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Abstract

Background and Purpose: A model for carcinoma and sarcoma induction was used to study the dependence of
carcinogenesis after radiotherapy on fractionation.

Materials and methods: A cancer induction model for radiotherapy doses including fractionation was used to
model carcinoma and sarcoma induction after a radiation treatment. For different fractionation schemes the dose
response relationships were obtained. Tumor induction was studied as a function of dose per fraction.

Results: If it is assumed that the tumor is treated up to the same biologically equivalent dose it was found that
large dose fractions could decrease second cancer induction. The risk decreases approximately linear with
increasing fraction size and is more pronounced for sarcoma induction. Carcinoma induction decreases by around
10% per 1 Gy increase in fraction dose. Sarcoma risk is decreased by about 15% per 1 Gy increase in fractionation.
It is also found that tissue which is irradiated using large dose fractions to dose levels lower than 10% of the target
dose potentially develop less sarcomas when compared to tissues irradiated to all dose levels. This is not observed
for carcinoma induction.

Conclusions: It was found that carcinoma as well as sarcoma risk decreases with increasing fractionation dose. The
reduction of sarcoma risk is even more pronounced than carcinoma risk. Hypofractionation is potentially beneficial
with regard to second cancer induction.

Introduction
Although the increased risk for radiotherapy patients
to develop a secondary malignancy is small, it is statis-
tically significant, in particular for long time survivors
of treatment. As a consequence of better radiation
treatment modalities available, cancer cure rates have
increased. As a result, there are now many long term
survivors of cancer who are at risk of late effects of
therapy, including secondary cancers.
Hypo-fractionated treatment schedules are proposed

for several types of cancers, including cancer of the
breast [1-4], prostate [5-7] and lung [8,9]. Although
such treatment options are still related to major con-
cerns such as the uncertainty to predict the correct
complication probabilities of normal tissues and control
probabilities for tumor tissue it might be of interest to
study their impact on radiation induced cancer.

Estimates of radiation carcinogenesis after radiother-
apy can be based on epidemiological studies of patients
treated with old techniques. However, most of the epi-
demiological studies, which are published in a large
number, don’t provide a correlation of cancer induc-
tion with dose. Unfortunately, if a dose correlation is
deduced, cancer induction is usually related to integral
dose or average organ dose and thus implies a linear
dose-response relationship. Thus, such data cannot be
used directly to obtain non-linear dose-response rela-
tionships for radiotherapy. Therefore, as an alternative
cancer risk models can be used to estimate second
malignancies after radiotherapy. Those models can be
validated with epidemiologic studies.
Sachs and Brenner [10] developed a discrete algebraic

model of dose-dependent cancer risk, incorporating cell
killing and proliferation/repopulation effects. In this
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report we use a model based on a continuous approach
with a dose variation from zero to the total delivered
dose which leads to an analytic representation of cancer
risk. The model includes fractionation effects and distin-
guishes between carcinoma and sarcoma induction.

Materials and methods
For modeling cancer risk after fractionated radiother-
apy it is assumed that the tissue or organ of interest
consists of N0 cells before it is irradiated. At this stage
there is no distinction between cells which represent a
particular function and do not divide and stem cells
which are dividing. The tissue is now irradiated with a
fractionated treatment schedule of equal dose fractions
d up to a dose D. The number of original cells after
irradiation is reduced by cell kill. A number of N cells
survive one dose fraction. Cell kill is proportional to a’
which is defined using the linear quadratic model

        d
D

DT
dT (1)

where DT and dT is the prescribed dose to the target
volume with the corresponding fractionation dose,
respectively. Fig. 1 shows a compartmental diagram of
the modeled processes. It is further assumed for this
work, that the number of killed original tissue cells
N0-N is replaced by a number of new cells NR with a
repopulation rate which is proportional to N0-N-NR.
Here it is assumed that the repopulation kinetics of
repopulated cells will follow the same basic patterns as
those of normal cells. Cells which were irradiated can
be mutated and have the potential to develop a tumor.
In the context of this work the word “mutation” is
used as a synonym for each cell transformation which
results in a new tumor cell. In fact the development of
a tumor usually implies several mutations. The muta-
tional process is modeled here according to the linear-
no-threshold model and thus cancer risk originating
from an irradiation with one dose fraction d is taken
proportional to μ which is the slope of cancer induc-
tion from the linear-no-threshold model which is
mainly based on the data of the A-bomb survivors. If
is now assumed that the number of involved cells is
treated as a continuous function of dose a system of
differential equations derived from the cell kinetics as
described in Fig. 1 can be solved [11]. The excess
absolute risk for carcinoma induction is then

EAR
e D

R
R R e R e

R
R

C
D

D


 


    





























1 2 1 12 2 (2)

and for sarcoma induction
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where R is the repopulation parameter which charac-
terizes the ability of the tissue to repopulate. Risk was
computed for different fractionation schemes using
Equs.2 and 3.

Results
Fig. 2 shows lung carcinoma risk as a function of
equivalent dose corresponding to 2 Gy fractions
(NTD2). NTD2 is used here since different fractionation
schedules result in different biological effectiveness for
the same physical dose. Thus in radiotherapy it is con-
venient to use the dose which would result in the same
biological effect as a 2 Gy fractionation schedule
(NTD2). The solid line represents carcinoma risk for a
treatment up to 50 Gy target dose in 2 Gy fractions, the
dotted line up to 42 Gy in 3 Gy fractions and the
dashed line up to 30 Gy in 5 Gy fractions. Computa-
tions were done using an a/b = 3 Gy. It should be
noted here that the dose plotted in Fig. 2 is absorbed
dose in healthy tissue. Therefore a data point on the
dose axis corresponds to different daily dose fraction.
For example the 25 Gy data point would correspond to
1.0 Gy, 1.8 Gy and 4.2 Gy daily dose fractions for the 2
Gy, 3 Gy and 5 Gy target fractionation schedule. The
initial slope μ for this figure was obtained from the ana-
lysis of the A-bomb survivors [12,13]. The A-bomb data
were used for an age at exposure of 48.5 years and
attained age of 59 years, since those data are characteris-
tic for a population of treated Hodgkin’s patients [14].
This example is chosen as Hodgkin’s patients which
were treated with radiation are at a significant enhanced
risk for lung cancer [14]. The initial slope μ is then 2.8
per 10000 PY per Gy per year. The other parameters
were a = 0.10 Gy-1, a/b = 3 Gy and R = 0.7. Fig. 2
shows a significant advantage for large dose fractiona-
tions with respect to cancer induction.
The risk ratio for a 3 Gy fractionation relative to a 2

Gy schedule is shown in Fig. 3 both for carcinoma and
sarcoma induction as a function of dose relative to the
target dose. Carcinoma risk reduction is for the whole
dose range more or less constant in contrast to sarcoma
risk reduction which varies significantly with dose and is
larger for tissue which receives only small dose. It
should be noted here that the relative risks (with regard
to fractionation) are independent of the initial slope μ of
the dose response curve since μ cancels out when using
ratios of Equs. 2 and 3, respectively. Thus the relative
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risks between different fractionation schedules are in a
first approximation independent of the type of cancer.
Fig. 4 shows the risk relative to a 2 Gy fractionation

scheme quantitatively as a function of fraction size for a
50 Gy NTD2 treatment. The error bars represent the
variation of the risk ratio over the complete dose range.
A 3 Gy fractionation schedule for example could result
in a 10% reduction of second cancers relative to a 2 Gy
fractionated treatment. It is also shown that this advan-
tage is more distinct for sarcoma induction than for

carcinoma induction. Since the risk advantage is
approximately a linear function of fractionation dose a
simple rule yields a 10% reduction in second carcinoma
risk per 1 Gy increase in fractionation dose and a 13%/
Gy reduction for sarcoma (a = 0.10 Gy-1, a/b = 3 Gy, R
= 0.7). This risk reduction is dependent on the chosen
model parameters. A variation of the repopulation para-
meter R between 0 and 1 yields a variation of carcinoma
risk reduction between 5.2% and 10.3% and of sarcoma
risk reduction between 12.5% and 13.8%. A variation of

Figure 1 Diagram of the cell kinetics which were assumed in the presented model. M indicates the number of mutated cells for both
sarcoma and carcinoma induction and MC indicates mutated cells only for the case of carcinoma induction.
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a between 0.05 and 0.15 yields a variation of carcinoma
risk reduction between 8.3% and 12.4% and of sarcoma
risk reduction between 12.0% and 14.5%. As a conclu-
sion the fractionation advantage is slightly dependent on
the model parameters.
Figs. 5a and 5b show second cancer risk relative to a 2

Gy fractionation as a function of fractionation dose for
sarcoma and carcinoma, respectively. In this plot the
diamonds represent the average dose advantage for all
dose levels (as in Fig. 4). The squares represent the dose
advantage only for such tissues which receive less than
10% of the prescribed dose, which is in this example 5
Gy (NTD2). Clearly, it can be observed that the advan-
tage of larger fraction sizes with respect to sarcoma
induction might be more significant for low dose
volumes. On the other hand the risk reduction for carci-
nomas is approximately independent of the irradiated
dose.

Discussion
In this report a cancer induction model for the radio-
therapy dose range was used. Several assumptions had
to be made to simplify the biological processes leading
to cancer induction [11]. This includes the design of tis-
sues, the repopulation process and processes which
result in the formation of a tumor cell. This was done
to keep the number of model parameters at a minimum.
However, this is associated with uncertainties. It was for
example suggested [15] that some radiotherapy-induced
second cancers can be the consequence of late normal

tissue damage leading to a precancerous lesion. Such a
mechanism is not included in the present model.
Another assumption of the presented model is that

single dose fractions of a radiotherapy treatment are
treated independently. Therefore the linear-no-threshold
theory for cancer induction could be applied to each
single dose fraction. Although this may be valid for a
single exposure lower than 3 Gy, for fractionation sche-
dules with single doses of more than 3 Gy the model
must be used with care. In addition it is not clear
whether it can be applied for dose fractions which are
separated by days when in fact not all cells are fully
repaired.
Many problems and uncertainties are involved in

modeling the underlying biology of radiation induced
cancer. However, since very little is currently known
about the shape of dose-response relationships for radia-
tion-induced cancer in the radiotherapy dose range, this
approach can be used to look at least qualitatively at the
fractionation dependence of cancer induction for carci-
nomas and sarcomas separately.
As the results of this report are expressed in terms of

EAR it is also difficult to compare them with the find-
ings of Sachs and Brenner [10] who fitted an algebraic
model of cancer induction to lung cancer risk.
If the fraction size is increased while keeping the total

dose at a level which corresponds to the same biological
response (LQ-model) it is shown that cancer induction is
decreasing linearly. This decrease occurs for both carci-
noma and sarcoma induction, however, the effect is more
pronounced for sarcoma induction. Quantitatively a
reduction of around 5% to 15% is expected while increas-
ing the fraction size from 2 Gy to 3 Gy. As a consequence
hypo-fractionated treatment techniques are with regard

Figure 2 Plot of lung cancer risk per 10000 persons per year
as a function of absorbed dose in normal tissue. The solid,
dotted and dashed lines represent 2 Gy, 3 Gy and 5 Gy fractions.
The total dose to the target was 50 Gy for the 2 Gy fractionation
schedule and was adjusted for the other fraction sizes (by applying
the LQ-model) to achieve the same biological effect. The model
parameters were for the initial slope μ = 2.8 per 10000 PY per Gy
per year, a = 0.09 Gy-1, a/b = 3 Gy and R = 0.7.

Figure 3 Carcinoma (solid line) and sarcoma risk (dotted line)
for a 3 Gy fractionation schedule relative to a 2 Gy
fractionation. The model parameters are a = 0.09 Gy-1, a/b = 3 Gy
and R = 0.7
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to cancer induction advantageous when compared to
conventional fractionation schedules, as for example in
prostate radiotherapy where hypofractionation is realized
with intensity modulated treatment techniques (IMRT).
However, if both a hypofractionated treatment schedule
and a new treatment technique is applied (for example a
cyberknife treatment), risk must be analysed in detail.
The dose distributions resulting from cyberknife treat-
ments are significantly different from conventional ther-
apy and hence the changes in risk with regard to dose
distribution might balance the implications of changes in
the fractionation.

Conclusions
A cancer induction model for fractionated radiotherapy
was used to investigate the impact of different fractiona-
tion schedules on second cancer risk.
It was found that carcinoma as well as sarcoma risk

decreases with increasing fractionation dose. This
decrease is nearly linear with fractionation dose and is
more distinct for sarcoma induction. It was also shown
that the risk advantage for the sarcoma induction is sig-
nificantly dependent on the dose in the tissue and is
more enhanced for tissue irradiated with low dose (<
10% of the prescribed dose).
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