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Introduction
Unconventional protein secretion was discovered more than 20 
years ago, and we know more than 20 examples of such proteins 
(Nickel and Rabouille, 2009). These include insulin-degrading 
enzymes (Zhao et al., 2009), FGF2, -galactoside–specific lec-
tins (galectin 1; Seelenmeyer et al., 2008), certain interleukins 
such as IL-1, IL-18, and IL-33 (Keller et al., 2008), nuclear 
proteins such as HMGB1 (high mobility group protein B1; 
Gardella et al., 2002) and the homeoprotein engrailed (Maizel 
et al., 2002), and Dictyostelium discoideum AcbA (Kinseth et al., 
2007). In yeast, the only protein known to be secreted in an  
ER/Golgi-independent manner is MAT a-factor, whose secre-
tion is mediated by the ATP-binding cassette transporter, Ste6  
(McGrath and Varshavsky, 1989).

Proteins that are secreted in an unconventional manner 
typically lack an N-terminal secretion signal, fail to traffic 
thorough the ER and Golgi, and do not possess protein modi-
fications indicative of transit through the secretory pathway 

(Nickel and Seedorf, 2008). Many of these proteins are evo-
lutionarily conserved, reinforcing their physiological rele-
vance, and their secretion is often regulated. Many mechanisms 
for unconventional secretion, including vesicular and non
vesicular modes, have been debated and can be classified into 
four groups (Nickel and Seedorf, 2008): (1) direct transloca-
tion from the cytoplasm across the plasma membrane by 
transporters, (2) exosome secretion by fusion of multivesicu-
lar bodies (MVBs) with the plasma membrane, (3) plasma 
membrane blebbing followed by the shedding of extracellular 
vesicles, and (4) uptake of proteins into endosomes or lyso-
somes followed by their fusion with the plasma membrane. 
However, these models remain speculative in the absence  
of information regarding the proteins and pathways involved. 
In this study, we define the novel pathways and proteins  
necessary for AcbA-like protein (Acb1 in Pichia pastoris)  
secretion in yeast.

In contrast to the enormous advances made regarding 
mechanisms of conventional protein secretion, mech-
anistic insights into the unconventional secretion of 

proteins are lacking. Acyl coenzyme A (CoA)–binding 
protein (ACBP; AcbA in Dictyostelium discoideum), an 
unconventionally secreted protein, is dependent on Golgi 
reassembly and stacking protein (GRASP) for its secre-
tion. We discovered, surprisingly, that the secretion,  
processing, and function of an AcbA-derived peptide, 
SDF-2, are conserved between the yeast Pichia pastoris 
and D. discoideum. We show that in yeast, the secretion 
of SDF-2–like activity is GRASP dependent, triggered by 

nitrogen starvation, and requires autophagy proteins as 
well as medium-chain fatty acyl CoA generated by per-
oxisomes. Additionally, a phospholipase D implicated  
in soluble N-ethyl-maleimide sensitive fusion protein at-
tachment protein receptor–mediated vesicle fusion at the 
plasma membrane is necessary, but neither peroxisome 
turnover nor fusion between autophagosomes and the 
vacuole is essential. Moreover, yeast Acb1 and several 
proteins required for its secretion are necessary for spor-
ulation in P. pastoris. Our findings implicate currently 
unknown, evolutionarily conserved pathways in uncon-
ventional secretion.
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starvation, but there was a sudden rapid increase in Acb1 activ-
ity thereafter (Fig. 1 C). To ascertain whether the secretion was 
sustained after 4 h of starvation, the cells were subsequently 
resuspended in fresh starvation medium and incubated over-
night. The overnight culture supernatant did not demonstrate 
any activity in the bioassay, indicating that P. pastoris cells most 
likely release Acb1 in a single burst upon nitrogen starvation. 
Addition of a nitrogen source at any time between 0–3 h after 
the switch to starvation medium blocked Acb1 production, sug-
gesting that nitrogen starvation induces in a precise temporal 
manner the extracellular production of the SDF-2–like activity 
in yeast (unpublished data).

The processing of AcbA to SDF-2 in D. discoideum  
requires the activity of the TagC protease (Anjard and Loomis, 
2005). To test whether a similar processing step was involved 
in the generation of SDF-2–like activity in P. pastoris, wild-
type cells were incubated with the trypsin inhibitor TPCK 
(L-[tosylamido-2-phenyl] ethyl chloromethyl ketone) in starvation 
medium. Under these conditions, no SDF-2–like activity was 
detected (Fig. 1 D). Interestingly, when the Acb1 in this TPCK-
treated culture supernatant was purified free of TPCK and  
activated by trypsin, the SDF-2–like activity was restored. 
Moreover, the SDF-2–like activity recovered after trypsin treat-
ment was almost fourfold higher than when processed by the 
putative P. pastoris trypsin-like activity, an observation similar 
to one made for D. discoideum TagC. However, P. pastoris and 
other yeasts have no obvious TagC homologue.

The P. pastoris ACB1 gene is responsible 
for the secretion of SDF-2–like activity
Using the D. discoideum AcbA protein sequence, the BLAST 
program revealed a single ORF, Acb1, in the P. pastoris genome 
(De Schutter et al., 2009) with NCBI Protein database accession 
no. CAY68214.1 (Fig. 2 A). The primary sequences of ACBPs 
from human, D. discoideum, S. cerevisiae, and P. pastoris are 
highly conserved. The putative lysines (K19, K33, and K53 in 
P. pastoris) and the following amino acids (P20, Q34, and A54) 
that mark the cleavage sites for generating SDF-2 peptides are 
identical between the proteins.

A knockout strain of ACB1 (acb1∆) in P. pastoris, like its 
S. cerevisiae counterpart, grew slowly even in rich media. This 
strain failed to generate SDF-2–like activity upon nitrogen  
starvation, suggesting that this ORF was responsible for the  
activity (Fig. 2 B). Furthermore, when nitrogen-starved acb1∆ 
cells were incubated with recombinant AcbA from D. discoideum, 
SDF-2–like activity was recovered. This activity was not seen if 
the extracellular medium from acb1∆ cells was incubated with 
TPCK 3 h after starvation followed 1 h later by a test for SDF-2–
like activity. These results indicate that nitrogen-starved acb1∆ 
cells are unable to produce SDF-2–like activity but are still able  
to process recombinant D. discoideum AcbA to generate SDF-2.

Involvement of GRASP and autophagy 
proteins in Acb1 secretion
Previously, the Golgi reassembly and stacking protein 
(GRASP) was shown to be necessary for unconventional  
secretion of D. discoideum AcbA (Kinseth et al., 2007). Therefore, 

Results
A bioassay for yeast Acb1 using  
D. discoideum cells as the reporter
Encapsulation of prespore cells of D. discoideum is controlled 
by several intercellular signals to ensure appropriate timing dur-
ing fruiting body formation. Acyl coenzyme A (CoA)–binding 
protein (ACBP), AcbA, is secreted by prespore cells and  
processed by a trypsin-like prestalk protease, TagC, to form the 
34–amino acid peptide, SDF-2, which triggers rapid spore  
encapsulation (Anjard et al., 1998; Anjard and Loomis, 2005). 
The cell surface exposure of TagC protease and subsequent  
production of SDF-2 by D. discoideum requires activation by 
-amino butyric acid (GABA), which is produced by prespore 
cells in response to a steroid signal (Anjard et al., 2009). Previ-
ous experiments have shown that addition of recombinant AcbA 
alone does not induce sporulation in D. discoideum when TagC 
is not exposed on the surface; however, the addition of the  
SDF-2 peptide to these cells promotes sporulation (Anjard and 
Loomis, 2005).

We tested whether P. pastoris culture supernatants  
display an SDF-2–like activity that could be revealed by a  
bioassay in D. discoideum. For this to work, the P. pastoris 
cells would have to secrete Acb1 and process it proteolytically 
into an SDF-2–like peptide, which would then bind to the  
D. discoideum SDF-2 receptor, DhkA, to promote sporulation. 
No activity was detected in the culture supernatant from wild-
type P. pastoris cells grown in glucose medium supplemented 
with a nitrogen source (Fig. 1 A). However, after 4 h incuba-
tion in nitrogen starvation medium, SDF-2–like activity was 
detected in the supernatant. Like SDF-2, this activity was en-
riched upon purification by anion exchange chromatography. 
Moreover, the proteinaceous nature of the SDF-2–like activity 
was confirmed by its inactivation by proteinase K treatment. 
Preincubating the P. pastoris culture supernatant with anti-
bodies to D. discoideum AcbA completely blocked the SDF-2–
like activity. Moreover, purified recombinant P. pastoris Acb1 
(PpAcb1) itself did not demonstrate this activity but did so upon 
trypsin digestion, suggesting the generation of SDF-2–like 
peptide activity.

The specificity of the SDF-2–like activity was shown  
using D. discoideum cells lacking the histidine kinase SDF-2 
receptor, DhkA (Wang et al., 1999). As expected, these dhkA-null 
mutant cells produced spores when treated with the unrelated 
cytokinin sporulation signal but not when incubated in the pres-
ence of either SDF-2 peptides or P. pastoris culture supernatants 
that displayed SFD-2–like activity in the bioassay (Fig. 1 B). 
These results and the fact that P. pastoris acb1 also showed no 
activity in the bioassay (see Fig. 2 B) provide strong evidence 
that upon nitrogen starvation, P. pastoris cells secrete Acb1 that 
is processed to produce SDF-2–like activity similar to that seen 
in D. discoideum.

Kinetics of Acb1 release and dependence 
on nitrogen starvation
Investigation of the kinetics of Acb1 release revealed that there 
was no activity in the supernatant during the first 3 h after nitrogen 
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we asked whether Acb1 secretion in P. pastoris also depended 
on its GRASP counterpart, GRH1. Unlike the wild-type cells, 
the grh1∆ cells did not produce any SDF-2–like activity, con-
firming that the secretion of Acb1 in P. pastoris also requires the 
GRASP protein (Fig. 2 B).

Based on our unpublished observations about the possible 
involvement of the autophagy machinery in secretion of AcbA 
in D. discoideum, we tested this hypothesis with P. pastoris  
autophagy mutants. P. pastoris atg5∆ and atg7∆ mutants failed 
to show any SDF-2–like activity (unpublished data). During  
autophagy, these proteins play critical roles in the formation of 
double-membrane vesicles, the autophagosomes, whose forma-
tion involves initiation, nucleation, expansion, and completion 
steps that are orchestrated by a cohort of proteins (Xie and 
Klionsky, 2007). We tested autophagy mutants atg1∆ (impaired 
in initiation, nucleation, and expansion steps of autophagosome 
formation), atg6∆ (required for all stages), atg8∆ (required for 
autophagosome completion), atg9∆ (provides membrane for 
autophagosomes), and atg17∆ (scaffold protein for organization 
of the autophagy-specific phagophore assembly site). None of 
these core autophagy mutants involved in the generation of  
autophagosomes released any SDF-2–like activity (Fig. 3 A).

Role of selective autophagy and autophagy-
related pathways in Acb1 secretion
Atg11, which is necessary for selective, receptor-dependent  
autophagy-related pathways but not for autophagy of nonselec-
tive cargoes (Xie and Klionsky, 2007), was required for SDF-2–
like activity. Next, we examined autophagy-related mutants that 
are not impaired in autophagosome formation. Mutants such  
as atg26∆ and atg30∆ are involved in the selective autophagic 
degradation of peroxisomes (pexophagy) but not in general  
autophagy (Nazarko et al., 2009). These mutants displayed 
SDF-2–like activity, albeit lower than that of wild-type cells, as 
did cells deficient in Vac8, a protein necessary for several selec-
tive autophagy-related pathways (cytosol to vacuole transport, 
pexophagy, and micronucleophagy; Fig. 3 A; Farré et al., 2009). 
These data suggest that although the requirement of Atg11 for 
activity in the bioassay points to some selectivity in the capture, 
transport, and secretion of Acb1 via autophagosomes, proteins 
implicated in known selective autophagy-related pathways do 
not play any direct role in Acb1 secretion.

Figure 1.  P. pastoris secretes Acb1 upon nitrogen starvation and pro-
cesses it to generate SDF-2–like activity. (A) Cell-free supernatants were 
collected from either wild-type P. pastoris cells growing in rich medium or 
after 4 h in nitrogen starvation medium and tested for SDF-2–like activity 
using the bioassay as explained in Materials and methods. Samples were 
passed through an anion exchange chromatography, and the activity was 
eluted in 400 mM NaCl (salt eluate). An aliquot of this sample was prote-
ase treated (+ proteinase K; 20 µg) or incubated with either antibody to  
D. discoideum AcbA (1:500) or with antibody against GABA (1:5,000) and 
tested for SDF-2–like activity (Anjard and Loomis, 2005). Because KP cells 
can sporulate when presented with GABA, the experiment with antibody 

against GABA is a control to test whether the P. pastoris culture supernatant 
activated SDF-2 production in the KP cells by generating GABA. 10 nM 
recombinant P. pastoris HIS-Acb1 (PpAcb1) either untreated or digested  
with trypsin and purified (10 pM) were tested for SDF-2–like activity.  
(B) D. discoideum dhkA/K (SDF-2 receptor null) cell bioassay. Induction was 
performed using 10 pM synthetic D. discoideum cytokinin and 1 pM SDF-2 
peptides as controls. 1 µl supernatant from wild-type P. pastoris cells starved 
for 4 h was also tested. (C) Time course of the SDF-2–like activity secreted 
by P. pastoris cells. Samples were collected at the indicated times, purified, 
and quantified by the bioassay. (D) Acb1 is secreted and processed to 
generate SDF-2–like activity. Wild-type cells were nitrogen starved for 3 h 
before 1 µM TPCK was added to an aliquot of cells. 1 h later, the super-
natant was collected from the untreated (none) and treated (+ TPCK) cells. 
TPCK was removed from part of the TPCK-treated sample and processed 
with trypsin as described in Materials and methods. All the samples were 
tested for SDF-2–like activity. Error bars indicate mean ± SD.
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autophagosomes with the vacuole (Sato et al., 1998), or the 
YPT7 gene, encoding a small GTPase required for homotypic 
fusion during vacuole inheritance as well as for endosome–
vacuole fusion events (Sato et al., 1998; Fratti and Wickner, 
2007), did not impair SDF-2–like activity (Fig. 3 A). A mutant 
lacking Vps17, a component of the retromer complex required 
for endosome to Golgi retrograde protein transport (Seaman 
and Williams, 2002), also generated activity, as did the pep4/
prB1 double mutant, compromised in hydrolases required 
for the vacuolar breakdown of autophagic bodies (Fig. 3 A). 
Therefore, the vacuolar delivery of autophagosomes and the 
vacuolar turnover of autophagic bodies are not a prerequisite 
for Acb1 secretion.

Plasma membrane fusion events  
in Acb1 secretion
If Acb1 in vesicles is to be secreted, we would expect Acb1 
vesicles to be involved directly or indirectly in membrane fu-
sion events at the plasma membrane, a process that would 
likely involve SNARE proteins (Rothman and Warren, 1994). 

Late steps of autophagy are not required 
for Acb1 secretion
During autophagy, autophagosomes eventually fuse with the 
vacuole, wherein their contents are degraded by resident vacu-
olar hydrolases. We explored whether autophagosome fusion 
with the vacuole and its subsequent degradation contribute  
to SDF-2–like activity. Deletion of the VAM7 gene, encod-
ing a vacuolar membrane protein involved in the fusion of  

Figure 2.  Primary sequence of P. pastoris Acb1 and activity of a 
P. pastoris protease that processes AcbA to SDF-2. (A) The primary se-
quences of Acbps from P. pastoris (NCBI Protein database accession  
no. XP_002490495), S. cerevisiae (NCBI Protein database accession  
no. NP_011551), Homo sapiens (NCBI Protein database accession no. 
NP_001073331), and D. discoideum (NCBI Protein database accession 
no. XP_646321) were aligned in CLUSTALW using the default alignment pa-
rameters (*, conserved residues). Putative, conserved trypsin-like cleavage 
site residues (K) are highlighted in boxed regions. The MatGAT program 
was used to calculate percent identity (I) and similarity (S) of the P. pastoris 
Acb1 protein with that of S. cerevisiae (I = 63.2%; S = 77%), H. sapiens  
(I = 55.2%; S = 77%), and D. discoideum (I = 45.3%; S = 62.8%).  
(B) Trypsin-like protease activity of acb1∆ cells. The acb1∆ cells were incu-
bated in nitrogen starvation medium for 4 h without any addition (none) 
or in the presence of 100 pM recombinant AcbA, and extracellular media  
were collected, purified, and assayed for SDF-2–like activity (AcbA). 1 µM  
TPCK inhibitor was added 3 h after transfer to starvation medium and as-
sayed (AcbA + TPCK). Part of the sample was digested with trypsin (see 
Materials and methods), purified, and assayed using the bioassay (AcbA + 
TPCK + trypsin). The GRASP-null mutant (grh1∆) was also processed and 
tested for SDF-2–like activity like the other samples. Experiments were per-
formed three times.

Figure 3.  Autophagy and protein trafficking mutants affected in produc-
tion of SDF-2–like activity. (A) Wild-type cells and various atg mutants were 
incubated in nitrogen starvation medium for 4 h, and cell supernatants 
were processed and tested for SDF-2–like activity. Cvt, cytosol to vacuole 
transport; MN, micronucleophagy. (B) Rapamycin induces Acb1 release. 
Wild-type (open circles) and atg1∆ cells (closed circles) were grown in 
SD+N medium up to 1 A600/ml, rapamycin (200 ng/ml final concentra-
tion) was added to the medium, and cell supernatants were collected at 
the indicated times, purified, and quantified by the bioassay. Experiments 
were performed three times.
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2009). Pex5 is the PTS1 receptor, whereas Pex7 and Pex20  
are the receptor/coreceptor for PTS2 cargo. Although pex5∆ 
cells did not show SDF-2–like activity, both pex7∆ and  
pex20∆ cells produced normal levels (Fig. 4 A). Thus,  
the PTS1 but not the PTS2 import pathway is required for  
secretion of Acb1.

Medium-chain fatty acyl CoA production, 
but not fatty acid -oxidation, is necessary 
for Acb1 secretion
Because peroxisomes catalyze the -oxidation of fatty acids 
(van Roermund et al., 2003), we investigated whether this path-
way is essential for SDF-2 production. Acyl CoA oxidase (Pox1) 
and 3-ketoacyl-CoA thiolase (Pot1) are required for -oxidation 
of long- and medium-chain fatty acids (MCFAs). The pot1 
and pox1∆ mutants produced SDF-2–like activity (Fig. 4 A). 
Therefore, the peroxisomal -oxidation of fatty acids is not re-
quired for SDF-2–like activity.

However, one mutant, pex11∆, involved in both peroxi-
some division and the transport of MCFAs into peroxisomes, 
was deficient in the production of SDF-2–like activity (Fig. 4 A; 
van Roermund et al., 2000). We hypothesized that the fatty acid 
transport function of Pex11 and subsequent coupling of CoA to 

In S. cerevisiae, the plasma membrane t-SNARE is comprised 
of redundant subunits, allowing the formation of alternative  
t-SNARE complexes that could act at different sites or under 
varying conditions (Neiman, 2005). The t-SNARE is comprised 
of the either Sso1 or its partner Sso2 and the mammalian  
SNAP-25 homologues Sec9 or Spo20. Likewise, the v-SNARE  
contains either Snc1 or its homologue Snc2 (Neiman, 2005). 
Interestingly, P. pastoris has only single genes encoding Sso1/
Sso2, Sec9/Spo20, and Snc1/Snc2 (De Schutter et al., 2009), 
predicting a t- and v-SNARE comprised of unique subunits for 
vesicle fusion at the plasma membrane. This lack of subunit 
redundancy complicated our analysis of the requirement of 
these subunits for Acb1 secretion because a deletion of any of  
these subunits is likely to render P. pastoris cells inviable. 
Indeed, we were unsuccessful in generating a haploid P. pastoris 
sso1 strain. To circumvent this problem, we deleted the 
SPO14 gene, which encodes a PLD that generates phospha-
tidic acid required for localization of the Spo20-containing  
S. cerevisiae t-SNARE at specific membranes (Neiman, 2005). 
When assayed for SDF-2–like activity, spo14 cells were nega-
tive (Fig. 3 A), indicating that it is required for secretion of 
SDF-2–like activity.

Acb1 secretion is triggered by rapamycin, 
an inducer of autophagy
We wondered if triggering autophagy during vegetative con
ditions would result in secretion of SDF-2–like activity. Expo-
nentially growing wild-type cells were treated with rapamycin 
to pharmacologically induce autophagy. Culture supernatants 
were collected for 16 h after rapamycin addition and assayed. 
Interestingly, a burst of SDF-2 activity was detected at the same 
time after addition of rapamycin as observed after nitrogen  
starvation (3.5 h). The atg1∆ cells did not produce this activity 
under similar conditions, indicating that induction of autophagy 
is required for the activity (Fig. 3 B).

Peroxisomal membrane and matrix protein 
import is necessary for Acb1 secretion
Because the D. discoideum and mammalian homologues of 
Acb1 bind medium- and long-chain fatty acyl-CoA (Mikkelsen 
and Knudsen, 1987; Anjard and Loomis, 2005), we asked 
whether peroxisomes, which generate and metabolize fatty acyl 
CoAs, influence Acb1 secretion. Pex3 and Pex19 are critical 
peroxins responsible for peroxisomal membrane protein assem-
bly (Ma and Subramani, 2009). Protein import into the peroxi-
some matrix requires the presence of a multisubunit complex 
known as the importomer (comprised of Pex13, Pex14, Pex17, 
Pex3, Pex8, Pex2, Pex10, and Pex12) and another complex 
known as the receptor-recycling machinery (consisting of Pex1, 
Pex6, Pex4, and Pex22; Ma and Subramani, 2009). Both pex3∆ 
and pex8∆ cells were impaired in production of SDF-2–like  
activity (Fig. 4 A). Mutants lacking either Pex19 or each of the 
tested components of the importomer and receptor-recycling 
machineries also failed to yield activity in the bioassay (un-
published data).

Peroxisomal matrix protein import is mediated by two 
peroxisome targeting signals (PTS1 and PTS2; Ma and Subramani, 

Figure 4.  Acb1 secretion in mutants affecting peroxisome biogenesis and 
metabolism. (A) Wild-type cells and various mutants were incubated in ni-
trogen starvation medium at 1 A600/ml for 4 h, and cell supernatants were 
tested for SDF-2–like activity. An aliquot of the wild-type cells was treated 
with 100 µg/ml cerulenin upon shift to starvation medium and assayed 
for SDF-2–like activity after 4 h. (B) Cell supernatants from pex3∆, atg1∆, 
grh1∆, faa2∆, and spo14∆ mutants starved for 4 h in nitrogen-deficient 
medium were treated with trypsin to see whether any secreted Acb1 could 
be processed to generate SDF-2–like activity. The wild-type controls that 
were analyzed in this experiment are from Fig. 1 D but are shown again 
for clarity. Experiments were performed three times.
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cultures confirmed that although wild-type cells did produce 
SDF-2–like activity, the sporulation-defective mutants (atg1∆ 
and atg8∆) did not.

Discussion
A bioassay for yeast Acb1 secretion, 
processing, and function
In this study, we show that, upon nitrogen starvation, P. pastoris 
cells secrete an activity resembling that of SDF-2 produced 
by D. discoideum prespore cells (Fig. 1 A). In P. pastoris 
cells, this activity is derived from secreted Acb1, which is 
homologous to D. discoideum AcbA (Fig. 2 A). The Acb1 
protein secreted by P. pastoris behaves like D. discoideum 
AcbA in that it is inactive in stimulating sporulation of  
D. discoideum KP cells unless it is activated either artificially 
by trypsin or by a trypsin-like protease of P. pastoris cells. 
Additionally, Acb1 is induced in a single burst in P. pastoris, 
just as AcbA is in D. discoideum, and induces sporulation in 
both organisms. This is consistent with the findings that pro-
teins we show to be essential for Acb1 secretion, including 
several Atg proteins and Spo14, are also necessary for sporu-
lation (Neiman, 2005). Similarly, cerulenin treatment of starved 
yeast cells impairs sporulation (Ohno et al., 1976). These 
facts establish beyond any doubt that P. pastoris cells secrete 
and produce SDF-2–like activity essentially like D. discoi­
deum cells. Our bioassay for Acb1 using D. discoideum cells 
points to the remarkable evolutionary conservation of Acb1, 
its extracellular secretion, and its processing, allowing us to 
identify over a dozen components of this unconventional  
secretion pathway.

Acb1 is a model for an unconventional 
secretion pathway in yeast
Although AcbA is secreted by an unconventional pathway in  
D. discoideum (Kinseth et al., 2007), the underlying mecha-
nisms have remained enigmatic. GRASP is required for the un-
conventional secretion of AcbA in D. discoideum (Kinseth et al., 
2007) for Acb1 in yeasts as shown in this study (Fig. 2 B) and 
for the unconventional secretion of -integrins in Drosophila 
melanogaster (Schotman et al., 2008). Although GRASP is a 
Golgi-associated protein, it is proposed to act at the plasma 
membrane as a tether for vesicle fusion events or in the trafficking 
of some other protein required at the plasma membrane for this 
function (Nickel and Rabouille, 2009). Consistent with this 
concept, GRASP is localized at the plasma membrane during 
epithelial cell remodeling in D. melanogaster (Schotman et al., 
2008). Additionally, in D. discoideum cells lacking this protein, 
Acb1 is in punctate structures adjacent to the plasma membrane 
(Cabral et al., 2010), suggesting that GRASP is likely to act at 
the final fusion of Acb1 vesicles with the plasma membrane.

P. pastoris and S. cerevisiae have a single gene, GRH1, 
encoding GRASP. In contrast, mammals have two GRASP 
genes, whose roles in unconventional secretion remain un
explored, but these proteins are involved in cellular entry into 
mitosis and in the stacking of Golgi cisternae (Shorter et al., 
1999; Feinstein and Linstedt, 2007).

fatty acids might be necessary for Acb1 secretion. We tested this 
hypothesis by mutating the FAA2 gene encoding a PTS1-
containing, peroxisomal matrix–localized, fatty acyl CoA  
synthetase that couples CoA to MCFAs transported into peroxi
somes by Pex11 (Hettema et al., 1996). Interestingly, faa2∆ cells 
also had no SDF-2–like activity. These observations were cor-
roborated when wild-type cells incubated in nitrogen starvation  
medium with cerulenin, an inhibitor of fatty acid synthesis 
(Marchesini and Poirier, 2003), yielded no SDF-2–like activity 
(Fig. 4 A). These results validate our hypothesis that the produc-
tion of medium-chain fatty acyl CoA is necessary for SDF-2 
production in P. pastoris.

Mutants that fail to generate SDF-2–like 
activity are deficient in Acb1 secretion and 
not its processing
To distinguish whether the pex3∆, atg1∆, and other mutants 
(grh1∆, spo14∆, and faa2∆) that displayed no SDF-2–like  
activity are deficient in Acb1 secretion or its processing, we 
trypsinized the extracellular medium from representative  
mutants to artificially activate any Acb1 that might have been 
secreted from these cells and tested these samples. No activity 
was seen in the bioassay (Fig. 4 B). In contrast, Acb1 recov-
ered from wild-type cells treated with TPCK can be activated 
by trypsin treatment (after removal of TPCK; Fig. 1 D). These 
results show that these P. pastoris mutants are deficient in 
Acb1 secretion not in its processing.

Physiological role of Acb1 in yeast
Because nitrogen starvation induces spore formation in  
yeast (Neiman, 2005), Acb1 might be required for sporulation. 
Using a P. pastoris sporulation assay, we found that atg1∆ and 
atg8∆ cells were severely compromised in their ability to form 
spores during nitrogen starvation (Fig. 5). Importantly, acb1∆ 
cells were drastically impaired in spore formation, and this  
phenotype was comparable with that of the atg1∆ and atg8∆  
mutants. The sporulation defect of acb1∆ cells was comple-
mented, albeit less efficiently, by the addition of recombinant 
AcbA, showing that extracellular Acb1 is necessary for sporula-
tion (Fig. 5). Independent tests of the extracellular media from 

Figure 5.  Acb1 is necessary for sporulation. Wild-type, atg1∆, atg8∆, 
and acb1∆ cells were incubated in 1% potassium acetate solution at 30°C 
with rotation at 250 rpm. An aliquot of acb1∆ cells was incubated with 
4 nM recombinant AcbA during the sporulation assay and analyzed for 
production of spores. 1 ml of the culture was processed as explained in 
Materials and methods to destroy viable cells. The spore preparation was 
appropriately diluted and plated on YPD plates. Plates were incubated for 
2–3 d, and colonies were counted. Spore production for individual strains 
was expressed as the percentage of the wild-type spore count. One of two 
experiments is shown. Wild-type and acb1∆ cells were subjected to the 
sporulation assay as described in Materials and methods.
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in D. discoideum that Acb1 is in punctate vesicular structures 
that accumulate near the plasma membrane in cells lacking 
GRASP (Cabral et al., 2010).

Acb1 secretion from Acb1 vesicles 
bypasses autophagosome–vacuole fusion 
and vacuolar hydrolytic events
The secretion of Acb1 implies that the normal fate of Acb1 ves-
icles must be different from that of general autophagosomes in 
that the fusion of Acb1 vesicles with the vacuole must be by-
passed. Indeed, we demonstrate that the final stages of autoph
agy, involving fusion of autophagosomes with the vacuole 
(vam7 and ypt7 mutants; Fig. 3 A) and the subsequent degrada-
tion of the autophagosomal contents by vacuolar hydrolases 
(pep4 and prB1 mutants; Fig. 3 A) are unnecessary for SDF-2 
production in P. pastoris. Additionally, a mutant that indirectly 
affects vacuolar protein sorting via a block in retrograde endo-
some to Golgi trafficking, vps17, does not affect Acb1 secretion 
(Fig. 3 A).

Fusion events at the plasma membrane are 
necessary for Acb1 secretion
Acb1 vesicles would need to fuse directly or indirectly with the 
plasma membrane if Acb1 is to be secreted. Support for a fusion 
event at the plasma membrane comes from the requirement of 
Spo14 for Acb1 secretion (Fig. 3 A).

The involvement of Spo14 in secretion of Acb1 may result 
from a requirement for phosphatidic acid produced by this PLD 
to direct the Sso1-containing t-SNARE to the plasma membrane 
(Neiman, 2005) of P. pastoris for the fusion of Acb1-containing 
vesicles. Consistent with this idea, Spo14-encoded PLD, along 
with Sso1, is required for exocytic vesicle fusion of prospore 
membrane precursor vesicles during meiosis-induced sporula-
tion in yeast (Sreenivas et al., 1998; Nakanishi et al., 2006), and 
mammalian PLDs are involved in regulated exocytosis (Zeniou-
Meyer et al., 2007; Temmerman et al., 2008; Disse et al., 2009). 
The capture of a small pool of an unconventionally secreted 
protein into intracellular vesicles independent of the normal se-
cretory pathway followed by its exocytosis may also extend to 
mammalian cells as shown for -synuclein, but it remains to be 
seen whether these vesicles are related to autophagosomes (Lee 
et al., 2005).

Do Acb1 vesicles fuse directly or indirectly 
at the plasma membrane?
Our model predicts that under certain circumstances, Acb1 ves-
icles, but not ordinary autophagosomes, are diverted for fusion 
with the plasma membrane. There is accumulating evidence 
that autophagosomes do not always fuse with vacuoles or lyso-
somes but instead can fuse with MVBs (an endosomal compart-
ment) to form a novel compartment that can fuse with the 
plasma membrane. For example, in human-immortalized my-
elogenous leukemia line K562, which can differentiate in vitro 
to the reticulocyte lineage, fusion of autophagosomes with 
MVBs to create amphisomes is induced by starvation (Fader  
et al., 2008). These K562 cells capture proteins into MVBs  
and secrete exosomes generated by the fusion of MVBs with  

Pathways involved in the unconventional 
secretion of Acb1
Peroxisomally generated medium-chain fatty acyl CoA but not 
fatty acid -oxidation is required for Acb1 secretion. Mamma-
lian ACBP (a homologue of AcbA) binds medium- and long-
chain fatty acyl CoAs but not free fatty acids (Mikkelsen and  
Knudsen, 1987). Three lines of evidence prove that medium 
chain fatty acyl CoA generated in peroxisomes is necessary 
for Acb1 secretion. First, cells lacking Pex11, a protein re-
quired for peroxisome division and for the transport of  
MCFAs into peroxisomes (van Roermund et al., 2000), did  
not have SDF-2 activity (Fig. 4 A). Of the two functions of 
Pex11, it is the MCFA transporter function that is the key to 
Acb1 secretion, as indicated next. Second, Faa2, the PTS1-
containing, peroxisomal fatty acyl CoA synthetase that cou-
ples CoA to MCFAs (Hettema et al., 1996) is necessary for 
Acb1 secretion (Fig. 4 A). Finally, the drug cerulenin, an  
inhibitor of fatty acid synthesis (Ohno et al., 1976), blocked 
Acb1 secretion (Fig. 4 A). Two possibilities could explain the 
MCFA CoA requirement for Acb1 secretion. The first is that 
although S. cerevisiae Acb1 binds fatty acyl CoAs of different 
chain lengths (Mikkelsen and Knudsen, 1987), perhaps only 
the small pool of Acb1 bound to MCFA CoA is secreted.  
Indeed, only 5% of the intracellular Acb1 is secreted in  
P. pastoris (unpublished data), which is similar to that ob-
served in D. discoideum (Anjard and Loomis, 2005; Kinseth  
et al., 2007). This possibility is made likely by the observation 
that D. discoideum mutated AcbA affected in fatty acid bind-
ing is not secreted but can be processed to SDF-2 if exposed in 
vitro to the TagC protease (Cabral et al., 2010). Alternatively, 
there could be a role for MCFA CoA in the functions of com-
partments that are required for unconventional secretion 
(Faergeman et al., 2004).

The MCFA CoA requirement explains neatly why Acb1 
secretion depends on peroxisomal membrane and matrix pro-
tein biogenesis and peroxisomal matrix protein import via the 
PTS1 but not the PTS2 import pathway (Fig. 4 A). Furthermore, 
as long as Pex11 can transport MCFA into peroxisomes for its 
activation, fatty acid -oxidation is unnecessary for Acb1 secre-
tion (Fig. 4 A). The dependence of unconventional secretion of 
Acb1 on lipid binding is not unprecedented in that FGF-2,  
another unconventionally secreted protein, must bind PIP2 for 
secretion (Temmerman et al., 2008).

Involvement of autophagosome formation 
proteins in Acb1 secretion
Atg proteins forming the core autophagic machinery (Atg1, 
Atg6, Atg8, Atg9, and Atg17) required for the initiation, nu-
cleation, membrane expansion, and autophagosome forma-
tion steps of autophagy are necessary for Acb1 secretion in 
P. pastoris (Fig. 3 A; Xie and Klionsky, 2007). These results 
suggest that the Acb1 fatty acyl CoA conjugate must be cap-
tured into specialized autophagosomes (Acb1 vesicles) be-
fore Acb1 is secreted in yeast. An alternative possibility we 
have considered is that it is some inhibitor of Acb1 secretion 
that must be removed by autophagy, but we favor the model 
in which Acb1 is captured in autophagosomes based on data 
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and which, when dysfunctional, cause disease. Many unconven-
tional secretion pathways are also regulated (Nickel and Seedorf, 
2008). Our results show that Acb1 secretion is inactive in cells 
growing in rich medium but triggered by nitrogen starvation 
(Fig. 1, A and C). We also found stimulation of autophagy by 
rapamycin-induced Acb1 secretion in P. pastoris even in rich  
medium (Fig. 3 B). Interestingly, the secretion of the human  
homologue of Acb1 is also regulated (Swinnen et al., 1996; 
Qian et al., 2008). In K562 cells, the fusion of autophagosomes 
with MVBs and of amphisomes with the plasma membrane is  
induced by starvation (Fader et al., 2008).

Evolutionary implications of the 
unconventional secretion pathway
The AcbA-like proteins are remarkably conserved in S. cerevi­
siae, P. pastoris, D. discoideum, and mammals (Fig. 2 A), and as 
shown in this study, their modes of secretion and processing are 
also likely to be conserved evolutionarily (Knudsen et al., 1993). 
Interestingly, the human homologue of AcbA is the precursor of 
secreted neuropeptides that modulate GABAA receptor function 
in central nervous system neurons (Costa and Guidotti, 1991) and 
is involved in the regulation of multiple biological processes such 
as acyl CoA metabolism, steroidogenesis, and insulin secretion 
(Swinnen et al., 1996). Given the interest in the mammalian 
ACBP, the experiments presented in this study open several ave-
nues for the exploration of the secretion and function of ACBP.

A second aspect of the conservation of Acb1 relates to its 
physiological function. It is interesting that a protein secreted 
by unicellular organisms such as P. pastoris and S. cerevisiae 
elicits a complex developmental response involving enhanced 

the plasma membrane (Fader et al., 2009). This is an unconven-
tional secretion process whereby cytosolic and organelle-
associated proteins are secreted under special conditions. In 
fact, exosome secretion is a property of many mammalian cell 
types (van Niel et al., 2006). The fusion of autophagosomes 
with MVBs and of MVBs with the plasma membrane provides 
a framework for the model for unconventional secretion of Acb1 
in yeast (Fig. 6), as presented in this study and in the accompa-
nying paper (see Duran et al. in this issue). Precedent for this 
idea comes from the recent demonstration that in MG6 microg-
lial cells or primary microglia, the activation of purinergic P2X7 
receptor by ATP results in the accumulation of autophago-
some-like structures and the contents of the autophagolysosome  
or phagolysosome are released into the extracellular spaces 
(Takenouchi et al., 2009).

Although this study does not distinguish whether Acb1 
vesicles or some other compartment that has received their con-
tents fuse with the plasma membrane, the literature cited in the 
previous paragraph and the accompanying paper (Duran et al., 
2010) make us favor an indirect mechanism in which autophago
somes fuse with MVBs, which in turn fuse with the plasma 
membrane. To distinguish the secretion of Acb1 via an autophagy-
related process distinct from general macroautophagy and other 
forms of selective autophagy, we have named this mode of  
Acb1 transport as the unconventional secretion via autophago-
somes pathway (Fig. 6).

Unconventional secretion is regulated
Conventional secretion pathways are subject to many modes of 
regulation that are linked to dynamic physiological responses, 

Figure 6.  Working model for the unconventional secretion of Acb1 in P. pastoris. Pex11, a peroxisomal membrane protein associated with the peroxi-
some membrane, is transported to peroxisomes via the action of Pex3 and Pex19, whereas Faa2 is transported into peroxisomes via the PTS1 import 
pathway that relies on components of the peroxisomal importomer and the receptor-recycling machinery (see Results). Acb1 binds MCFA-CoA, which is 
derived by the Pex11-mediated transport of cytosolic MCFA into the peroxisome matrix, where the PTS1-containing protein Faa2 (fatty acyl CoA synthe-
tase) couples it to CoA. The Acb1 bound to MCFA-CoA is captured in specialized autophagosomes (Acb1 vesicles) via the action of Atg11, involved in 
selective autophagy, and other core Atg proteins required for autophagosome formation. The normal fusion of Acb1 vesicles with vacuoles, but not that 
of general autophagic vesicles involved in macroautophagy, is bypassed during unconventional secretion. Acb1 vesicles might be delivered directly or 
indirectly for fusion with the plasma membrane, most likely via amphisomes. In addition to the proteins shown to be involved in Acb1 secretion, GRASP 
is also required. The fusion of a presently unknown vesicular compartment with the plasma membrane would release extracellular Acb1, which is then 
proteolytically cleaved by the P. pastoris trypsin-like protease, to generate extracellular SDF-2–like activity. We call this process the unconventional secre-
tion via autophagosomes pathway.

http://jcb.rupress.org/cgi/content/full/jcb.200911154
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a statistical SD cannot be calculated to determine the error bars. However, 
based on the properties of serial dilution–based assays, we estimate that the 
values present a reliability range of ±50%. The assay has also been repre-
sented in a similar manner in our previous study (Anjard and Loomis, 2005).

Strain and plasmid construction
For gene deletions, the 5 flanking regions (1 kb) of the respective ORFs 
(ACB1: NCBI Protein database accession no. CAY68214.1; GRH1: 
NCBI Protein database accession no. CAY72138.1; YPT7: NCBI Protein 
database accession no. CAY72169.1; and FAA2: NCBI Protein data-
base accession no. CAY71596.1) were amplified from PPY12 genomic 
DNA and cloned into the 5 multiple cloning site of pSEB44 (Léon et al., 
2006). Next, the 3 flanking regions (1 kb) of the ORFs were amplified 
and further cloned into the 3 multiple cloning site of the pSEB44 con-
struct containing the 5 flanking regions. The disruption cassette was am-
plified from the resultant construct and transformed into the PPY12 strain. 
G418-resistant clones were screened by PCR and product size analysis. 
A similar strategy was used for the SPO14 (CAY70694.1) deletion using 
a zeocin disruption plasmid, pAP1.

Yeast sporulation assay
P. pastoris wild-type and mutant cells were grown to late exponential phase in 
rich medium and transferred to 1% potassium acetate solution at 1 A600/ml. 
After 3 d of incubation at 30°C in a rotator shaker set at 250 rpm, cells from 
1 ml culture were washed and resuspended in 1 ml of sterile water. 50 µl of 
this suspension was treated with 1 µl zymolyase solution (1 KU/ml stock solu-
tion) at 30°C for 1 h to destroy any vegetative cells. The reaction was stopped 
by addition of 500 µl of 0.5 M ice-cold sorbitol solution. Appropriate serial  
dilutions were performed in sterile water and plated onto YPD agar plates. The 
plates were incubated at 30°C for 2–3 d, and the colonies were counted.

Online supplemental material
Table S1 lists the strains used in this study. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200911149/DC1.
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