents the set of all possible
genealogies, and Q represents the vector of population
parameters included in the model.

Unless sample sizes are very small, (1) cannot be
solved analytically, and so considerable effort has gone
into finding approximate solutions (Kuhner et al. 1995;
Griffiths and Marjoram 1996; Wilson and Balding

1998). One general approach is to sample genealogies
using a Markov chain Monte Carlo (MCMC) simulation.
This is the approach developed by Kuhner and colleagues
(Kuhner et al. 1995) and that has since been extended to
models with migration (Beerli and Felsenstein 1999,
2001; Nielsen and Wakeley 2001). A general problem
for these methods is that they usually require long running
times to generate sufficiently large and independent
samples, especially when the MCMC simulation is mixing
slowly.

With fast-improving DNA sequencing techniques,
more and more genome sequences are becoming avail-
able, and alignments of these whole-genome sequences
are a very useful source of information for the study of
divergence. However, traditional MCMC methods are
likely to be slow on genome-scale data because running
times are proportional to the number of loci. To over-
come this difficulty Yang developed a likelihood method
(Yang 2002) for data sets containing one sample from
each of the three populations at every locus. This method
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uses numerical integration to calculate the likelihood
function in Equation 1. By using a very large number of
loci, the method can make up for using a very small
number of individuals (i.e., genomes).

Yang’s method is based on a divergence model that
assumes no gene flow between separated populations.
However, there are many situations where gene flow may
have been occurring and where it is preferable to
include it within the divergence model. One model
that has been used a lot in this context is the isolation-
with-migration (IM) model, which incorporates both
population separation and migration (Nielsen and
Wakeley 2001). Under an IM model the genealogies
include not only some fixed number of coalescent
events and speciation events, but also any possible
number of migration events. The potential for very
large numbers of migration events complicates the
sample space of G and makes the numerical integration
seemingly impossible. Innan and Watanabe (2006)
circumvent this problem by using a recursion method to
estimate the coalescent rates on a series of time points.
In their recursion, the accuracy in calculating coales-
cent rate at one time point depends on the accuracy of
calculations at previous time points, and this may impair
the precision of the overall likelihood calculation.
Therefore we developed a method that relies on
numerical integration to calculate the likelihood under
an IM model. We tested the accuracy of this method on
simulated data sets of various sample sizes and applied it
to a genome alignment of Drosophila melanogaster and
D. simulans (with D. yakuba as an outgroup).

THEORY AND METHODS

We employ a two-population IM model (Figure 1) and
assume selective neutrality. For convenience the two
extant populations and the ancestral population are
named Pop1, Pop2, and PopA, respectively. For any one
population the population size parameter is u ¼ 4Nu,
where N is the effective population size and u is the
neutral substitution rate per base pair. The population
size parameters for the three populations in the model
are denoted as u1, u2, and uA. A migration event from
Pop1 to Pop2 (in the coalescent direction, back in time)
is represented by M1/2 and a migration event in the
reverse direction is represented by M2/1. Migration
rate parameters have units of migrations per mutation
event; i.e., m ¼ M/u, where M is the migration rate per
generation. Rates of the two kinds of migration events
are denoted as m1 and m2, respectively. The speciation
time parameter is T ¼ tu, where t is the time since
splitting in generations. In total the model includes six
parameters: u1, u2, uA, m1, m2, and T.

One key to integrating over genealogies with migration
events is to realize that the probability of the data given
the genealogy is unaffected by migration events in the
genealogy. This is because Pr(X j G) depends on G only

through branching topology and branch lengths. In
other words, all genealogies that share the same co-
alescent events contribute identically to Pr(X jG). Let G*
denote a group of genealogies with the same coalescent
events (but different migration events). If we can calcu-
late Pr(G* j Q) together for all genealogies in G*, then

LðQ jX Þ ¼ PrðX jQÞ ¼
ð

c*
PrðX jG*ÞPrðG* jQÞdG*:

ð2Þ

The new integrand is estimated over the sample space of
G*, which is of much lower dimensionality relative to G.
Here, we show that for the simple case where only a pair
of genes are sampled from two populations, Pr(G* j Q)
can be calculated directly for the IM model.

Coalescent time distribution: Consider a single locus
from which two gene copies are sampled, and consider
first the case when one is from Pop1 and the other from
Pop2. These two genes coalesce at some time point t. If
the coalescent event happened before both genes enter
the ancestral population (i.e., t , T), then an odd
number (2x 1 1, x¼ 0, 1, 2, . . .) of migration events must
occur before they coalesce, dividing t into 2x 1 2 time
intervals. During each interval, the ancestral lineages of
the two samples reside in one of the three possible
states: S11, both ancestral lineages are in Pop1; S12, one
ancestral lineage is in Pop1 and the other is in Pop2; and
S22, both ancestral lineages are in Pop2.

A migration event will result in a specific switch from
one state to another, as shown in Figure 2. A coalescent
can happen only in the two states (S11 or S22), when both

Figure 1.—The isolation-with-migration model. The demo-
graphic parameters are effective population sizes (u1, u2, and
uA), gene migration rates (m1 and m2), and population split-
ting time (T).
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genes are in the same population. In the event that they
coalesce in S22, there will have been 2x 1 1 migration
events, x 1 1 of which are M1/2 and x of which are
M2/1. Furthermore, of the 2x 1 2 time intervals, x 1 1
are in state S12, y (0 # y # x) are in state S11, and x� y 1 1
are in state S22. We denote the total duration of these three
categories of time intervals as U, V, and W (¼ t � U � V ),
respectively. Then

PrðG jQÞ

¼ 2

u2
mx11

1 mx
2

3 exp � 2

u1
V � 2

u2
W � m1ðU 1 2V Þ � m2ðU 1 2W Þ

� �

ð3Þ

(Beerli and Felsenstein 1999; Hey and Nielsen

2007). Swapping u1 with u2 and m1 with m2 in expression
(3) gives the probability of a genealogy in which the
coalescent event happens while in state S11.

The total probability of a group of genealogies that
share the same value for the five variables (x, y, U, V, and
W ) can be calculated by permutation and convolution,

Prðx; y;U ;V ;W jQÞ
¼ f ðU ;V ;W ;QÞ

3

2x11 x!

ðx � yÞ!y!

U x

x!

V y�1

ðy � 1Þ!
W x�y

ðx � yÞ! mx
1mx

2 ;

if y $ 1 ðV . 0Þ

2x11U x

x!

W x

x!
mx

1mx
2 ;

if y ¼ 0 ðV ¼ 0Þ;

8>>>>>>><
>>>>>>>:

where

f ðU ;V ;W ;QÞ

¼ 2m1

u2
f1ðU ;V ;W ;QÞ1 2m2

u1
f2ðU ;V ;W ;QÞ

f1ðU ;V ;W ;QÞ

¼ exp½� 2

u1
V � 2

u2
W � m1ðU 1 2V Þ � m2ðU 1 2W Þ�

f2ðU ;V ;W ;QÞ

¼ exp½� 2

u2
V � 2

u1
W � m2ðU 1 2V Þ � m1ðU 1 2W Þ�:

ð4Þ

To calculate the total probability of all the genealogies
that share the same coalescent time t , T, we need to sum

over variables (x, y) and integrate over variables (U, V, W ),
under the constraint U 1 V 1 W¼ t. The summation can
be solved numerically with a closed form,

PrðU ;V ;W jQÞ
¼

X
x $ y $ 0

Prðx; y;U ;V ;W jQÞ ¼ f ðU ;V ;W ;QÞg ðU ;V ;W ;QÞ;

where

g ðU ;V ;W ;QÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1m2U

V

q
BesselIð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m1m2UW
p

ÞBesselIð1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m1m2UV
p

Þ;
if V . 0

BesselIð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m1m2UW
p

Þ;
if V ¼ 0;

8>>>><
>>>>:

ð5Þ

which leaves

PrðG* jQÞ

¼%
U 1V 1W¼t

g ðU ;V ;W ;QÞf ðU ;V ;W ;QÞ; for t , T :

ð6Þ

To the best of our knowledge, there is no analytical
solution to the integration in (6). However, this function
can be precisely approximated by using numerical in-
tegration methods. Note that W¼ t�U� V, which means
that the integration is over two variables instead of three.

If the coalescent event happens after T, then at time
point T both genes are either in the same population
(S11 S22) or in different populations (S12). We denote
the probability of these two scenarios as Q 0(T, Q) and
Q1(T, Q), respectively. For a genealogy with state S22 at
time T, let G9 be the part of the genealogy that is more
recent than T; then

PrðG9 jQÞ
¼ mx11

1 mx
2

3 exp � 2

u1
V � 2

u2
W � m1ðU 1 2V Þ � m2ðU 1 2W Þ

� �
:

ð7Þ

Note that (7) differs from (3) only by a factor of 2=u2

and that the constraint is now U 1 V 1 W¼ T. Following
the same procedure in (4–6), we get

Q0ðT ;QÞ ¼%
U 1V 1W¼T

g ðU ;V ;W ;QÞf 9ðU ;V ;W ;QÞ;

where

f 9ðU ;V ;W ;QÞ ¼ m1f1ðU ;V ;W ;QÞ1 m2f2ðU ;V ;W ;QÞ:
ð8Þ

Similarly, we can derive the probability of the state
being S12 at time T,

Figure 2.—Graphic representation of the three possible
states for two sampled genes before coalescence. A migration
event will result in a switch from one state to another.
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Q 1ðT ;QÞ ¼%
U 1V 1W¼T

hðU ;V ;W ;QÞf1ðU ;V ;W ;QÞ;

where

hðU ;V ;W ;QÞ

¼

2m1m2U
ffiffiffiffiffiffiffiffiffim1m2

VW

p
BesselIð1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m1m2UW
p

ÞBesselIð1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m1m2UV
p

Þ;
if V ;W . 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m1m2U
V

q
BesselIð1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m1m2UV
p

Þ;
if V . 0 and W ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m1m2U
W

q
BesselIð1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m1m2UW
p

Þ;
if V ¼ 0 and W . 0

1; if V ¼ 0 and W ¼ 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð9Þ

Both Q0 and Q1 can be evaluated by numerical
integration. And the probability of all genealogies
sharing coalescent time t (.T) is

PrðG* jQÞ ¼ ðQ0ðT ;QÞ1 Q1ðT ;QÞÞ
2

uA
exp � 2

uA
ðt � T Þ

� �
;

for t . T :
ð10Þ

Note that for both (6) and (10), a swap of parameter
u1 and m1 with u2 and m2 does not change the functions.
This suggests that the likelihood surface is symmetric
and that sampling one sequence from each population
will not provide enough resolution for estimating
population parameters. Also, in the case when both
migration rates are close to zero and each locus is
sampled just once from each population, it will not be
possible to estimate the size of the sampled popula-
tions. To permit estimation of all the parameters in the
IM model, we consider the case where two genes are
sampled from the same population (either Pop1 or
Pop2) at additional loci. The probability of these gene-
alogies can be derived and evaluated in essentially the
same way as described above (supporting information,
File S1).

A computer program was written to implement an
adaptive multidimensional integration routine for the
two-dimensional integration in (6) and (10). The
adaptive routine estimates a function on a hypercube(s)
based on cubature rules, returning an estimate of the
integral together with an estimate of the error ( Johnson

2005). After each iteration, the routine picks the
hypercube with the largest estimated error and divides
it into two. The routine stops after the estimated integral
converges. Romberg integration (Press et al. 1992) is
then used to integrate over t in (2). Both simulated
annealing and the downhill simplex method as imple-
mented by Press et al. (1992) are used to search for the
maximum-likelihood estimate.

Mutation rate variation: If it is assumed that all loci
have the same mutation rate, then none of the variation

that is observed among loci is considered to be caused
by variation in the mutation process. We implement this
model (identified here as the ‘‘single-rate method’’) to
compare it to models that allow for variation in the
mutation rate. In general we expect that methods
allowing for variation in mutation rate will be prefera-
ble. Failure to account for such variation is expected to
lead to an overestimate of the variance in the coalescent
process as compensation for the lack of variance in
mutation and therefore should introduce bias to the
estimates of ancestral population size and species di-
vergence time (Yang 1997).

In an MCMC application of the IM model additional
locus-specific mutation scalars are assigned to each
locus (Hey and Nielsen 2004). During the MCMC
run, these mutation scalars are allowed to vary, subject to
the constraint that the product of all scalars equals 1.
This approach is effective when multiple sequences are
sampled (Hey and Nielsen 2007; Burgess and Yang

2008). However, as our method uses only two gene
copies at each locus, there will not be enough in-
formation to partition the variation among loci into
that due to variance in coalescent times and that due to
variance in mutation rates. An alternative method uses
the average distance from an outgroup sequence to the
sample sequences to calculate a relative mutation rate
for each locus (Yang 2002). A problem for this method
is that the genealogy of sampled sequences together
with the outgroup sequence necessarily shares part of its
length with the genealogy for the sampled sequences
by themselves. This creates an additional correlation
between the outgroup–sample distance and the sample–
sample distance and may introduce bias to the parameter
estimates. To avoid these issues, we develop two new
methods that we identify as ‘‘fixed rate’’ and ‘‘all rate’’
respectively. Both methods rely on sampling an extra pair
of sequences, each from an outgroup population, to
provide information on mutation rates. When the two
chosen outgroup populations have separated from each
other for a long time and have not exchanged genes
after initial separation, the variance in coalescent time
of these two outgroup sequences is small compared
to the long population splitting time and can be ne-
glected. Also, the genealogy of the two outgroup sequen-
ces is independent of the genealogy of the sampled
sequences.

For the fixed-rate method the distance between the
two outgroup sequences is used to calculate a fixed
mutation scalar for each locus. For example, the
mutation scalar of the ith locus (mi) is estimated as the
outgroup distance (di) divided by the average outgroup
distance along all loci (�d),

mi ¼
di

�d
: ð11Þ

These fixed rate scalars are used in the calculation of
Pr(X j G) during the search for the maximum likelihood.
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Outgroups are also used for the all-rate method, but
rather than using them to set fixed mutation rate
scalars, the divergence between outgroups for each
locus is considered as part of the data. The joint
probability of the data is found by assuming a gamma
(or uniform) prior, P(mi), for the scalars and by in-
tegrating over them:

PrðX ;XO jG ;TOÞ ¼
ð

PrðX jG ;miÞPrðXO jTO;miÞP ðmiÞdmi : ð12Þ

Here the outgroup distance is represented by XO and
the time of common ancestry of the outgroups is TO.
When an infinite-sites mutation model is applied
(Kimura 1969), the integration in (12) can be solved
analytically.

Tests on simulated data: Simulations assuming a single
mutation rate: We tested the performance of the method
on two groups of data sets simulated under the six-
parameter IM model assuming a single mutation rate
for all loci. The first group was simulated under a model
of bidirectional migration, with parameter values u1 ¼
0.005, u2¼ 0.003, uA¼ 0.002, m1¼ 50, m2¼ 100, and T¼
0.003. The numerical values for population size and
splitting time parameters are much less than one, and
the values for the migration rate terms are high because
the mutation rate component of these parameters is
assumed to be on a per-base pair scale and thus to be
quite low. The second group of data sets was simulated
without migration, using population parameter values
u1 ¼ 0.005, u2 ¼ 0.003, uA ¼ 0.002, m1 ¼ 0, m2 ¼ 0, and
T ¼ 0.003. These parameter values describe a history in
which the divergence time was fairly long ago, relative to
population size (i.e., the ratio of the population size
parameter to the divergence time parameter is on the
order of 1). This means that considerable genetic drift
will have occurred following population separation and
the majority of genealogies within species are expected
to coalesce before the splitting time. To examine how
many data the method requires we simulate data sets
with different numbers of loci. For each data set, two
genes are sampled at each locus from one of three
source types: type ‘‘12,’’ where one gene is sampled from
each population, and types ‘‘11’’ and ‘‘22,’’ for samples
where each gene comes from the same population. We
expect loci of the 12 type to provide more information
on ancient population history (i.e., uA and T) and loci of
the 11 and 22 types to provide more information on
recent population history (i.e., u1 and u2). Thus, in
addition to varying the total number of sampled loci, we
also examined the effect of varying the size of the three
categories of samples. In total we simulated data from 9
different sets of category sizes (Table 1). For each com-
bination of population parameter and category size, we
simulated 10 data sets. Locus length is fixed at 1000 bp.
Data were simulated assuming an infinite-sites muta-
tion model (i.e., all mutations at different points in the
sequence) and without recombination, with each locus

having an independent coalescent history (i.e., free
recombination between loci). A computer program,
called SIMDIV, was written to perform the simulations
under an IM model.

After simulation, each data set was analyzed by
searching for the joint maximum-likelihood estimate
(MLE) for all six parameters. The precision standard of
the numerical integration routines is set at 10�6 for the
log-likelihood of a single locus. This means that for a
data set of 10,000 loci, our calculated log-likelihood of
the whole data set has an estimated error ,0.01. For the
10 data sets simulated under the same parameters and
sample sizes, we calculated the mean and standard
deviation of the MLEs (Table 1). We also plotted the
mean MLEs in Figure 3, with error bars for the standard
deviation (SD). For data sets containing no 11 type of
loci, we omitted the plots for u1 estimates due to their
having a very large variance.

We analyzed the quality of parameter estimates (Q̂)
using two statistics: bias (EðQ̂�QÞ=Q) and mean square
error (MSE) (EððQ̂�QÞ2Þ=Q2). Bias is a measure of
accuracy, whereas the mean square error reflects both
accuracy and precision. Since both statistics are scaled
by the true value of the parameter, we omit the
calculation when the true value is zero.

Simulations with mutation rate variation: For each
vector of parameter values, 10 data sets were simulated
with mutation rate variation. Each data set consisted of
10,000 loci (2500 type 11, 5000 type 12, and 2500 of type
22). A mutation scalar was assigned to each locus at the
start of the simulation. These scalars are generated from
a Gamma(15, 15) distribution having a mean value of 1.
An extra pair of outgroup sequences is simulated at each
locus, using the same mutation scalar. The common
ancestor time of the two outgroup sequences (TO) is set
to 0.015, which is five times the value for T used in the
simulations. Each data set is analyzed using both the
fixed-rate and the all-rate methods. For the all-rate
method we considered four different prior distributions
of mutation rates. First we applied three gamma priors,
all with the same mean of 1.0, but with different
variances (0.10, 0.67, and 0.05). We also considered a
uniform prior (U(0, ‘)). This prior is attractive because
it is uninformative; however, it is an improper prior with
an infinite mean.

D. melanogaster–D. simulans divergence data: The
genome alignments of D. melanogaster (assembly dm3),
D. simulans (assembly droSim1), and D. yakuba (assem-
bly droYak2) were retrieved from the multiple align-
ments of 15 insect genomes at the UCSC Genome
Bioinformatics web site (http://genome.ucsc.edu). The
simulans syntenic assembly presents a difficulty because
it is the consensus sequence of seven different D.
simulans lines and so it is possible for different parts of
a locus to be from different lines and to have different
evolutionary histories. For this reason D. simulans was
represented in our study by genome assemblies from

Estimating Divergence Parameters 367



T
A

B
L

E
1

M
ea

n
an

d
st

an
d

ar
d

d
ev

ia
ti

o
n

o
f

m
ax

im
u

m
-l

ik
el

ih
o

o
d

es
ti

m
at

es
fo

r
d

at
a

se
ts

si
m

u
la

te
d

w
it

h
u

n
if

o
rm

m
u

ta
ti

o
n

ra
te

N
o

.
o

f
lo

ci
M

ea
n

an
d

st
an

d
ar

d
d

ev
ia

ti
o

n
o

f
M

L
E

s

‘‘1
1’

’
‘‘1

2’
’

‘‘2
2’

’
u

1
u

2
u

A
m

1
m

2
T

I
25

50
25

0.
00

42
9

(0
.0

01
19

)
0.

00
30

1
(0

.0
01

07
)

0.
00

16
9

(0
.0

01
07

)
80

.3
60

(9
6.

11
1)

10
0.

66
8

(1
42

.7
89

)
0.

00
30

3
(0

.0
00

67
)

0.
00

55
6

(0
.0

03
25

)
0.

00
32

6
(0

.0
01

23
)

0.
00

16
7

(0
.0

00
87

)
3.

48
5

(1
0.

09
2)

19
.5

37
(3

6.
13

5)
0.

00
32

3
(0

.0
00

47
)

II
25

0
50

0
25

0
0.

00
55

6
(0

.0
00

74
)

0.
00

29
7

(0
.0

00
45

)
0.

00
20

5
(0

.0
00

24
)

43
.9

27
(2

1.
42

7)
11

4.
99

2
(4

6.
31

9)
0.

00
29

3
(0

.0
00

18
)

0.
00

49
1

(0
.0

00
4)

0.
00

30
0

(0
.0

00
22

)
0.

00
19

1
(0

.0
00

19
)

2.
26

7
(4

.6
89

)
6.

39
3

(1
6.

11
8)

0.
00

31
0

(0
.0

00
12

)
II

I
25

00
50

00
25

00
0.

00
50

9
(0

.0
00

16
)

0.
00

29
7

(0
.0

00
15

)
0.

00
20

0
(0

.0
00

04
)

43
.1

11
(6

.0
05

)
11

0.
28

3
(1

6.
23

6)
0.

00
30

0
(0

.0
00

03
)

0.
00

49
7

(0
.0

00
19

)
0.

00
29

5
(0

.0
00

10
)

0.
00

20
2

(0
.0

00
06

)
0.

25
7

(0
.4

58
)

1.
38

4
(2

.5
98

)
0.

00
29

9
(0

.0
00

03
)

IV
25

50
00

25
0.

00
51

6
(0

.0
02

49
)

0.
00

37
2

(0
.0

01
51

)
0.

00
20

2
(0

.0
00

07
)

10
8.

13
2

(5
6.

60
1)

45
.1

33
(8

8.
05

4)
0.

00
29

9
(0

.0
00

05
)

0.
00

48
1

(0
.0

01
04

)
0.

00
30

4
(0

.0
00

31
)

0.
00

20
0

(0
.0

00
04

)
0.

96
6

(1
.9

53
)

0.
46

9
(1

.3
51

)
0.

00
30

2
(0

.0
00

03
)

V
25

0
50

00
25

0
0.

00
48

8
(0

.0
00

69
)

0.
00

29
9

(0
.0

00
52

)
0.

00
20

0
(0

.0
00

06
)

39
.7

92
(4

0.
03

3)
11

2.
32

9
(5

7.
08

4)
0.

00
29

9
(0

.0
00

04
)

0.
00

50
4

(0
.0

00
45

)
0.

00
29

1
(0

.0
00

16
)

0.
00

19
6

(0
.0

00
06

)
1.

00
5

(1
.4

94
)

1.
28

4
(3

.3
01

)
0.

00
30

2
(0

.0
00

03
)

V
I

25
50

00
25

00
0.

00
46

8
(0

.0
01

11
)

0.
00

30
1

(0
.0

00
15

)
0.

00
19

6
(0

.0
00

11
)

40
.2

32
(1

6.
52

0)
98

.3
90

(1
7.

35
8)

0.
00

30
2

(0
.0

00
06

)
0.

00
56

1
(0

.0
01

7)
0.

00
29

7
(0

.0
00

06
)

0.
00

20
0

(0
.0

00
04

)
0.

20
9

(0
.5

79
)

0.
23

0
(0

.7
19

)
0.

00
30

1
(0

.0
00

02
)

V
II

25
0

50
00

25
00

0.
00

50
4

(0
.0

00
53

)
0.

00
30

4
(0

.0
00

24
)

0.
00

20
5

(0
.0

00
07

)
49

.6
13

(1
6.

59
0)

10
0.

80
7

(2
2.

90
5)

0.
00

29
7

(0
.0

00
04

)
0.

00
49

9
(0

.0
00

42
)

0.
00

30
1

(0
.0

00
05

)
0.

00
19

6
(0

.0
00

09
)

0.
22

4
(0

.4
90

)
0.

46
6

(1
.0

4)
0.

00
30

2
(0

.0
00

04
)

V
II

I
0

50
00

25
0

0.
03

35
2

(0
.0

80
29

)
0.

00
29

7
(0

.0
00

77
)

0.
00

20
1

(0
.0

00
03

)
62

.3
61

(5
7.

41
8)

13
1.

58
(9

7.
51

9)
0.

00
29

7
(0

.0
00

05
)

0.
15

93
2

(0
.1

78
69

)
0.

00
29

9
(0

.0
00

25
)

0.
00

20
0

(0
.0

00
07

)
0.

73
6

(1
.5

17
)

6.
21

2
(1

0.
39

0)
0.

00
30

1
(0

.0
00

05
)

IX
0

50
00

25
00

0.
08

35
4

(0
.1

51
51

)
0.

00
30

3
(0

.0
00

16
)

0.
00

20
0

(0
.0

00
06

)
74

.6
78

(4
6.

79
5)

10
0.

49
1

(1
8.

89
3)

0.
00

29
9

(0
.0

00
06

)
0.

10
07

0
(0

.1
89

42
)

0.
00

29
7

(0
.0

00
07

)
0.

00
19

8
(0

.0
00

06
)

1.
39

7
(2

.3
57

)
3.

51
5

(5
.3

34
)

0.
00

30
3

(0
.0

00
03

)
T

ru
e

p
ar

am
et

er
s

0.
00

5
0.

00
3

0.
00

2
50

10
0

0.
00

3
0.

00
5

0.
00

3
0.

00
2

0
0

0.
00

3

N
u

m
b

er
s

o
u

ts
id

e
th

e
p

ar
en

th
es

es
ar

e
m

ea
n

M
L

E
s

an
d

n
u

m
b

er
s

in
si

d
e

ar
e

st
an

d
ar

d
d

ev
ia

ti
o

n
s.

T
h

e
to

p
o

f
ea

ch
ce

ll
sh

o
w

s
th

e
re

su
lt

fr
o

m
d

at
a

se
ts

si
m

u
la

te
d

w
it

h
n

o
n

ze
ro

m
ig

ra
ti

o
n

.
T

h
e

b
o

tt
o

m
sh

o
w

s
th

e
re

su
lt

fr
o

m
d

at
a

se
ts

si
m

u
la

te
d

w
it

h
o

u
t

m
ig

ra
ti

o
n

.

368 Y. Wang and J. Hey



two of the individual inbred lines (w501 and sim4/6)
(Begun et al. 2007). The assumptions of no recombina-
tion within loci and free recombination between loci
dictate a sampling strategy in which individual loci are
sampled as short genomic fragments that are separated
from each other by longer stretches. On the basis of
findings of the density of apparent recombination events
in a previous study using an IM model to study the
divergence of Drosophila species (Hey and Nielsen

2004), a length of 500 bp was chosen for sampling loci,
with a spacing of at least 2000 bp between loci. Trans-
posons and simple repeats were removed from the data
set. Residues next to indels or with a data quality score
,40 were discarded to reduce the alignment error and
sequencing error. We calculated the six species-pairwise

divergence values for each locus and removed loci that
showed a smaller outgroup divergence than any ‘‘in-
group’’ divergence [i.e., Min(dMY, dSY) # Max(dMM, dMS,
dSS)]. Each of the selected loci includes one melanogaster
and two simulans sequences (in addition to the out-
group yakuba sequence). Because the calculations are
intended for just two gene copies, we randomly picked
for each locus two of the three gene copies to go into the
data set for analysis. In this way some loci include two
simulans sequences and some loci include one simulans
and one melanogaster sequence. The final data set
included 19,889 MSY (one melanogaster sequence, one
simulans sequence, and one yakuba sequence) loci and
10,056 SSY (two simulans sequences and one yakuba
sequence) loci.

Figure 3.—Maximum-likelihood estimates of population parameters. Symbols in the graph represent the mean maximum-like-
lihood estimates and bars represent the corresponding standard deviations. I–IX stand for the nine combinations of sample sizes
as described in Table 1. Panels (A–C) The result from data sets simulated with nonzero migration. (D–F) The result from data sets
simulated without migration.
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To include loci with two D. melanogaster sequences, we
drew pairs of D. melanogaster sequences from 378 loci
studied by Hutter et al. (2007). These D. melanogaster
sequences were then each blasted against the melanogaster–
simulans–yakuba genome alignment to search for their
D. yakuba orthologs. All 378 MMY (two melanogaster
sequences and one yakuba sequence) loci passed the data
screening procedure described above and were include in
the full data set.

RESULTS

Accuracy of estimates: The means and standard
deviations of parameters estimated from simulated data
sets are listed in Table 1 and shown in Figure 3. Bias and
mean MSE are listed in Table 2. With an input of 10,000
loci distributed across all three types of samples (set
III in Table 1 and Figure 3), the method generates
estimates that are quite close to the true values of the
parameters, with all true values falling in the range of

1 SD away from the mean MLE. For set III simulations
the mean MLEs for migration rates have a bias ,14%
and the mean MLEs for the other parameters all have a
bias ,2% (Table 2). As expected, the quality of es-
timates goes down with decreasing total number of loci.
For data sets of 1000 loci (set II), the true parameter
values still fall within 1 SD of the mean, but with
considerably larger MSEs. Similarly for data sets of only
100 loci (set I) the MSEs are much larger, although bias
for most parameters is still low. In this case the mean
MLEs for m1 and uA have an estimated bias of 60.7% and
14.3%, respectively.

In addition to the effect of the total number of loci, we
see that the quality of parameter estimates depends on
the numbers of the three categories of loci. As expected,
the estimates of uA and T are strongly affected by the
number of type 12 loci. When this is set to 5000, the
method provides quite accurate estimates for uA and
T (all biases ,2.5% and all MSEs ,0.005), even when
the data set contains no type 11 loci. We also see that
estimates of u1 and u2 improve quickly with more 11 and

Figure 4.—Profile-likelihood curves for population parameters. (A–C) The result from a data set simulated with nonzero mi-
gration. (D–F) The result from a data set simulated without migration.
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22 types of loci, respectively, and that accurate estima-
tion of m1 and m2 requires high numbers of all three
types of loci.

To examine more closely the way that likelihood
varies with each parameter we estimated the profile-
likelihood function and 95% confidence intervals for
each parameter for two randomly picked 10,000-locus
data sets. The profile likelihood is the maximized
likelihood function conditioned on a selected focal
parameter of interest. Figure 4 shows the profile-
likelihood curves, and Table 3 shows the 95% confi-
dence intervals (C.I.) calculated from these curves on
the basis of the standard assumptions of a likelihood-ratio
test. For both parameter sets, all true parameters fall in
the range of the 95% C.I., and for data sets simulated with

positive migration, we can reject the hypothesis of no
migration on the basis of the fact that 0 falls outside of the
95% C.I. for both m1 and m2. These curves also reveal
some issues that arise for models that include migration.
In the first place, the 95% C.I.’s for u1, u2, uA, and T are
narrower for data sets simulated without migration.
Second, the confidence intervals for m1 and m2 are
relatively wider than for the other parameters.

Mutation scalar methods: In the simulation studies
described above, all data were simulated with a single
mutation rate for all loci. However, for real data the
substitution rates vary across the chromosome, and
neglecting such variance may result in misleading
estimates. To address this we analyzed data simulated
under a model in which mutation rates were sampled

TABLE 3

Maximum-likelihood estimate and 95% confidence interval for a data set simulated with a uniform mutation rate

u1 u2 uA m1 m2 T

True parameters 0.005 0.003 0.002 50 100 0.003

MLE 95% C.I.
0.00496

(0.00455, 0.00537)
0.00314

(0.00287, 0.00346)
0.00202

(0.00188, 0.00216)
51.334

(25.575, 79.317)
83.078

(50.690, 116.563)
0.00298

(0.00287, 0.00308)

True parameters 0.005 0.003 0.002 0 0 0.003

MLE 95% C.I.
0.00508

(0.00479, 0.00539)
0.00307

(0.00292, 0.00323)
0.00198

(0.00186, 0.00211)
0.000

(0.000, 3.021)
0.000

(0.000, 4.512)
0.00298

(0.00292, 0.00305)

The top section shows the result from a data set simulated with nonzero migration. The bottom section shows the result from a
data set simulated without migration.

TABLE 4

Mean and standard deviation of maximum-likelihood estimates for data sets simulated with varying mutation rate

Model for
mutation

scalar

Mean and standard deviation of MLEs

u1 u2 uA m1 m2 T

I Single rate 0.00469 (0.00026) 0.00273 (0.00018) 0.00277 (0.00007) 63.669 (28.205) 130.679 (36.067) 0.00267 (0.00006)
0.00449 (0.00013) 0.00281 (0.00010) 0.00282 (0.00005) 17.384 (8.511) 7.097 (8.940) 0.00266 (0.00005)

II Fixed rate 0.00512 (0.00023) 0.00292 (0.00018) 0.00258 (0.00011) 47.877 (15.839) 117.302 (27.573) 0.00277 (0.00008)
0.00493 (0.00012) 0.00297 (0.00007) 0.00260 (0.00005) 2.793 (4.105) 1.775 (3.435) 0.00277 (0.00005)

III Prior
uniform
(0, ‘)

0.00519 (0.00023) 0.00291 (0.00018) 0.00200 (0.00013) 39.830 (15.773) 112.995 (27.577) 0.00288 (0.00008)
0.00490 (0.00011) 0.00293 (0.00008) 0.00197 (0.00006) 0.845 (1.722) 0.568 (1.796) 0.00292 (0.00004)

IV Prior
Gamma
(10, 10)

0.00517 (0.00023) 0.00295 (0.00018) 0.00199 (0.00012) 43.978 (15.527) 108.617 (25.925) 0.00300 (0.00008)
0.00496 (0.00011) 0.00297 (0.00008) 0.00197 (0.00005) 0.884 (1.864) 0.813 (2.530) 0.00303 (0.00004)

V Prior
Gamma
(15, 15)

0.00511 (0.00023) 0.00292 (0.00017) 0.00200 (0.00012) 45.486 (14.766) 109.654 (24.792) 0.00299 (0.00008)
0.00492 (0.00011) 0.00296 (0.00008) 0.00199 (0.00005) 1.105 (2.299) 0.870 (2.697) 0.00302 (0.00004)

VI Prior
Gamma
(20, 20)

0.00506 (0.00022) 0.00291 (0.00017) 0.00202 (0.00011) 47.824 (15.430) 110.574 (24.857) 0.00298 (0.00008)
0.00490 (0.00010) 0.00294 (0.00007) 0.00202 (0.00005) 1.237 (2.645) 1.402 (3.496) 0.00300 (0.00004)

True parameters 0.005 0.003 0.002 50 100 0.003
0.005 0.003 0.002 0 0 0.003

Numbers outside the parentheses are mean MLEs and numbers inside are standard deviations. The top section of each cell
shows the result from data sets simulated with nonzero migration. The bottom section shows the result from data sets simulated
without migration.
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from a Gamma(15, 15) distribution and then analyzed
these data under both the fixed-rate method and the all-
rate method. Results shown in Table 4 and Figure 5
confirm that neglecting the variance in mutation rates
can lead to poor estimation. The single-rate method
tends to overestimate migration rates and ancestral
population size while underestimating population split-
ting time and population sizes for sampled populations.
As Table 5 shows, estimates generated by the single-rate
method have the largest bias. The fixed-rate method
generally gives better estimates (smaller bias for all
parameters except uA) than the single-rate method.
However, the fixed-rate method still overestimates ances-
tral population size and underestimates population split-
ting time. The all-rate method leads to the most accurate

estimates, and it appears that using a gamma prior leads to
slightly better results than using the improper uniform
prior. It also appears that using different shape/scalar
parameters for the gamma prior has only a small effect on
the estimation, as all three gamma priors that were
considered lead to similar estimates. On the basis of these
results the all-rate method is the method of choice.

We also looked at profile likelihoods for a small
sample of data sets simulated with mutation rate var-
iation and analyzed using the all-rate method with a
gamma(15, 15) prior. Figure 6 shows the profile-
likelihood curves, and from these the 95% confidence
intervals (Table 6) were calculated as described above.
For the all-rate method, all true parameter values fall in
the range of the 95% C.I. For the data set simulated with

Figure 5.—Maximum-likelihood estimates of population parameters. Data are simulated with mutation rates sampled from a
Gamma(15, 15) distribution and analyzed using different mutation scalar methods. Symbols in the graph represent the mean
maximum-likelihood estimates and bars represent the corresponding standard deviations. I–VI stand for the six different muta-
tion scalar methods as described in Table 4. (A–C) The result from data sets simulated with nonzero migration. (D–F) The result
from data sets simulated without migration.
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nonzero migration, we can reject the hypothesis of no
migration because 0 falls out of the 95% C.I. for both m1

and m2. The profile likelihood for the shape/scale
parameter of the gamma prior is shown in Figure 7,
and we note that the estimated MLE for the gamma prior
is close to the true value of 15 used in the simulations.

Application to Drosophila divergence: The melanogaster–
simulans divergence data include a total of 30,323 loci, with
an average length of 405 bp. Figure 8 shows the distribu-
tions of five measures of divergence calculated from the
data.Theaverage divergencebetween a pairofmelanogaster
sequences (0.00587) is smaller than the average diver-
gence between a pair of simulans sequences (0.01323),
suggesting that D. simulans has a larger effective popula-
tion size than D. melanogaster. The average divergence
between melanogaster sequence and simulans sequence is
0.04387 and the average melanogaster–yakuba and simulans–
yakuba divergences are 0.11566 and 0.11048, respectively.
For divergence of this magnitude, the chance of multiple
mutations per base position cannot be neglected. There-
fore, we adopted the JC69 mutation model instead of the
infinite-site model. Because the all-rate method can be
used only with the infinite-site model, we use the second-
best method (fixed-rate method) to account for the
mutation rate variation. Also, due to the fact that only
one outgroup sequence is available, we calculate the
mutation scalars based on melanogaster-yakuba divergence,
instead of using a pair of outgroup sequences.

The maximum-likelihood estimates for the isolation-
with-migration model are listed in Table 7. The esti-
mated melanogaster effective population size is 0.00552.
The estimated simulans population size (0.01352) is

�2.4 times the estimated melanogaster population size,
in agreement with several previous studies. (Hey and
Kliman 1993; Moriyama and Powell 1996) The
estimated ancestral population size is 0.00691, slightly
bigger than the melanogaster population size. A nonzero
simulans-to-melanogaster (melanogaster-to-simulans if look-
ing backward in time) migration rate is estimated. We
test the significance of this gene flow by comparing
the log-likelihood of MLEs from the isolation-with-
migration and a model with zero gene flow (i.e., the
isolation model). Let L be the difference between two
log-likelihood values. Had the real migration rates been
zero, we would expect �2L to follow a composite
x2-distribution (0.25x2

0 1 0.5x2
1 1 0.25x2

2) (Hey and
Nielsen 2007). In our case, �2L ¼ 1535.64, which far
exceeds typical significance criteria (i.e., P > 0.001),
and we therefore reject the isolation model.

Our method assumes that no recombination hap-
pened within each locus during the time since its time to
the most recent common ancestor (TMRCA). To assess
the impact of recombination events on our estimates, we
generated a new data set by taking the first half of the
sequence from each locus. The new data set has a
shorter average length of 203 bp and is therefore less
likely to have experienced recombination in the time
since the TMRCA. Parameter estimates for the ‘‘half-
length’’ data set are similar to those for the ‘‘full-length’’
data set (Table 7). Only small differences are detected
between the estimates for current population sizes and
speciation time, and the effective ancestral population
size and simulans-to-melanogaster migration rate esti-
mates from half-length data are�30% larger than those

TABLE 5

Mean square error and bias of maximum-likelihood estimates for data sets simulated with varying mutation rate

Model for
mutation

scalar

MSE and bias

u1 u2 uA m1 m2 T

I Single rate 0.0064 (�0.061) 0.0118 (�0.091) 0.1496 (0.385) 0.3930 (0.273) 0.2242 (0.307) 0.0128 (�0.111)
0.0113 (�0.103) 0.0053 (�0.065) 0.1707 (0.412) — — 0.0132 (�0.114)

II Fixed rate 0.0027 (0.023) 0.0045 (�0.028) 0.0870 (0.290) 0.1021 (�0.042) 0.1060 (0.173) 0.0064 (�0.076)
0.0008 (�0.015) 0.0006 (�0.011) 0.0907 (0.300) — — 0.0060 (�0.075)

III Prior uniform
(0, ‘)

0.0037 (0.038) 0.0047 (�0.031) 0.0043 (�0.001) 0.1409 (�0.203) 0.0929 (0.130) 0.0022 (�0.039)
0.0008 (�0.019) 0.0012 (�0.023) 0.0009 (�0.013) — — 0.0008 (�0.026)

IV Prior Gamma
(10, 10)

0.0033 (0.035) 0.0039 (�0.016) 0.0037 (�0.007) 0.1109 (�0.120) 0.0746 (0.086) 0.0007 (0.000)
0.0005 (�0.008) 0.0007 (�0.008) 0.0009 (�0.014) — — 0.0003 (0.011)

V Prior Gamma
(15, 15)

0.0027 (0.023) 0.0040 (�0.027) 0.0034 (0.000) 0.0954 (�0.090) 0.0708 (0.097) 0.0007 (�0.003)
0.0007 (�0.015) 0.0008 (�0.013) 0.0007 (�0.006) — — 0.0002 (0.006)

VI Prior Gamma
(20, 20)

0.0020 (0.012) 0.0043 (�0.031) 0.0032 (0.010) 0.0971 (�0.044) 0.0730 (0.106) 0.0007 (�0.006)
0.0009 (�0.021) 0.0010 (�0.019) 0.0008 (0.011) — — 0.0002 (0.000)

True parameters 0.005 0.003 0.002 50 100 0.003
0.005 0.003 0.002 0 0 0.003

Bias and MSE are scaled by the true value of the parameter and its square, respectively. Data are simulated with mutation rate
variation and analyzed using different mutation scalar methods. Numbers outside the parentheses are MSE and numbers inside
are biases. The top of each cell shows the result from data sets simulated with nonzero migration. The bottom shows the result
from data sets simulated without migration.
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from the full-length data, suggesting possible negative
biases introduced by recombination. As in the case of
the full-length data set, the gene flow parameter from
simulans to melanogaster in the half-length data is
statistically significant (�2L ¼ 1042.54, P > 0.001).

Another possible concern is that a subset of the loci
included in the study might be in error (e.g., by
sequencing or alignment error) and that these could
shift the distribution of divergence values in such a way
as to create a signal of gene flow. To investigate this
possibility, we generated two more filtered data sets by
removing loci with extreme values for divergence. First
we removed all the loci from the original data set that
fall in the top 2% of any of the divergence distributions
(i.e., melanogaster–simulans, melanogaster–melanogaster,
simulans–simulans, or melanogaster–yakuba divergence).
A total of 28,881 loci remain in this first filtered data
set. Then a second filtered data set was generated from
the first filtered data set by removing loci falling in the
bottom 2% of either the melanogaster–simulans or the

melanogaster–yakuba divergence distribution. The sec-
ond filtered data set includes 27,636 loci. Estimates for
effective population sizes and speciation time from
these two filtered data sets are very close to those from
original data while estimates for simulans-to-melanogaster
migration rate are only slightly smaller (Table 7). While
these contrasts do not completely remove the possibility
that errors in the data contribute to the estimates, they
do suggest that the parameter estimates and the finding
of significant gene flow do not depend strongly on the
tails of the divergence distributions.

We estimated the 95% confidence intervals of the six
parameters from their profile-likelihood curves (Figure
9). Both MLEs and 95% C.I.’s were then converted
to their conventional forms, using 10-million-year
melanogaster–yakuba speciation time as the calibration
point and 0.1 year as the generation time (Powell

1997). The effective population sizes for melanogaster,
simulans, and their ancestral population, after conver-
sion, are 2.44, 5.99, and 3.06 million, respectively. The

Figure 6.—Profile-likelihood curves for population parameters. Data are simulated with mutation rate variation and analyzed
using a all-rate model with a Gamma(15, 15) prior. (A–C) The result from a data set simulated with nonzero migration. (D–F) The
result from a data set simulated without migration.
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melanogaster–simulans speciation time is estimated at
3.04 million years ago (MYA), and the population
migration rate from simulans to melanogaster (2N1M1) is
estimated at 0.0134 migrant gene copies per generation.

DISCUSSION

We describe a new likelihood-based inference
method for the isolation-with-migration model. This
method resembles Yang’s (2002) by using numerical
integration to evaluate the likelihood function, and
consequently both our method and Yang’s share the
same limitation in that they cannot handle data with
large samples at each locus. However, they can handle
data from many independently segregating loci. The
situation raises the question of just how sampling effort

should be proportioned: More loci with few gene copies
each? Or fewer loci with more gene copies per locus?

In 2006, Felsenstein studied the accuracy of maximum-
likelihood estimates of effective population size for a
single population (Felsenstein 2006). Using simulated
data he found the accuracies of the MLE were well
predicted by the formula developed by Fu and Li

(1993). According to that formula, the accuracy of the
estimation is proportional to the number of loci and
approximately proportional to the logarithm of the
number of sampled genes at each locus. This result
agrees with the conclusion of Pluzhnikov and Donnelly

(1996) that it is optimal to take small samples from
populations. Felsenstein noted that this is because the
increase in total branch length by sampling extra sequen-
ces goes down as the sample size becomes bigger.
Although Felsenstein’s study was performed on only a
single population, the reasoning can be extended to the
case of the IM model, especially when the population
splitting time is long compared to both extant population
sizes and when migration rates are not high. Under this
scenario, two samples from the same population will most
likely coalesce before they either enter the ancestral
population or migrate into the other population. Thus,
estimating the effective population size of a sampled
population is similar to the case of estimating the size of a
single population, favoring samples with a large number
of loci with two gene copies from the population for
which the size parameter is to be estimated.

The estimates for ancestral population size and
population splitting time depend primarily on samples
from different populations, in which case they coalesce
only after they enter the ancestral population or after
one of them migrates into the other population. This
process may take a long time unless migration is high.
When additional samples are collected, they tend to
coalesce with genes from the same population and
contribute little to the length of the genealogy. Since the
estimation of ancestral population size and population
splitting time relies on old coalescent history, it appears
that it is better to have a large number of loci with one
sample from each population.

Figure 7.—Profile-likelihood curves for the gamma param-
eter of the mutation scalar prior. (A) The curve from a data
set simulated with nonzero migration. (B) The curve from a
data set simulated without migration.

TABLE 6

Maximum-likelihood estimate and 95% confidence interval for a data set simulated with varying mutation rate

u1 u2 uA m1 m2 T

True parameters 0.005 0.003 0.002 50 100 0.003

MLE 95% C.I.
0.00520

(0.00479, 0.00565)
0.00295

(0.00269, 0.00324)
0.002

(0.-2, 0.00215)
52.898

(28.592, 81.430)
97.784

(64.305, 131.988)
0.00301

(0.00290, 0.00314)

True parameters 0.005 0.003 0.002 0 0 0.003

MLE 95% C.I.
0.00497

(0.00471, 0.00527)
0.00300

(0.00286, 0.00315)
0.00207

(0.00194, 0.00221)
0.000

(0.000, 3.651)
0.000

(0.000, 3.551)
0.00294

(0.00286, 0.00331)

Data are simulated with mutation rate variation and analyzed using a all-rate model with a Gamma(15, 15) prior. The top section
shows the result from a data set simulated with nonzero migration. The bottom section shows the result from a data set simulated
without migration. Both data sets are simulated with mutation rate variation.
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Estimating migration rates also benefits from more
loci with one sample from each population, because
longer branches are more likely to carry migration
events. However, the occurrences of migration events
can be detected only if two samples from different
populations coalesce before entering the ancestral
population. This means that it is not possible to estimate

migration rates well without also estimating population
sizes well. Therefore, to achieve good estimates for
migration rates, it is preferable to have multiple loci
from all three sampling schemes (i.e., some with two
sequences from one population, some with two from the
other population, and some with one from each). This is
in agreement with our results from simulation data.

A common question in statistical population genetics
is, How much of the variation that is observed among
loci is due to variation in the actual mutation rate?
Some methods assume that there is no uncertainty in
outgroup-based mutation rate estimates (Becquet and
Przeworski 2007) or that all base positions have the
same mutation rate (Innan and Watanabe 2006). For
data that match either of these assumptions, our
method, using the single-rate assumption, performs
quite well (Figure 3). The problem, however, for such
methods that assume no mutation rate variation, is that
when they are applied to real data that do vary in
mutation rate, the additional variance will be attributed
to variance in the coalescent process.

For data that do come from loci that vary in their
substitution rates, the question arises of how best to use
information from outgroup species to account for this
variation. If outgroup populations have been separated
for enough time, the variance in the coalescent process
may be ignored and the expected outgroup divergence
is proportional to the substitution rate. Thus one direct
way to estimate a relative mutation scalar for a locus is to
use the observed outgroup divergence at that locus.
However, even if we assume that there is no variation
due to the coalescent in the outgroup divergence, the
variance of outgroup divergence still includes both a
variance among mutation rates and a stochastic variance
of the mutation process. By using a fixed mutation scalar
derived from the outgroup divergence we are in effect

TABLE 7

Population parameters estimated for melanogaster–simulans divergence

Model, data u1 u2 uA m1 m2 T
Log-

likelihood

IM, full length 0.00552 0.01352 0.00691 4.846 0.000 0.01715 �1904163.35
Isolation,

full length
0.00585 0.01352 0.00845 0.000 0.000 0.01583 �1904931.17

IM, half length 0.00513 0.01328 0.00837 6.820 0.000 0.01688 �937386.51
Isolation,

half length
0.00560 0.01328 0.01035 0.000 0.000 0.01507 �937907.78

Divergence
filter

u1 u2 uA m1 m2 T

Upper 2% 0.00542 0.01301 0.00673 3.848 0.000 0.01711
Upper and

lower 2%
0.00535 0.01305 0.00676 3.018 0.000 0.01713

Converted
parameter

N1 (106) N2 (106) NA (106) 2N1M1 (10�2) 2N2M2 (10�2) T 9 (MYA)

IM, full length 2.44
(2.18, 2.77)

5.99
(5.85, 6.12)

3.06
(2.97, 3.15)

1.34
(1.06, 1.69)

0.00
(0.00, 0.00)

3.04
(3.02, 3.06)

Figure 8.—Distribution curves of divergence. (Top) Solid
line, dashed line, and dashed-dotted line represent distribu-
tion of melanogaster–melanogaster, simulans–simulans, and mela-
nogaster–simulans divergence, respectively. (Bottom) Solid line
and dashed line represent distribution of melanogaster–yakuba
and simulans–yakuba divergence, respectively.
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treating all of the variance in outgroup divergence as
being due to mutation rate variation. For the purpose of
illustration, assume there is actually no variation in
mutation rate among loci. Under these circumstances
some loci will still have larger (or smaller) outgroup
divergence due to random variation in the mutation
process, and this variation will be interpreted as varia-
tion in mutation rates. When variable fixed rates that
were actually sampled from a process with no mutation
rate variation are applied to the model, the introduced
variation leads to additional variation in the coalescent
times. We identify this effect of overestimating the
variance in sample coalescent time as ‘‘overcompensa-
tion.’’ As a result of overcompensation we expect to
overestimate ancestral population size and to underes-
timate population splitting time. These biases are in
agreement with our results on simulated data (Table 4
and Figure 5). Burgess and Yang (2008) also found
similar trends in their study.

An alternative to using a fixed mutation rate for each
locus, based on outgroup divergence, is to treat the
mutation scalar as a random variable. In this method we
consider outgroup divergence as part of the data, and
the joint likelihood of sample divergence and outgroup
divergence is integrated over a prior distribution for the
mutation scalar. This is equivalent to integrating the
likelihood function over the posterior distribution of

the mutation scalar that is derived from outgroup
divergence. Our analyses with this all-rate method,
and a prior gamma distribution, yielded estimates with
the least bias, compared to results for other ways of
handling the mutation rate scalars. We also observed
little sensitivity of estimates to the choice of the gamma
distribution parameter.

The method described here is designed for data sets
with very small samples for very large numbers of loci.
Specifically it can be applied in cases where data are
available from two genomes, from each of two closely
related species. As DNA sequencing techniques ad-
vance, we can anticipate growing availability of multiple
whole-genome sequences for pairs of recently diverged
species. Although we do not yet have two genome
sequences from each of two closely related species, we
can anticipate some of the issues that will arise when
preparing the data for analysis. One large issue is the
choice of outgroup species, which need to have been
separated for a relatively long time, so that the an-
cestral polymorphism is small compared to divergence.
On the other hand, these populations should not be too
far away from the populations under study to guard
against the possibility of not sharing actual mutation rates.

Two other key issues are recombination and selection.
Our method follows basic coalescent theory by assum-
ing selective neutrality, no recombination within loci,

Figure 9.—Profile-likelihood curve for population parameters estimated from melanogaster–simulans–yakuba genome
alignment.
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and free recombination between loci. Violation of these
assumptions will impair the validity of the analysis and
bring bias to the estimates. Preferably loci that have
undergone directional or balancing selection, or re-
combination since the TMRCA, during the divergence
process, should be removed from the input data. When
multiple ($2) genome sequences from each popula-
tion are available, several statistical tests are available for
screening for possible selection events, either by com-
paring nonsynonymous and synonymous substitutions
[dN/dS test (Li et al. 1985)] or by comparing poly-
morphism and divergence (the HKA test of Hudson

et al. 1987). To guard against within-locus recombina-
tion, we suggest using short sequences. We also suggest
that sequences be taken from genome locations that are
separated by a sufficient distance so that their evolution-
ary histories are effectively independent of each other.

Drosophila divergence: To demonstrate the method
with real data we studied the divergence process of
D. simulans and D. melanogaster. The estimated effective
population size of D. melanogaster is 2.44 3 106, which is
similar to the estimated values of 2.4 3 106 by Thornton

and Andolfatto (2006) and 3 3 106 by Li et al. (1999).
The estimated speciation time between is 3.04 MYA,
which is somewhat larger than the 2.3-MYA estimate of
Li et al. (1999). We also estimated that the divergence
history included gene flow in the direction from
D. simulans to D. melanogaster. The estimated population
migration rate, 0.0134 migrations per generation, is >1
and therefore would have little impact on the rate of
divergence by genetic drift (Wright 1931). However,
neglecting this weak gene flow would still lead to an
overestimate of the ancestral population size and under-
estimating the speciation time (Table 7), a point that
nicely highlights the advantage of using a demographic
model that incorporates migration.
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FILE S1 

Additional Theory and Method 
 
 
 
Distribution of coalescent time for sample from same population 
 

When two genes are sampled from the sample population, the distribution of coalescent time can be derived in 

similar way as we showed in the paper. Without losing generality, we assume the both genes are sampled from 

population1 (i.e. the staring state is S11). The coalescent event can happen either in population 1, or population 2, or the 

ancestral population. For the first two scenarios, the coalescent time is less than the population splitting time (t<T).  

 

Two genes coalesce in population 1: Before the coalescent, there can only be even number (2x, x≥0) of 

migration events (x of which being M1→2 and the other x being M2→1). Of the 2x+1 time intervals, x are in state S12, y+1 

(0≤y≤x) are in state S11 and x-y are in state S22. We denote the total duration of these three categories of time intervals 

as U, V, and W (=t-U-V), respectively. Then 

 (1) 

 

By permutation and convolution, we get 

 (2)

 

 

Two genes coalesce in population 2: Before the coalescent, there must be 2x+2 (x≥0) migration events (x+2 of 

which being M1→2 and the other x being M2→1). Of the 2x+3 time intervals, x+1 are in state S12, y+1 (0≤y≤x) are in state 

S11 and x-y+1 are in state S22. We denote the total duration of these three categories of time intervals as U, V, and W 
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(=t-U-V), respectively. Then  

 (3) 

 

By permutation and convolution, we get 

 

 

 

(4) 

 

Two genes coalesce in ancestral population: If the coalescent event happens after T, then at time point T, both 

genes are either in the same population (S11 S22) or in different populations (S12). The probabilities of these two 

scenarios, denoted as Q0(T,Θ) and Q1(T,Θ) respectively, are: 

(5) 

 

 

(6) 

 

And the probability of all genealogies with coalescent time t (>T), is: 

 (7) 

 


