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Abstract
The tumor oncoproteins HRAS, KRAS, and NRAS are the founding members of a larger family of
at least 35 related human proteins. Using a somewhat broader definition of sequence similarity reveals
a more extended superfamily of more than 170 RAS-related proteins. The RAS superfamily of GTP
(guanosine triphosphate) hydrolysis–coupled signal transduction relay proteins can be subclassified
into RAS, RHO, RAB, and ARF families, as well as the closely related Gα family. The members of
each family can, in turn, be arranged into evolutionarily conserved branches. These groupings reflect
structural, biochemical, and functional conservation. Recent findings have provided insights into the
signaling characteristics of representative members of most RAS superfamily branches. The analysis
presented here may serve as a guide for predicting the function of numerous uncharacterized
superfamily members. Also described are guanosine triphosphatases (GTPases) distinct from
members of the RAS superfamily. These related proteins employ GTP binding and GTPase domains
in diverse structural contexts, expanding the scope of their function in humans.

Introduction
GTPases, together with their associated regulators and effectors, participate as central control
elements in signal transduction pathways that touch on virtually every aspect of cell biology.
Most of these proteins fall within a superfamily named for the RAS oncoprotein. Research into
the biochemistry and function of RAS-related GTPases has focused on a relatively small subset
of proteins. Genome analysis and gene expression results from multiple sources were used to
create an extensive accounting of the genes and proteins that constitute the human RAS
superfamily and some more distantly related GTPases (1). Sequence comparison analysis (2)
revealed insights into the relationship among members of this signal transduction superfamily.

RAS Biochemistry and Function
RAS superfamily proteins share a basic biochemical activity: GTP (guanosine triphosphate)
binding and hydrolysis (Fig. 1). This commonality is directly reflected in the presence in each
protein of several characteristic “G box” sequences (3,4). The G1 box [aaaaGxxxxGK(S or
T), where a = L or I or V or M, and x = any amino acid], also known as a P-loop or Walker A
motif (5), is a purine nucleotide binding signature. The G3 box (blbbDxxGl, where l =
hydrophilic and b = hydrophobic), which overlaps with the Walker B motif at the invariant
aspartic acid residue, is involved in binding a nucleotide-associated Mg2+ ion and is also well
conserved among superfamily members. Residues of the G4 box [bbbb(N or T)(K or Q)xD]
make hydrogen bond contact with the guanine ring (conferring specificity to GTP over ATP)
and provide stabilizing interactions with G1 box residues. Amino acids in the G5 box [bbE(A
or C or S or T)SA(K or L)] primarily make indirect associations with the guanine nucleotide
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and are less well conserved among supergroup members. The G2 box (YDPTIEDSY for HRAS
and several other RAS subfamily members) is located in one of two segments that reorient as
a function of GDP or GTP binding and provide major components of the effector binding
surface. Of all RAS superfamily G2 box sequences, only the threonine residue is highly
conserved, but several other residues recur within subfamilies. Mutations in this domain can
block association of HRAS with one or more of its downstream effectors (6–8).

RAS proteins share a common mechanism of operation that is tied to nucleotide-regulated
conformational shifts [reviewed in (9)]. In the GTP-bound state, they display a binding surface
with high affinity for downstream effector proteins [for example, HRAS-GTP has a Kd
(dissociation constant) of 18 nM for the protein kinase RAF1 (10)]. The structural changes are
confined primarily to two loop regions called switch 1 and switch 2 (11). However, the high-
affinity effector-binding conformation of RAS proteins is transient; GTP hydrolysis and release
of the γ-phosphate leads to reorientation of effector binding residues, the release of effector
proteins (due to reduced affinity), and attenuation of downstream signaling.

The rate-limiting step in RAS protein activation is the exchange of bound GDP for GTP. In
most cases this is a slow step (3.4 × 10−4 s−1 for HRAS) (12), favoring an inactive steady-state
conformation of RAS even in the presence of a high cellular GTP/GDP ratio [~10-fold (13),
although this may not be uniform throughout the cell]. This kinetic limitation is the basis for
stimulus-induced mechanisms of RAS protein regulation. Guanine nucleotide exchange factors
(GEFs, also called guanine nucleotide–dissociation stimulators or GDSs) catalyze the release
of GDP (Fig. 1), thus promoting GTP loading and activation of RAS (~sixfold stimulation for
HRAS by the exchange factor SOS1) (14). Several GEFs may act on a particular RAS protein
[reviewed in (15)], with each GEF responding to distinct upstream stimuli (for example, growth
factor receptor phosphorylation or diacylglycerol production), providing multiple avenues for
signal regulation. GEF-mediated regulation is also a point of vulnerability for RAS function:
RAS mutants that bind GEFs unproductively (e.g., HRASS17N) can dominantly block the
activation of endogenous RAS (16,17).

Guanine nucleotide dissociation inhibitors (GDIs) act in opposition to exchange factors. GDIs
bind specifically to GDP-bound GTPases and inhibit the release of GDP (18), thus prolonging
the inactive state. GDI binding also serves to emulsify some lipid-modified GTPases, allowing
them to dissociate from membrane surfaces. Multiple GDIs have been identified for RHO and
RAB proteins (19,20) but, to date, not for other subfamilies. GDI-bound, cytoplasmic RHO
and RAB proteins are effectively sequestered from membrane-associated effectors as well as
regulators.

The intrinsic GTPase activity of RAS-related proteins is typically low (4.2 × 10−4 s−1 for
HRAS) (12), which would tend to prolong signal transduction. GTP hydrolysis is greatly
enhanced, however, by the intervention of GTPase activating proteins (GAPs) (Fig. 1) (21).
As with GEFs, there are often multiple GAPs that function on a given RAS protein (22),
allowing for a variety of input sources at this stage of regulation.

Many RAS family proteins are subject to multiple lipid modifications (23), which promote
association with cellular membranes. Covalent posttranslational modif ication of C-terminal
cysteine residues by isoprenylation (attachment of a farnesyl or geranylgeranyl group) is
observed for most RAS, RHO, and RAB family members. This modification has also been
implicated in determining subcellular membrane localization, which in turn can influence
effector binding or activation and regulatory protein interactions (24–29). Cysteine
palmitoylation (covalent attachment of a palmitate fatty acid) also occurs near the C terminus
of some RAS and RHO proteins.
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At the N terminus of many ARF (ADP ribosylation factor) and Gα subfamily proteins,
cotranslational modification of glycine by myristoylation occurs. For some Gα proteins,
myristoylation is combined with palmitoylation of a neighboring cysteine (30,31). In other
cases, palmitoylation of cysteines near the N terminus appears to be independent of other
modifications (32). As with the modifications at the C terminus, the N-terminal lipid additions
likely play a role in membrane localization but may well contribute in other ways to RAS
protein structure or function.

RAS Proteins and Cancer
RAS (rat sarcoma) genes were first identified and characterized as transduced oncogenes in the
Harvey and Kirsten strains of acutely transforming retroviruses (33,34) (note: early
publications use the name p21src for these genes). Mutationally activated forms of HRAS (also
called H-Ras), KRAS (also called K-Ras), and NRAS (also called N-Ras) were subsequently
isolated from human tumor cells using transfection-based assays (35–37). Tumor-derived RAS
mutations, such as HRASG12V, disable GTPase function and GAP responsiveness (38).
Mutations that enhance guanine nucleotide exchange (e.g., HRASN116H) also enhance the basal
activation state of RAS proteins (39,40).

High rates of KRAS-activating missense mutations have been detected in non–small cell lung
cancer (15 to 20% of tumors) (41), colon adenomas (40%) (42), and pancreatic
adenocarcinomas (95%) (43), making it the single most common mutationally activated human
oncoprotein. In some tumors, HRAS- or NRAS-activating mutations are also seen. More than
half of the most malignant thyroid tumors, characterized as poorly differentiated or
undifferentiated, harbor a mutation in KRAS, HRAS, or NRAS (44). In addition to mutational
activation, RAS genes are amplified or overexpressed in some tumors (45). In the case of breast
cancer, the incidence of RAS-activating mutations is low, but RAS activity is elevated due in
part to increased upstream signaling from the receptor tyrosine kinase ERBB2 (also called
Her2) (46). Other mechanisms leading to RAS overactivation in tumor cells include the deletion
of genes encoding negative regulators (for example NF1, a GAP for RAS, in neurological
tumors) (47–50) and overexpression of positive regulators (such as SOS1, a GEF for RAS, in
renal cancer cells) (51). Taken together, these data illustrate the critical and pervasive role
played by RAS in cell transformation.

Activating mutations in other members of the RAS superfamily are much less common in
human tumors, and the known examples are generally restricted to neoplasias of relatively low
frequency. In vitro systems, however, provide compelling evidence that several members of
the RAS superfamily, aside from KRAS, HRAS, and NRAS, can enhance or facilitate cell
transformation.

RAS Protein Subfamily (35 members)
RAS subfamily members show high conservation within the G1, G3, G4, and G5 boxes (Fig.
2). Most proteins in this group are relatively small (183 to 340 amino acids in length) and show
no prominent functional motifs outside of those defining their RAS relatedness.

Most of the RAS subfamily proteins localize predominantly to the plasma membrane.
Membrane localization results in part from C-terminal prenylation. Prenylation signals mostly
conform to the Caax (a = aliphatic, x = terminal amino acid) motif that directs cysteine
farnesylation (except when x = L or F, which instructs geranylgeranylation as occurs on RRAS
proteins and some RAP proteins). The prenylation reaction is followed by proteolysis of the
three C-terminal residues (aax) and methylation of the lipid-modified cysteine [reviewed in
(23,52)]. The later two posttranslational processing steps take place in the endoplasmic
reticulum (ER) before transport to the plasma membrane (53). RAL proteins contain the
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geranylgeranylation signal CCaa. Some RAS subfamily members lack either type of
isoprenylation motif and are not subject to any known lipid modification.

Some RAS subfamily proteins contain fatty acid acylation signals. Notably, HRAS, NRAS,
ERAS, RRAS1 and RAP2A, RAP2B, and RAP2C have palmitoylated cysteine residues
proximal to their C-terminal prenylated cysteines. This modification requires transit through
the Golgi compartment (54). Endomembrane localization of RAS proteins may be more than
just a posttranslational modification detour, however. Several lines of evidence suggest that
RAS proteins are functional signal transducers in the ER-Golgi complex (55–57).

N-terminal lipidations may contribute to the localization of other RAS subfamily members
such as ARHI (Ras homolog member I), which has a potential myristoylation site (MetGly) at
its N terminus, and NKIRAS1 and NKIRAS2 (NF-κB inhibitor–interacting Ras-like 1 and 2)
proteins, which have putative myristoylation or palmitoylation modification signals
(MGxxCxxxxC) .

An additional factor in RAS protein trafficking and localization is the presence of a C-terminal
polybasic region, as seen on the predominant KRAS splice variant KRAS2B. This protein lacks
a palmitoylation site but has a strong polybasic region immediately upstream of the C-terminal
farnesylation site. In contrast, HRAS and NRAS have palmitoylation sites but no polybasic
regions. These differences are believed to underlie the distinct membrane localization
characteristics (58) and signaling properties (59) of these otherwise close paralogs. In the 2A
isoform of KRAS (N terminus = KTPGCVKIKKCIIM), the polybasic sequence is replaced
with a palmitoylation site. As a result, the KRAS2A isoform may be more similar to HRAS
and NRAS in its subcellular localization. Interestingly, RAP1 (prenylation + polybasic) and
RAP2 (prenylation + fatty acylation) proteins appear to have a relationship similar to that of
KRAS2B and HRAS. The RIT1 and RIT2 proteins encode C-terminal polybasic sequences (6
of 10 residues are R or K) but lack both prenylation and fatty acylation signals. RERG (Ras-
related and estrogen-regulated growth inhibitor) appears to be devoid of all standard lipid
membrane localization signals and displays cytosolic localization, suggesting that it functions
outside the context of cellular membranes (60).

Other posttranslational modifications have been described for RAS subfamily proteins. These
include serine phosphorylation (61) and nitrosylation (62–64) of HRAS and tyrosine
phosphorylation of RRAS1 (65,66); the functions of these modifications are still under
investigation.

Variation at the level of alternative splicing has been described for some RAS genes. For KRAS
(67,68) and HRAS (69), the primary function of alternate splicing may be to generate isoforms
with distinct subcellular localizations.

A comparison of RAS subfamily sequences from Homo sapiens, Drosophila Melanogaster,
and Caenorhabditis elegans (Fig. 3) shows strong conservation through evolution, with most
branches of the dendrogram containing representatives from each species. This analysis also
illustrates a notable expansion of RAS subfamily proteins (human = 35, fly = 14, worm = 12)
and suggests 12 structural or functional branches.

RAS oncoprotein branch (HRAS, KRAS, and NRAS)
HRAS, KRAS, and NRAS (H, K, NRAS) proteins are perhaps best known for their mitogenic
properties. As discussed above, mutationally activated forms of these proteins can efficiently
transform cells in vitro and in vivo, and such mutations are common in a broad spectrum of
human tumors. There is also strong evidence from cell culture experiments (70) and model
organisms (71,72) that H, K, NRAS proteins contribute to cell differentiation and organ
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development. These same proteins have more recently been implicated in neuronal plasticity
in the central nervous system (73–78).

The protein kinase RAF1 (also called c-Raf) was the first identified RAS effector (79–83) and,
together with the closely related ARAF (also called A-Raf) and BRAF (also called BRaf), has
been the most intensively studied [reviewed in (84)]. Activated RAS binds with high affinity
to the “Raf-like Ras–binding domain” (Interpro IPR003116), as well as an adjacent cysteine-
rich domain, and leads to activation of the kinase activity of RAF and initiation of the MEK-
ERK mitogen-activated protein kinase cascade, which affects transcription and other cellular
functions. The precise mechanism of RAS-mediated activation is complex and not yet fully
elucidated, but seems to involve enhanced membrane association, as well as allosteric
derepression (deletion of the RAS binding domain results in constitutive kinase activity) (85)
and promotion of RAF phosphorylation by serine-threonine and tyrosine kinases.
Hyperactivation of the RAF effector pathway alone can transform immortalized rodent
fibroblast cells, but appears to be insufficient for transformation of some other cell types (86,
87). The frequent occurrence of dominant BRAF mutations in some human cancers (88) further
suggests that this effector pathway has a major role in tumorigenesis. Other human proteins
with “Raf-like Ras–binding domains” include TIAM1, which functions as a RAS-controlled
GEF-type activator of RAC (a member of the Rho subfamily) (89). Mice deficient in TIAM1
function develop normally but are impaired in carcinogen-induced, RAS-mediated,
tumorigenesis (90), consistent with a role for this effector in RAS-mediated growth regulation.

The catalytic subunits of phosphotidylinositol 4,5 bisphosphate 3-kinase (PI3K) constitute
another well-established class of RAS effectors (91). RAS binds to a consensus
“phosphoinositide 3-kinase Ras binding domain” (Interpro IPR000341) found in seven distinct
human proteins (PIK3CG, PIK3C2A, PIK3C2G, PIK3CB, PIK3CA, PIK3C2B, and PIK3CD).
This interaction promotes PI3K catalytic activity (92), resulting in increased production of
membrane-associated PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and the subsequent
plasma membrane recruitment of PIP3-binding PH domain proteins such as the protein kinases
AKT1 and PDPK1 (3-phosphoinositide–dependent protein kinase 1, also called PDK1). RAS-
mediated activation of PI3K is also an important component of cell transformation (8).

Several GEFs for RAL proteins are RAS effectors (93–97). RALGDS, RGL1 (Ral GDP
dissociation stimulator–like; also called ARHGAP9), RGL2 (also called Rab2L), and RGL3
each encode a Ras association (RA) domain (Interpro IPR000159), a third type of RAS-effector
interaction motif. RAS proteins stimulate the nucleotide-exchange activity of RALGDS (98),
and this appears to have a critical role in human cell transformation (99,100).

RIN1 is another RA domain–containing RAS effector protein (101,102). The RIN1 protein
functions as a RAS-responsive GEF for RAB5 (103) and also stimulates the catalytic activity
of the ABL tyrosine kinase (104,105). RIN1 has a restricted expression pattern (78) and,
because of its high-affinity binding to RAS proteins (101), may function in part as a
physiological competitor of other effectors. The related proteins RIN2 and RIN3 have
discernable RA domains but have not been functionally connected to any RAS protein. Another
RAS effector, NORE1 (novel Ras effector 1; also called RASSF5 and RapL), is a positive
regulator of cell death through association with the proapoptotic kinase STK4 (106). NORE1
is itself part of a family of related proteins (RASSF1 through RASSF6) that all contain RA
domains but have not all been functionally connected to RAS. The RA domain–containing
enzyme phospholipase C epsilon (PLCE1; also called PLCε) has also been described as a RAS
effector (107). However, RA domains show affinity for RAP as well as RAS proteins. In the
case of the RA protein MLLT4 (also called AF6), Rap1 proteins may be the preferred
physiological binding partners (108). Finally, another RA domain–containing protein, RASIP1
(Ras-interacting protein 1, also called RAIN), is an effector of RAS and RAP (109). Systematic
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analysis of RAS family GTPases and multiple effectors has demonstrated binding specificity
that often correlates with biochemical and biological activation (110).

BRAP (also called IMP, impedes mitogenic signal propagation) is another protein that binds
specifically to activated RAS (111), although BRAP has no RA or other recognizable RAS-
interaction domain. BRAP appears to function as a dedicated inhibitor of signaling between
RAF and MEK.

RRAS (Related to RAS) branch
RRAS1, RRAS2 (also called TC21), and MRAS (also called RRas3) appear to be involved in
control of mitogenesis and the cytoskeleton. RRAS1 localizes to focal adhesions where it
promotes cell adhesion and activates integrins (112,113). Activating (GTPase-defective)
mutants of all the RRAS proteins can transform cultured fibroblast cells, with RRAS2 being
the most potently transforming (114–117). Activating mutations and overexpression of RRAS2
are found in some human tumors (118–120). Effectors implicated in the function of RRAS
family members include PI3K (121,122), RALGDS and related proteins (97,122,123), and
RAF kinases (124,125), but RRAS1 appears to work primarily through PI3K (121). This
overlap with effectors of the H, K, NRAS family likely reflects the complete conservation of
G2 box (switch 1) sequences among members of both branches. The differences between the
physiological consequences of RRAS activation versus that of H, K, NRAS activation may
reflect quantitative differences in effector engagement, as well as the contribution of some
unique effectors for each protein.

RAP (Ras-Proximal) branch
RAP proteins are activated by mitogenic stimuli and function as regulators of integrin-mediated
cell adhesion and cell spreading (126,127). In cultured cells, RAP proteins do not show
transforming activity. Rather, overexpression of RAP1A inhibits RAS-mediated
transformation (128). However, RAP1A has been reported to bind and activate BRAF (129),
suggesting that it has the capacity to promote mitogenesis and perhaps transformation in some
contexts but not others (130). Two observations suggest contributions of RAP proteins in
tumorigenesis, but with possible tissue-type specificity. Activation of a RAP-directed GEF
(131) or inactivation of a RAP-directed GAP (132) promotes hematopoietic tumor formation.
Conversely, the loss of an activator of RAP1 proteins has been found in a mouse osteosarcoma
and in several nonhematopoietic human cancer cell lines (133).

RAP proteins may function through activation of RALGDS and related proteins, but not in the
same way that RAS does (134), and through associations with PLCE1 (135). In lymphoid cells,
RAP1 proteins promote integrin activation through NORE1 (136).

RAL (RAS-Like) branch
RALA and RALB have been implicated in a broad spectrum of functions including mitogenic
responses, differentiation, protein trafficking, and cytoskeleton dynamics [reviewed in (137)].
As discussed above, H, K, NRAS, RRAS2, MRAS, and RAP proteins all appear to work in
part through RALGDS-type effectors that are expected to stimulate RAL functions. Although
mutationally activated RAL proteins are not themselves oncogenic, they can enhance
transformation of cultured cells by RAS and EGFR (epidermal growth factor receptor) (98,
138). The two RAL proteins appear to have distinct and complementary roles in cell
transformation; RALB is required for tumor cell survival, whereas RALA promotes anchorage-
independent cell proliferation (139). Each RAL also has a distinct role in epithelial cell
polarization (140).
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Several RAL effectors have been identified but, to date, these do not include members of the
RAF-PI3K-RALGDS triumvirate. This may seem surprising because RAL proteins show high
overall relatedness to H, K, N-RAS proteins. However, the two subfamilies diverge appreciably
in their Switch 1 regions (Fig. 2). The sequence YDPTIED is completely conserved in H, K,
N-RAS proteins as well as in RRAS1 RRAS2, MRAS, and all RAP proteins, all of which share
many effectors. In RALA and RALB the equivalent sequence is YEPTKAD.

The RAL effector RALBP1 (also called RLIP), which has a RAC- and CDC42-directed GAP
domain (141–143), regulates endocytosis (144–146). RAL is also a component of the exocyst
complex. RAL directly binds to both SEC5L1 (also called Sec5) and EXOC8 (also called
EXO84), promoting exocyst complex assembly and membrane trafficking (147–149).

RIT (RAS-like Protein in All Tissues) branch
RIT1 and RIT2 (also called Rin) are positive factors for neuronal cell survival as well as for
the initiation, elongation, and branching of neu-rites in culture (150–152). The enhanced
expression of RIT1 and RIT2 in developing and mature neurons (153) supports the biological
relevance of these properties. RIT2 includes a Ca2+-calmodulin binding site (153), which
appears to be required for its neurite outgrowth function (150). Although an activated (GTPase-
deficient) mutant of RIT1 can transform a fibroblast cell line (154,155), there is no evidence
that either RIT gene functions in tumorigenesis.

On the basis of protein interaction experiments, RALGDS (and related proteins) and AF6 are
potential effectors of RIT1 and RIT2 (156), but no RIT-specific effectors have been
characterized. Several lines of evidence indicate that RAF and PI3K are not direct effectors of
RIT proteins (150,154,156).

ERAS (Embyonic Stem Cell–Expressed Ras) branch
ERAS is an unusual subfamily member in several respects. As indicated in Fig. 3, ERAS
occupies a branch with no human paralogs and no fly or worm orthologs. ERAS expression is
restricted to undifferentiated embryonic stem (ES) cells (157).

Ectopic expression of wild-type ERAS transforms cultured fibroblast cells (157). This unusual
property likely reflects the effect of sequence differences at residues that regulate the GTP/
GDP binding equilibrium in other RAS proteins (that is, the amino acid corresponding to
Gly12 in H, K, NRAS). ERAS may be an important factor in the propensity of ES cells to form
teratomas. A strong candidate effector of ERAS is PI3K (157).

DIRAS (Distinct Subgroup of RAS) and ARHI branches
The DIRAS1 (also called Rig) and DIRAS2 proteins, like RHEBs, show reduced GTPase
activity compared to that of most RAS superfamily GTPases, and DIRAS proteins remain
predominantly in the GTP-bound state (158). DIRAS and ARHI proteins may have tumor
suppressor functions. Overexpression of DIRAS1 antagonizes Ras-mediated signaling and
transformation, and DIRAS1 is silenced or down-regulated in many neural tumors and tumor-
derived cell lines (159). The ARHI (also called Noey2) protein has been implicated as a tumor
suppressor in breast and ovarian cancer (160,161).

Ectopic expression of DIRAS1 or DIRAS2 can induce the formation of large vacuolar
structures (158), but downstream effectors have not been identified for these proteins.

RASD (Ras Induced by Dexamethasone) branch
RASD1. (also called dexRas) was identified as a transcript that shows strong, rapid, and
transient induction after treatment of cells with dexamethasone (162), and RASD2 (also called
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RHES, for Ras homolog enriched in striatum) was identified as a protein expressed in
pancreatic beta cells in response to efaroxan, an imidazoline that functions as an α2-adrenergic
receptor antagonist and insulin secretagogue (163). There is no evidence to support
involvement of RASD1 or RASD2 in transformation or tumorigenesis. RASD1 appears to
function as a negative regulator of peptide hormone secretion (164) and as a cell growth
suppressor (165). RASD2 has the capacity to activate PI3K and may interfere with G protein–
coupled receptor signaling (166).

The uncharacterized gene products RASL10A and RASL10B are the closest related proteins
to RASD1 and RASD2.

NKIRAS (NFKB Inhibitor–interacting RAS-like, also called kB-Ras) branch
NKIRAS1 and NKIRAS2 were discovered as proteins that interact with NFKBI (usually called
IκB), an inhibitor of the transcription factor NFKB (usually called NF-κB) (167). Binding of
NKIRAS to NFKBI-NFKB complexes prevents nuclear translocation of the complex in resting
cells, suggesting that NKIRAS proteins participate in the negative regulation of NFKB (168).

REM (Rad and Gem–related) branch
REM1, REM2, RRAD (also called Rad), and GEM (also called Kir) were identified primarily
on the basis of their restrictive and regulated expression patterns (169–172). They share a
conserved C-terminal cysteine (position –7), but this is not within a context recognized for
lipid modification. REM subfamily proteins show no transforming or tumorigenic properties.
REM1, RRAD, and GEM function in part as negative regulators of calcium currents through
a direct interaction with the β subunit of a voltage-gated Ca2+ channel (173,174).
Overexpression of GEM produces cytoskeletal changes marked by cellular processes. These
changes may result from a direct interaction of GEM with the kinesin-like protein KIF9
(175) and RHOA inactivation [reviewed in (176)], perhaps through GMIP (Gem interacting
protein), a RHOGAP (177).

RERG (RAS-related and Estrogen-Regulated Growth inhibitor) branch
RERG was identified during a search for genes whose expression in breast tumors correlates
with prolonged survival (60). As its name implies, transcription of the RERG gene is increased
in response to estrogen, perhaps through direct estrogen receptor binding to the RERG gene
promoter. RERG shows no binding to H, K, NRAS effectors tested (RAF, RALGDS, PI3K,
and RIN1), and RERG neither transformed cultured fibroblasts nor enhanced HRAS-mediated
transformation (60). Ectopic expression of RERG actually blocked transformation and
tumorigenesis in a breast tumor cell line (60).

Three gene products—RASL11A, RASL11B, and RASL12—show relatedness to REM.
Abundance of RASL11A transcripts is decreased in some prostate tumors (178), but its function
is uncharacterized. The RASL11A, RASL11B, and RASL12 gene products have no lipid
modification signals, suggesting functions that are not restricted to membrane surfaces. Further
analysis of these proteins will determine if they are best considered as a separate branch of
RAS proteins.

RHEB (Ras Homolog Enriched in Brain) branch
RHEB proteins are involved in the control of cell cycle and cell growth (179). Although early
studies found that RHEB proteins block MAPK (mitogen-activated protein kinase) signaling
and inhibit RAS-mediated transformation of cultured fibroblasts (180,181), it is not yet clear
whether these observations represent physiological activities.
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RHEB proteins have low intrinsic GTPase activity and exist predominantly in the GTP-bound
form. RHEBs are subject to negative regulation, however, by the GAP activity of a TSC1-
TSC2 complex. The best-characterized downstream effector of RHEB is the Ser-Thr kinase
FRAP1 (also called mTOR, target of rapamycin) (179,182–186), which in turn regulates
translation through its substrates RPS6K (ribosomal protein S6 kinase 1) and EIF4EBP1
(eukaryotic initiation factor 4E–binding protein). Loss-of-function mutations in TSC genes are
associated with tuberous sclerosis complex, a benign tumor syndrome, suggesting that RHEB
may have tumor promoter functions in vivo.

RHO Protein Subfamily (23 members)
The RHO (Ras homolog) subfamily of proteins is closely related to the RAS subgroup
[reviewed in (187–188)], and members of this family show strong conservation among their
G1 to G5 boxes (Fig. 4). However, most members of this subfamily have an insert sequence
that is not found in other RAS superfamily GTPases. Mounting evidence supports the
involvement of RHO proteins in cancer (189). They appear to be primarily collaborators in,
rather than initiators of, cell transformation. The unconventional RHO protein RHOBTB2
[named after the BTB (Broad-complex Tramtrack, and Bric a brac) domain; and also called
DBC2] is reported as a potential tumor suppressor (87), and overexpression of a RAC1 splice
varient, RAC1B, has been reported in colorectal tumors (190).

RHO subfamily proteins segregate into six branches based on sequence similarity (Fig. 5).
Effectors for RHOA, B, and C branch proteins include ROCK1 (Rho-associated protein kinase
1) (and probably ROCK2) (191) and the formin protein DIAPH (also called mDia, mammalian
homolog of Diaphinous) (192). RHO proteins bind to and activate PKN proteins,
serinethreonine kinases that have been implicated in cell stress responses (193,194). PLCE is
another demonstrated effector of RHO proteins (195). The RHO-binding proteins Rhophilin
(194), Rhophilin2 (196), and Rhotekin (197) may also serve as effectors. RAC [Ras-related
C3 botulinum toxin substrate (198)] branch proteins appear to function primarily through direct
activation of PAK (p21-associated protein kinase) family kinases (199). Other RAC effectors
include phospholipase C–β (PLCB) (200). Some effects of CDC42 branch proteins are
mediated by WAS (Wiscott-Aldrich syndrome protein; also called WASP) (201–203) together
with TOCA1 (transducer of Cdc42-dependent actin assembly), another CDC42 effector
(204). CDC42 proteins also participate in the function of a multiprotein complex that includes
PAR6, PAR3, and atypical protein kinase C isoforms (205). RND proteins are RHO family
members that are constitutively active due to extremely low GTPase activity. They have been
reported to antagonize RHOA function, in part through the activation of RHOGAPs (206) or
through blocking ROCK activity (207). No effectors have been identified for members of the
more distal branches of the RHO family, RHOT1 and RHOT2 (also called Miro for
mitochondrial Rho), and RHOBTB1 and RHOBTB2.

RHO proteins have been directly implicated in multiple aspects of cytoskeletal remodeling and
cell polarity (208,209), and activated forms of representative RHO proteins demonstrate that
certain aspects of remodeling segregate with particular branches of this subfamily (208,210).
The cytoskeletal changes reported include formation of lamellipodia (RAC1 to RAC3 and
RHOG), filopodia (CDC42, RHOJ, RHOQ), or stress fibers (RHOA, RHOB, and RHOC) and
the disruption of stress fibers (RND1 to RND3).

The majority of RHO subfamily proteins are subject to the same Caax-signaled prenylation
and posttranslational modifications as those seen on RAS subfamily members. Some RHO
proteins (most notably RAC1, RAC4, RHOA, and RHOC) also include C-terminal polybasic
sequences, whereas others are modified by palmitoylation.
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RHOT1 and RHOT2 are distinct in several ways from members of the RHO family and might
best be considered as a unique subfamily. First, the RHOT proteins show notable sequence
divergence from most RHO family members. This includes a lack of C-terminal cysteines,
implying that RHOT proteins do not undergo lipid modification, and an absence of the “RHO
insert” sequence following the G4 box. Second, RHOT1 and RHOT2 are more than twice as
large as other RHO family members. Third, RHOT proteins contain two EF hand (EFh) motifs
that may confer calcium binding, a function not associated with other family members. Each
RHOT protein also includes a putative GTP-binding motif at the C terminus, but no functional
significance has been assigned to these sequences. RHOT proteins localize to mitochondria,
and expression of mutationally activated RHOT1 or RHOT2 leads to disruption of the
mitochondrial network and to increased rates of apoptosis (209,210).

An interspecies comparison of RHO subfamily proteins (Fig. 5) shows that they have been
highly conserved through evolution and that, as with the RAS subfamily, there has been a
notable expansion of the RHO protein subfamily (human = 23, fly = 8, worm = 10).

RAB and RAN Protein Subfamily (71 members)
The RAB proteins were first identified as Ras-related genes expressed in rat brain (211). RABs
represent the largest subfamily of the RAS superfamily, and the close relatedness of some
members (RABL2A to RABL2B; RAB1A to RAB1B; and RAB11A to RAB11B) suggests
that recent duplications may have occurred (Fig. 6). Although most RAB proteins include C-
terminal prenylation signals, these are distinct from those found in RAS and RHO GTPases.
One subfamily member (RAB35) has an adjacent polybasic motif. Several RABs have potential
N-terminal myristoylation sites. Sequences of two RABs (RAB6C and RABL4) diverge from
the G1 box consensus (otherwise universal in the RAS superfamily) and may not be functional
GTPases. RAB44 and RASEF are the largest of the RAB subfamily proteins (predicted
molecular masses of 108 and 83 kD, respectively). Each encodes a calcium binding EF hand
motif (Interpro IPR002048). In addition, RAB44 encodes a spectrin repeat motif (Interpro
IPR002017) and a proline-rich motif (Interpro IPR00064). The RAS domains of RAB44 and
RASEF are located at their C termini.

Only one member of the RAB family has been reported to exhibit transforming potential; the
RAB8A (also called Mel) gene was first isolated in an NIH3T3 cell transformation assay
(212).

RAB proteins function in protein trafficking pathways, regulating vesicle formation,
movement, and fusion [reviewed in (213–215)]. Several RAB effectors have been identified.
These include rabphilin (also called RPH3A), an effector for the exocytosis function of RAB3
proteins (216). RAB5 proteins regulate endosomal vesicle transport through EEA1 (early
endosome antigen 1) (217), early endosome fusion through RBEP1 (rabaptin) (218), and affect
nuclear functions through APPL1 (adaptor protein containing PH domain, PTB domain, and
leucine zipper motif; also called DIP13α) and APPL2 (also called DIP13β) proteins (219). The
participation of RAB7 in lysosomal transport has been attributed in part to the effector protein
RILP (Rab7-interacting lysosomal protein) (220,221). RAB9 proteins interact with the effector
M6PRBP1 (also called TIP47) to mediate receptor recognition and cargo selection (222).
Rabphilin-11 serves as an effector for RAB11 proteins in their vesicle recycling function
(223). RAB27A works through MLPH (melanophilin) to regulate the movement of secretory
vesicles along actin filaments (224).

Although the RAN protein has been considered to define a separate family, comparative
sequence analysis suggests that RAN resides on a branch of the RAB subfamily. RAN is a
regulator of nuclear import and export [reviewed in (225)]. This function is tied directly to the
guanine nucleotide status of RAN, with both RAN-GTP and RAN-GDP showing specific
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interactions with nuclear transport factors. Nuclear RAN is maintained in the GTP-bound state
through sequestration of GAP and GEF regulators. RAN-GTP binds importins and exportins
but with opposite consequences (promoting import into the nucleus with the former or export
from the nucleus with the latter), leading to directed protein transport. RAN binding to
importins has also been implicated as a requisite step in mitotic spindle assembly (226,227).
The RAN branch of the RAB subfamily includes four less well-characterized proteins:
RABL2A, RABBL2B, RABL3, and RABL5. It remains to be determined if these proteins are
functionally similar to RAN.

Most branches of the RAB subfamily appear to be well conserved through evolution (Fig. 7)
and show notable expansion (human = 71, fly = 32).

ARF (and SARA) Protein Subfamily (30 members)
The first identified proteins in this subfamily were named for their role as ADP ribosylation
factors (228–230). ARFs and related proteins are regulators of trafficking of intracellular
proteins and membranes and of cytoskeletal remodeling [reviewed in (231)]. ARF proteins
lack C-terminal lipid modification signals (Fig. 8) but in most cases are subject to N-terminal
myristoylation.

Effectors mediating ARF functions include the Arfaptins (ARFIPs) (232) and Arfophilin
(RAB11FIPs) (233). ARF1 interacts directly with the vesicle coat protein COPI (234) and
regulates disassembly (235). At the plasma membrane, ARF6 can regulate endocytic recycling
through direct interaction with SEC10L1 (also called Sec10), a subunit of the exocyst complex
(236).

ARF proteins also function in part through their ability to regulate phospholipid metabolism
by directly activating phosphatidylinositol 4-phosphate 5-kinase (237,238). ARF1 and ARF3
also bind to GGA (Golgi-localized, gamma-adaptinear–containing, Arf-binding) proteins
(239,240) and function in trans-Golgi network membrane trafficking (241).

The SARA proteins (note that the HGNC name for these proteins overlaps with the common
acronym for Smad anchor for receptor activation, a distinct signaling protein) are an off-shoot
of the main ARF subfamily. SARA1 (also called Sar1) functions as a component of the COPII
complex that mediates export from the ER [reviewed in (242)]. Eight additional ARF-related
proteins are located on the same branch as SARA1 and SARA2. There are currently no data,
however, on the function of ARL9, ARL10A, ARL10B, ARL10C, ARFRP2, LOC339231,
LOC344988, and DKFZp761H0.

Two additional proteins (ENSG00000127917, GI:37538730; ENSG00000185829, GI:
7706177) show similarity with ARFs but have major G box motif disruptions that would likely
compromise G protein function.

Analysis of ARF and related proteins from human, fly, and worm (Fig. 9) indicates that this is
a well-conserved family with a degree of expansion similar to that of other RAS subfamilies
(human 30, fly 12, worm 13).

Gα Protein Subfamily (16 members)
The α subunits of G proteins were among the first well-characterized mammalian GTPases.
When aligned with other RAS superfamily proteins, the 16 Gα proteins show multiple sequence
insertions (Fig. 10) [reviewed in (243)]. The largest of these additional sequence elements,
located between the G1 and G2 boxes, is believed to account for the high intrinsic GTPase
activity and low intrinsic nucleotide exchange rate of Gα subunits relative to those of RAS
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[(244), and reviewed in (243)]. Most Gα proteins undergo N-terminal lipid modification by
myristate and/or palmitate fatty acids.

Mutant Gα proteins are associated with several diseases including cancers. Activating
mutations in Gαs are found in some pituitary tumors, and Gαi mutations have been reported in
tumors of the adrenal cortex (245).

The functions of Gα-type G proteins are inextricably linked to their association with βγ
heterodimer subunits and with proteins of the large family of G protein coupled receptors
(GPCRs). The inactive (GDP-bound) G protein heterotrimers are typically “parked” on the C-
terminal domains of GPCRs. Receptor activation leads to a conformational change that
facilitates both GTP loading and reduced affinity for βγ dimers [in some cases, however, the
heterotrimer remains intact (246)]. Downstream effectors of Gα include multiple adenylyl
cyclase isoforms, several ion channels and transporters, and various other cell regulatory
components [reviewed in (247)].

The Gα subfamily of proteins is well conserved in evolution (Fig. 11). The main branches of
the Gα tree (the branches containing Gs and Gl, Gi and Gt, G12 and G13, and Gq and G11) are
represented in mammals, flies, and worms, but there is an expansion of C. elegans genes in the
branch containing Gi, Gt, and Go.

The RAS Superfamily of Proteins
Sequence comparison analysis of all RAS superfamily members (GTPase domains only)
highlights the relationship among the subfamilies (Fig. 12). The RAS, RHO, RAB, ARF, and
Gα groupings are apparent, and the proximity of the RAS subfamily to the RHO and RAB
subfamilies is noteworthy. The close relationship of the ARF and Gα subfamilies is also
revealed. The RABL3 and RABL5 proteins segregate outside of the RAB subfamily and are
not clearly positioned within any of the other subfamilies. This may reflect an unusual
evolutionary origin for these sequences, which also do not have any apparent orthologs in
Drosophila (Fig. 7). RABL4 and RAB28 fall slightly outside the main RAB cluster. In addition,
the RHOT proteins appear to be only marginally within the RHO family.

Other Human GTPases
GTPases outside the RAS superfamily

There are at least 50 additional proteins that have demonstrated or predicted GTPase function,
but that fall outside the RAS superfamily. These proteins were, in many cases, identified on
the basis of genetic or biochemical analyses of function and only subsequently revealed to be
GTPases. Each protein includes recognizable G1, G3, and G4 boxes (Fig. 13). They are
generally larger than the RAS superfamily proteins, due to the presence of additional functional
domains. These “distant” GTPases also do not include the lipid modification signals seen in
most RAS subfamily proteins, and they function in multiple subcellular regions.

GTPases outside the RAS superfamily are diverse in structure and function. Sequence
alignment of their GTPase domains, however, reveals the existence of subfamilies that may
also reflect functional characteristics (Fig. 14). One of the largest groups is composed of the
septins (SEPT1 to SEPT11), which play a critical role in the constricting ring structure required
for cytokinesis. Septins have also been implicated in the formation of focal adhesion complexes
and in cell polarity [reviewed in (248)]. Association of septin with the plasma membrane is
guanine nucleotide regulated. Specifically, GDP enhances binding to the membrane lipid PIP2
(249).
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The dynamin family members DNM1 to DNM3 and DNM1L regulate vesicle and organelle
dynamics through their participation in a constricting ring structure that requires GTP
[reviewed in (250)]. OPA1 (optic atropy 1), MX1 (myxovirus resistance 1), MX2, and the
closely related mitofusin proteins (MFN1 and MFN2) are also members of the dynamin family,
but their biological functions are not well understood.

Initiation and elongation factors (EIF2S3, EEF1A1, EEF1A2, and TUFM) are perhaps the first
class of protein for which GTP binding and hydrolysis were studied in structural and
biochemical terms [reviewed in (251,252)]. During initiation, GTP hydrolysis is coupled to
the stepwise assembly of the mRNA-ribosome-tRNA Met

i complex. For elongation,
conformational changes associated with GTP binding or hydrolysis are used to drive cycles of
recruitment and release of aminoacylated elongator tRNAs.

Signal recognition peptide receptor complex components SRPRA (also called SRPR,
SRPRα), SRPRB (also called SRPRβ), and SRP54 also utilize GTP hydrolysis to regulate the
formation and function of a protein translocation complex (253). However, although the
GTPase domains of SRPRΑ and SRP54 are closely related, the sequence of SRPRB is
sufficiently divergent to be placed in a distinct branch.

The centaurin gamma proteins CENTG1 (also called GGAP2), CENTG2 (also called GGAP1),
and CENTG3 (also called MRIP1) have GTPase domains that are closely related to those of
RAS, RHO, and RAB proteins, but do not fit well into any of these RAS subfamilies. CENTGs
are unusual because they also include a GAP domain that appears to function intramolecularly
to promote GTP hydrolysis (254). Each CENTG protein also encodes a PH (pleckstrin
homology) domain (Interpro IPR001849) and an ANK (ankyrin) domain (Interpro
IPR002110). The XAB1 GTPase, implicated in the nuclear translocation of a DNA repair factor
(255), is structurally similar to members of this branch, raising questions about possible
functional similarities.

The RRAG proteins (RRAGA, RRAGB, RRAGC, and RRAGD) are sometimes described as
members of the RAS superfamily because they show some similarity with the ARF and Gα
proteins. RRAGs have been implicated as factors in the nuclear import and export functions
of RAN (256).

Three groups of GTPases were identified because their transcription is induced after treatment
of cells with IFNG (also called interferon gamma or IFN-γ) (257). The proteins share an IIGTP
(interferon-inducible GTPase) domain (Interpro IPR007743). The first group is represented by
IIGP5 in humans but appears to have undergone notable expansion in mice, where they were
first discovered and characterized (mouse orthologs are Irg47, Tgtp, Iigp, Lrg47, Igtp, and
Gtpi). Some evidence suggests a critical role for IIGTP proteins in normal immune responses,
perhaps through participation in vacuolar trafficking (258). Members of the second IFN-
inducible group (the guanylate-binding proteins GBP1 through GBP5) are relatively large G
proteins. They show unusual GTP binding characteristics (259) that may explain their capacity
to generate both GDP and GMP. A closely related gene product is SPG3A (atlastin), mutations
in which are associated with hereditary spastic paraplegia (260). The third group of IFN-
inducible G proteins are represented by VLIG (very large inducible GTPase 1) and, in mice,
by several VLIG paralogs (261).

GTPBP proteins (GTPBP1 to GTPBP5) show some relatedness to the initation/elongation
factor branch proteins (262,263). These genes also show IFN-inducible expression. Although
their physiological function remains unclear, GTPBP4 may be identical to NGB (also called
Nog1), a nucleolar protein involved in ribosome biogenesis (264). ERAL1 (Era-like 1, also
called H-Era, for Escherichia coli Ras-like protein) is named for its structural relationship with
Era, an essential bacterial GTPase (265). The ERAL1 protein also includes a KH domain
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(Interpro IPR004087) involved in RNA binding. ERAL1 is a potential regulator of apoptosis
(266).

DRG genes (DRG1 and DRG2) were identified as Developmentally Regulated G proteins
(267,268). Xenopus laevis orthologs of DRG have RNA binding activity (269), but little else
is known about their function.

The major histocompatibility complex class II transactivator, MHC2TA (also called CIITA)
functions as a master coactivator of MHC class II gene expression. MHC2TA has only weak
intrinsic GTPase activity, but GTP binding regulates its nuclear localization (270,271). The
nucleotide-binding domain of MHC2TA has been grouped in the NACHT family (named for
founding members NAIP, CIIA, HETE, and TP1) (272). Other mammalian proteins in this
large family—which includes BIRC1 (baculovial IAP repeat-containing 1); CIAS1 (cold
autoinflamitory syndrome 1); CARD (caspase recruitment domain family) 4, 6, 12, and 15;
and NALP (NACHT, leucine rich repeat, and PYD containing) 1, 2, and 4 to 14—that have
been tested show greater binding affinity for ATP than for GTP.

TUBB, the β subunit of tubulin, is an established GTP-binding and GTP-hydrolyzing protein,
but its structure diverges to such a large extent from those of the other GTPases (273), that it
has not been included in sequence comparisons. The identification of other human proteins
with GTPase function but relatively low G box sequence conservation will require a deeper
understanding of the structure and function relationships for these versatile enzymes. A
database of human GTPases can be found at
http://www.doe-mbi.ucla.edu/~sievers/gproteins.

GTP-binding proteins
The human genome encodes many proteins with demonstrated or predicted GTP-binding
properties, but no apparent GTPase enzymatic function. These include GNL1 (guanine
nucleotide binding protein–like 1, also called HSR1), which encodes a likely GTP binding
domain that, together with a mouse ortholog (Mmr1) and several bacterial proteins, appears to
form a structural subclass of proteins (PFAM domain PF01926) (274). The brain-enriched
RING finger protein ZNF179 (also called BFP, brain finger protein) shows close relatedness
to the GBPs, but no guanine nucleotide biochemistry has yet been described for BFP.

The dozen or more human RHOGAP protein family members include several with putative
GTP-binding domains. RHOGAP5 (also called p190-B or ARHGAP5) and GRLF1 (also called
p190A) have the most conserved such domains (275), but even in these cases they have not
been demonstrated to have GTPase activity or to play any role in RHO regulatory function.
Two other RHOGAP proteins, ARHGAP21 and CHN1 (also called RHOGAP2), have putative
GTP-binding domains that are more divergent.

A GTP-binding domain also appears within DAPK1 (death-associated protein kinase), a cell
death–associated protein kinase with ankyrin repeats and a death domain (276,277). Two other
DAPK proteins do not include recognizable GTPase domains. Other enzymes with reported
GTP-binding domains include transglutaminase, phosphoenolpyruvate carboxy kinase, and
glutamate dehydrogenase.

AGTPBP1 (also called NNA1) has an unusual binding site that accommodates either GTP or
ATP (278). Other reported GTP-binding proteins of interest include TSN (also called translin
or TB-RBP, testis brain RNA-binding protein) (279), ANXA6 (human annexin A6) (280), and
MEN1 (multiple endocrine neoplasia 1) (281).
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Each of the RHOT proteins has a potential GTP binding site downstream of their RHO-type
GTPase domains. The uncharacterized gene product MGC10731 (ENSG00000132881; GI:
34147392) also includes a putative GTP binding site.

Conclusions
A survey of all human RAS superfamily GTPases, and analysis of structural and evolutionary
relatedness among family members, represents only the end of the beginning of our efforts to
understand these pervasive signal transduction regulators. It is likely, for instance, that we have
only scratched the surface of variation resulting from alternate splicing and posttranslational
modifications of GTPases. Much attention has also turned to determining the specificity of
GTPase regulators such as the large family of GAPs and GEFs, as well as continuing efforts
to identify downstream effectors. Continued research in these areas should provide a more
accurate picture of human GTPase functions in normal and pathological conditions.
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Fig. 1.
RAS proteins exist in equilibrium between GTP- and GDP-bound forms. GEFs and GAPs
regulate the relative amounts of each form. The GTP-bound conformation of RAS shows high-
affinity interactions with effector proteins that propagate downstream signaling.
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Fig 2.
Alignment of human RAS subfamily members. G box consensus residues are highlighted in
blue. N- and C-terminal region cysteines, some of which are substrates for prenylation or fatty
acid modification, are highlighted in green. N-terminal glycines in positions favoring
myristoylation are highlighted in yellow. C-terminal basic residues are highlighted in pink.
Gray highlighting indicates residues that are highly conserved in 90% of members. Amino
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acids omitted for optimum alignment are indicated with the “^” symbol. For KRAS, the
KRAS2B isoform sequence is presented. See Table 1 for alternate gene symbols.
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Fig. 3.
Dendrogram of RAS subfamily members from H. sapiens, D. melanogaster (Dm), and C.
elegans (Ce). Human protein names are in uppercase letters. Branch lengths are directly
proportional to the number of differences between sequences compared. See Table 1 for
alternate names for human protein.
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Fig 4.
Alignment of human RHO subfamily members. Highlighting and symbols are as in Fig. 2.
Large C-terminal sequence extensions for RHOBTB and RHOT proteins have been removed
(indicated by the “#” symbol). See Table 1 for alternate gene symbols.
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Fig. 5.
Dendrogram of RHO subfamily members from H. sapiens, D. melanogaster, and C. elegans.
RHOT1-N and RHOT2-N represent the N-terminal GTPase domains of RHOT1 and RHOT2.
Human protein names are in uppercase letters.
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Fig. 6.
Alignment of human RAB subfamily members. Highlighting and symbols are as in Fig. 2. See
Table 1 for alternate gene symbols. 201475 (LOC201475, gi41150884) represents an
unannotated gene and matching cDNA. The RAB42 sequence is derived from an N-terminal
truncated message.
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Fig. 7.
Dendrogram of RAB subfamily members from H. sapiens and D. melanogaster. Human
protein names are in uppercase letters.

Colicelli Page 39

Sci STKE. Author manuscript; available in PMC 2010 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Alignment of human ARF subfamily members. Highlighting and symbols are as in Fig. 2. See
Table 1 for alternate gene symbols. The following are unannotated genes with matching
cDNAs: 339231 (LOC339231, gi 42661282), 344988 (LOC344988, gi 37539816), and
DKFZp761 (DKFZp761H079, gi 33598955).
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Fig. 9.
Dendrogram of ARF subfamily members from H. sapiens, D. melanogaster, and C. elegans.
Human protein names are in uppercase letters.
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Fig. 10.
Alignment of human Gα subfamily members. Highlighting and symbols are as in Fig. 2. Insert
sequences (relative to RAS subfamily proteins) have been removed and are indicated with “^”.
See Table 1 for alternate gene symbols.
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Fig. 11.
Dendrogram of Gα subfamily members from H. sapiens, D. melanogaster, and C. elegans.
Human protein names are in uppercase letters.
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Fig. 12.
Unrooted tree of human RAS superfamily members. As with dendrograms in previous figures,
branch lengths are directly proportional to the number of differences between sequences
compared. Subfamilies of proteins are indicated by colored arcs: RAS (red), RHO (green),
Gα (orange), ARF (yellow), and RAB (blue).
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Fig. 13.
Alignment of human G proteins with representative members of the RAS superfamily. The
G1, G3, and G4 box motifs and surrounding sequences are presented. See Table 1 for alternate
gene symbols.
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Fig. 14.
Dendrogram of distant G proteins (uppercase letters) with representative members of the RAS
superfamily.
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Table 1

Protein nomenclature. Human Genome Nomenclature Committee (HGNC) symbols for genes discussed in this
review are shown (left) with common names and aliases (right).

HGNC name Common names and aliases

AGTPBP1 ATP/GTP-binding protein 1, Nna1

AKT1 Akt, PKB

ANXA6 annexin 6

APPL1 DIP13α, adaptor protein with PH, PTB and Leucine zipper domains

APPL2 DIP13β

ARAF A-Raf

ARFIP arfaptin

ARHGAP21 ArhGAP10

ARHI Noey2, Arhi

BIRC1 baculovirus IAP repeat containing 1, NAIP

BRAF B-Raf

BRAP BRap2, RNF52, IMP

CARD caspase recruitment domain family protein

CDC42 cell division cycle 42-like, Cdc42

CENTG1 GGAP2

CENTG2 GGAP1

CENTG3 MRIP1

CHN1 RhoGAP2

CIAS1 cold autoinflamitory syndrome 1, NALP3

DAPK1 death-associated protein kinase, DAPK

DIAPH diaphanous, mDia

DIRAS1 Di-Ras1, Rig

DIRAS2 Di-Ras2

DNM1-3 dynamin 1-3, Dnm1-3

DNM1L dynamin 1-like, Dnm1L

DRG1 and 2 developmentally regulated GTP-binding protein

EEA1 early endosome antigen

EEF1A1 eukaryotic translation elongation factor 1 α1, eEF1A, eEF1α

EEF1A2 eukaryotic translation elongation factor 1 α2

EGFR epidermal growth factor receptor, EGF-R

EIF2S3 eukaryotic translation initiation factor 2 subunit 3, Eif2 γ

EIF4EBP1 eukaryotic translation inititation factor 4E binding protein 1

ERAL1 Era G protein-like 1, Hera-B

ERAS ERas, Eras

ERBB2 HER2, neu

ERK mitogen activated protein kinase, MAPK, Erk1, 2

EXO8 Exo84

FRAP mTOR, mammalian target of rapamycin

GBP1-5 guanylate-binding protein 1-5
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GEM Kir

GGA Golgi-localized, γ-adaptin-ear-containing, Arf-binding

GMIP GEM interacting protein, Gmip

GNA11 Gα11

GNA12 Gα12

GNA13 Gα13

GNA14 Gα14

GNA15 Gα15, Gα16

GNAI1 Gαi-1

GNAI2 Gαi-2

GNAI3 Gαi-3

GNAL Gαl (olfactory)

GNAO Gαo

GNAQ Gαq

GNAS Gαs

GNAT1 transducin 1

GNAT2 transducin 2

GNAT3 transducin 3, gustducin

GNAZ Gαz

GNL1 guanine nucleotide binding protein-like 1, HSR1

GRLF1 p190A RhoGAP

GTBP1-5 GTP binding protein

HRAS H-Ras, c-Ha-ras

IFNG IFN-γ

IIGP5 interferon-inducible GTPase 5

KIF9 kinesin family member 9

KRAS2B K-Ras, c-Ki-ras

M6PRBP1 TIP47

MEK mitogen activated protein kinase kinase, Mek1, 2

MEN1 multiple endocrine neoplasia 1, menin

MFN1 mitofusin 1, Mfn1

MFN2 mitofusin 2, Mfn2

MHC2TA major histocompatibility complex class II transactivator, CIITA

MLLT4 mixed-lineage leukemia translocated to 4, AF6

MLPH melanophilin

MX1 Myxovirus resistance 1

MX2 Myxovirus resistance 2

NALP NACHT, leucine rich repeat and PYD contianing

NF1 neurofibromin 1

NFKB nuclear factor of κ gene enhancer in B cells, NF-κB

NFKBI nuclear factor of κ gene enhancer in B cells inhibitor, IκB

NGB neuroglobin, Nog1
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NKIRAS1 NF-κB inhibitor interacting Ras 1, κB-ras1

NKIRAS2 NF-κB inhibitor interacting Ras 2, κB-ras2

NORE1 Rassf5, RapL

NRAS N-Ras

OPA1 optic atrophy 1, Opa1

PAK1-6 Pak, p21-accociated kinase

PARD3 par-3, partitioning defective 3 homolog

PARD6 Par-6, partitioning defective 6 homolog

PDPK1 3-phosphoinositide dependent protein kinase, PDK1

PIK3C2A phosphoinositide-3-kinase class 2 α

PIK3C2B phosphoinositide-3-kinase class 2 β

PIK3C2G phosphoinositide-3-kinase class 2 γ

PIK3CA phosphoinositide-3-kinase p110α

PIK3CB phosphoinositide-3-kinase p110β

PIK3CD phosphoinositide-3-kinase p110δ

PIK3CG phosphoinositide-3-kinase p110γ

PKN1-3 protein kinase N, PRK, DBK

PLCB PLCβ

PLCE1 PLCε

RAB10 Rab10

RAB11A Rab11A, Rab11

RAB11B RAB11B

RAB11FIP1 arfophilin 1, RCP

RAB12 Rab12

RAB13 Rab13

RAB14 Rab14

RAB15 Rab15

RAB17 Rab17

RAB18 Rab18

RAB19 Rab19

RAB1A Rab1A, Rab1

RAB1B Rab1B

RAB2 Rab2

RAB20 Rab20

RAB21 Rab21

RAB22A Rab22A, Rab22

RAB23 Rab23

RAB24 Rab24

RAB25 Rab25

RAB26 Rab26

RAB27A Rab27A, Rab27, Ram

RAB27B Rab27B

RAB28 Rab28

RAB29 Rab29
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RAB2B Rab2b

RAB30 Rab30

RAB31 Rab31, Rab22B

RAB32 Rab32

RAB33A Rab33A, RabS10

RAB33B Rab33B

RAB34 Rab34

RAB35 Rab35

RAB36 Rab36

RAB37 Rab37

RAB38 Rab38

RAB39 Rab39

RAB39B Rab39B

RAB3A Rab3A

RAB3B Rab3B

RAB3C Rab3C

RAB3D Rab3D, Rab16

RAB40A Rab40A, Rar2

RAB40C Rab40C, RasL8C, RarL

RAB40C Rab40C, RarL

RAB41 Rab41

RAB42 Rab42

RAB43 Rab43, Rab41, Rab11B

RAB44 Rab44, RASD3, RASL13

RAB4A Rab4A, Rab4

RAB4B Rab4B

RAB5A Rab5A, Rab5

RAB5B Rab5B

RAB5C Rab5C, RabL

RAB6A Rab6A, Rab6

RAB6B Rab6B

RAB6C Rab6C

RAB7 Rab7

RAB7B Rab7B

RAB7L1 Rab7L1, Rab7L

RAB8A Rab8A, Mel

RAB8B Rab8B

RAB9A Rab9A, Rab9

RAB9B Rab9B, Rab9L

RABEP1 rabaptin-5, neurocrescin

RABEP1, 2 rabaptin 1, 2

RABL2A RabL2A

RABL2B RabL2B

RABL3 RabL3
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RABL4 RabL4, RayL

RABL5 RabL5

RAC1 Ras-related C3 botulinum toxin substrate 1, Rac1, TC25

RAC2 Rac2

RAC3 Rac3

RAC4 Rac4

RAF1 c-Raf, Raf1

RALA RalA

RALB RalB

RALBP1 RalBP1, RLIP

RALGDS ral guanine nucleotide dissociation stimulator, RalGDS, RalGEF

RAN Ran

RAP1A Rap1-A

RAP1B Rap1-B

RAP2A Rap2-A

RAP2B Rap2-B

RAP2C Rap2-C

RASD1 DexRas

RASD2 Rhes

RASEF RasEF, Rab45

RASIP1 Ras interacting protein 1, RAIN

RASL10A RasL10A

RASL10B RasL10B

RASL11A RasL11A

RASL11B RasL11B

RASL12 RasL12, RIS

RASSF1 Rassf1

RASSF2 Rassf2

RASSF3 Rassf3

RASSF4 Rassf4

RASSF6 Rassf6

REM1 Rem1, rem, ges

REM2 Rem2

RERG Rerg, rerg

RGL1 ral guanine nucleotide dissociation stimulator-like 1, Rgl

RGL2 ral guanine nucleotide dissociation stimulator-like 1, Rgl2

RGL3 Rgl3

RHEB Rheb1

RHEBL1 Rheb2

RHOA RhoA

RHOB RhoB

RHOBTB1 RhoBTB1

RHOBTB2 RhoBTB2, DBC2

RHOC RhoC
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RHOD RhoD

RHOF Rif

RHOG RhoG

RHOH RhoH

RHOJ RhoJ, Tcl

RHOQ RhoQ, Tc10

RHOT1 Miro1

RHOT2 Miro2

RHOU RhoU, wrch-1

RHOV RhoV, wrch-2, chp

RILP Rab7-interacting lysosomal protein

RIN1 Ras and Rab interacting 1, Rin1

RIN2 Ras and Rab interacting 2, Rin2

RIN3 Ras and Rab interacting 3, Rin3

RIT1 rit

RIT2 rin

RND1 Rho6

RND2 RhoN, Rho7, ARHE

RND3 RhoE, Rho8, ARHN

ROCK1 Rock1, Rho-associated protein kinase 1

ROCK2 Rock2, Rho-associated protein kinase 2

RPH11 rabphilin 11

RPH3A rabphilin 3A

RPS6K ribosomal protein S6 kinase

RRAD Rad

RRAGA Rag A, Gtr1

RRAGB Rag B

RRAGC Rag C, GTR2

RRAGD Rag-D

RRAS1 R-Ras

RRAS2 TC21

RRAS3 M-Ras

SARA1 Sar1

SARA2 Sar2

SEC10L1 Sec10

SEC5L1 Sec5

SEPT1 PNUTL3

SEPT10 Sept10

SEPT11 Sept11

SEPT2 NEDD5, DIFF6

SEPT3 Sept3

SEPT4 Sept4, PNULT2, CDCREL-2, ARTS

SEPT5 Sept5, PNUTL1, CDCREL-1

SEPT6 SEP2, Sept6
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SEPT7 Sept7, CDC10

SEPT8 Sept8

SEPT9 Sept9, MSF, PNUTL4

SOS1 son of sevenless, mSOS

SPG3A spastic paraplegia, atlastin

SRP54 Srp54

SRPRA SRPR, SrpRa, Signal recognition peptide receptor subunit α

SRPRB SrpRb, Signal recognition peptide receptor subunit β

STK4 serine/threonine kianse 4, MST1

TIAM1 T cell lymphoma invasion and metastsis, Tiam1

TOCA1 transducer of Cdc42-dependent actin assembly

TSC1 tuberous sclerosis 1, hamartin

TSC2 tuberous sclerosis 2, uberin

TSN translin, TRSLN, TB-RBP

TUBB β-tubulin

TUFM EFTu

VLIG1 very large inducible GTPase 1

WAS Wiskott-Aldrich syndrome, WASP

XAB1 MBDin

ZNF179 BFP
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