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Abstract
Background—EGFR expression is associated with aggressive phenotypes in preclinical breast
cancer models, but in clinical studies, EGFR has been inconsistently linked to poor outcome. We
hypothesized that EGFR expression in human breast tumors, when centrally and uniformly
assessed, is associated with an aggressive phenotype and resistance to systemic therapy.

Methods—In a database of 47,286 patients with breast cancer, EGFR status was known on
2,567. EGFR levels were measured centrally by ligand binding assay, and tumors with ≥10 fmol/
mg were prospectively deemed positive. Clinical and biological features of EGFR positive and
negative tumors were compared. Clinical outcomes were assessed by systemic therapy status.

Results—475 out of 2,567 tumors (18%) were EGFR positive. EGFR-positive tumors were more
common in younger and in black women, were larger, had a higher S-phase fraction, and were
more likely to be aneuploid. EGFR positive tumors were more likely to be HER2-positive (26%
vs. 16%, p<0.0001), but less likely to be ER-positive (60% vs. 88%, p<0.0001), or PR-positive
(26% vs. 65%, p<0.0001).

In multivariate analyses, EGFR expression independently correlated with worse DFS (HR=1.66,
95% CI=1.4–2.41, p=0.007) and OS (HR=1.98, 95% CI=1.36–2.88, p=0.0004) in treated patients,
but not in untreated patients.

Conclusions—EGFR expression is more common in breast tumors in younger and black
women. It is associated with lower hormone receptor levels, higher proliferation, genomic
instability, and HER2 over-expression. It is correlated with higher risk of relapse in patients
receiving adjuvant treatment. Blocking EGFR may improve outcome in selected patients.
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Introduction
The epidermal growth factor receptor (EGFR; ErbB-1; HER1 in humans) is a tyrosine
kinase receptor of the epidermal growth factor receptor family. Other members are HER2,
HER3, and HER4. These receptors are activated by ligand-dependent homo-and
heterodimerization, which lead to kinase activation and initiation of signaling. Interaction
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between these four receptors and their various ligands may regulate and modulate their
effects on cell growth and survival [1].

EGFR expression, biological impact, and influence on clinical outcome have been reported
in several tumor types [2,3]. In preclinical models of breast cancer, overexpression of EGFR
leads to malignant transformation of mouse cells. It is associated with increased proliferation
and resistance to apoptosis [4]. Additionally, its role in resistance to hormone therapy
through crosstalk with estrogen receptor (ER) is now better understood [5].

There have also been multiple reports on EGFR in clinical breast cancer. The studies were
mostly small in size, used variable methodologies, and had inconsistent results [6–15]. This
may be explained in part by the many challenges facing studies of EGFR in clinical breast
cancer samples. There has been little standardization of analytic techniques, and most
studies used formalin fixation of tissue, a process which can vary considerably between
institutions and may alter antigen detectability. Moreover, immunohistochemical staining of
EGFR has had inconsistent results, and is not a functional assay. Radiolabeled ligand-
binding is a functional assay but is time-consuming and requires frozen tissue, which is not
widely collected or banked anymore in the United States. Antigen detection is less likely to
be altered in frozen tissue.

We hypothesized that EGFR expression, when centrally and uniformly measured in frozen
tissue obtained from a large number of patients, would be associated with an aggressive
phenotype of breast cancer and would confer resistance to systemic adjuvant therapy. We
tested these hypotheses using a large frozen tissue breast tumor bank in which EGFR was
assessed by a central laboratory using ligand-binding assay, and results were correlated with
clinical and biologic tumor characteristics as well as clinical outcomes.

Methods
Patient Data and Specimens

The Lester and Sue Smith Breast Center at Baylor College of Medicine maintains a database
of breast cancer patients whose tissue specimens were originally sent to a central reference
laboratory for steroid receptor assays at the Nichols Institute in California serving more than
370 institutions throughout the United States. Demographics were reported by the patients
and staff at each contributing institution. Follow-up information as well as clinical and
pathologic characteristics were obtained from tumor registries, medical records, or by data
collection forms completed by the office staff of the referring physicians. This database
contains information on 47,286 patients diagnosed between 1984 and 1999 with early breast
cancer (stage I–IIIA). This repository has been reviewed by Institutional Review Boards at
the University of Texas Health Science Center at San Antonio and at Baylor College of
Medicine and both boards provided a waiver of informed consent. No patient identifiers
were provided to the authors.

Prognostic Factors
EGFR levels were measured by radioligand binding assay. Tumor specimens were
pulverized in liquid nitrogen, homogenized, and centrifuged. Cytosol fractions and
suspended fat were removed. Membrane fraction samples were incubated with fixed
concentrations of radiolabeled EGF and varying concentrations of unlabeled EGF. Total
protein was determined by the Lowry method [16]. Levels of ≥10 fmol/mg of membrane
protein were prospectively deemed positive as in previous studies [17].
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HER2 status was determined by Western blotting, using a rabbit polyclonal antibody
directed against the C-terminus of the HER2 protein [18]. The cutoff value for HER2
expression was set at 1U/µg protein based on prior studies [18,19].

ER levels were measured by the dextran-coated charcoal method, as previously described
[20]. From 1970 to 1984, PR levels were measured by sucrose density gradient [21]. In
1985, the standard multipoint dextran-coated charcoal assay incorporated [125I]-estradiol
and [3H]-R5020 in a single assay, allowing the simultaneous determination of ER and PR.
Samples containing at ≥3 fmol/mg protein were prospectively considered ER-positive, and
those containing ≥5 fmol/mg protein were considered PR-positive, based on prior clinical
studies [22–24].

DNA ploidy and S-phase fraction were evaluated by flow cytometry and the histograms
were analyzed by Modfit (Verify Software House, Topsham, ME) using single-cut, debris
stripping [25]. Cutoff points were determined by calibrating S-phase fraction with clinical
outcome in a group of more than 28,800 patients with breast cancer (low, <6%;
intermediate, 6–10%; high >10%) [26].

Statistical Methods
Patient and tumor characteristics were summarized in the 2,567 patients with EGFR data,
and the relationships between these characteristics and EGFR status were examined using
descriptive statistics and the chi-squared test. Then, the study dataset was compared to the
44,719 patients without EGFR data in the overall dataset using descriptive statistics, the chi-
squared test, and Fisher’s exact test.

Disease-free survival (DFS) was calculated from the diagnostic biopsy date and a first
recurrence was scored as an event while patients without an event were censored at the time
of death or last follow-up. Overall survival (OS) was calculated from the diagnostic biopsy
date and death was scored as an event whereas patients who were alive at the time of last
follow-up were censored. Post-relapse survival was calculated from the recurrence date in
patients who had a relapse, and death was scored as an event while patients who were alive
at the time of last follow-up were censored.

The effects of EGFR status on disease-free, post-relapse, and overall survival were
examined by treatment group using Kaplan-Meier curves, and differences in survival were
evaluated with the log-rank test. Univariate Cox regression was used to model the effect of
EGFR on survival in treatment subgroups. Multivariate analysis assessed the simultaneous
importance of EGFR status and other patients and tumor characteristics on DFS and OS by
treatment group and Cox regression was used to model the relationships. Final multivariate
models were fitted using backwards selection and adjusted hazards ratios, 95% confidence
intervals, and p-values were calculated for the final models. All analyses were performed
using SAS 9.1 (SAS, Cary, NC) and Stata (Statacorp, College Station, TX).

Results
From a total of 47,286 patients with breast cancer in this database, EGFR status was known
on 2,567 tumors. We compared this subset to the entire database and found that it was
representative of the patient population (Table 2). Tumors without EGFR data were less
likely to over-express HER2 though this was probably due to the play of chance in a small
sample size (n=56). Eighteen percent of the dataset we studied over-expressed HER2, which
is the expected rate in breast cancer.
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Of the tumors with known EGFR status, 18% (n=475) were EGFR-positive (≥10 fmol/mg
membrane protein) and 82% (n=2092) were EGFR-negative (≤10 fmol/mg). Levels varied
widely among EGFR-positive tumors (10–11084 fmol/mg), but 90% of them had
concentrations less than 100 fmol/mg (Figure 1).

Clinical and Biologic Characteristics
Table 1 compares demographic and clinical characteristics between EGFR-positive and
negative tumors. Notably, EGFR-positive tumors were more common in women younger
than 50 years (40% vs. 24%). Additionally, there were more black women with EGFR-
positive than EGFR-negative tumors. EGFR signaling may be a contributing reason to the
worse prognosis in these groups.

EGFR-positive tumors were also more likely to be associated with adverse pathologic or
biologic characteristics compared to EGFR-negative tumors (Table 1). They were more
likely to be larger than 2cm, (64% vs. 46%), aneuploid (68% vs. 46%), and modestly more
likely to be node-positive. Strikingly, EGFR-positive tumors were more than twice as likely
to have a high proliferative fraction as EGFR-negative tumors, 53% vs. 22% respectively.

HER2 and Hormone Receptor Expression
Other biomarkers were studied to investigate how EGFR correlates to other prognostic
markers. EGFR expressing tumors were more likely to over-express HER2 than EGFR-
negative tumors, (26% vs. 16%), further indicating the more aggressive nature of this
phenotype.

Preclinical and clinical evidence has indicated that growth factor receptor signaling can
downregulate hormone receptor expression [6–9,11–15,27–34]. We therefore examined the
relationship of ER and PR status to EGFR expression in this dataset. EGFR-positive tumors
were less likely to express ER than EGFR-negative tumors (60% vs. 88%), and only 26% of
EGFR-positive tumors expressed PR compared to 65% of EGFR-negative tumors. EGFR-
positive tumors were also more likely to be hormone receptor negative than EGFR-negative
tumors (37% vs. 9%).

Currently, there is substantial interest in the ER-negative, PR-negative, and HER2 negative
subset of breast cancer. EGFR-positive tumors were four times more likely to have this
“triple-negative” phenotype than EGFR-negative tumors (29% vs. 7%). Of 284 patients in
our dataset with triple-negative tumors, 48% expressed EGFR (data not shown).

Clinical Outcomes
In our data set, 1068 patients (46%) did not receive any systemic adjuvant therapy and 1256
(54%) did: 529 (23%) received chemotherapy, 497 (21%) hormonal therapy, and 230 (10%)
received both. Of patients receiving hormonal therapy, 97% got tamoxifen.

To separate any prognostic effect of EGFR from prediction of treatment effect, outcome was
analyzed separately for systemically treated vs. untreated patients. In patients who were not
treated with systemic adjuvant therapy, DFS was not significantly different between EGFR-
positive and negative groups (HR=1.37, 95%CI=0.85–2.21, p=0.20) (Figure 2A). In
contrast, patients who received adjuvant therapy had a significantly worse DFS in the EGFR
expressing group (HR=1.77, 95%CI=1.36–2.29, p<0.0001) (Figure 2B), suggesting that
EGFR expression may be associated with resistance to some forms of systemic therapy.
Findings were very similar in OS analysis as well (data not shown).
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We then examined DFS by different treatment types. In patients who received only
chemotherapy, we found only a non-significant trend towards worse DFS in the EGFR
expressing group (HR=1.30, 95%CI=0.91–1.86, p=0.15) (Fig 3A). In patients who received
only hormonal therapy, the EGFR-positive group had a significantly worse disease free
survival (HR=1.99, 95%CI=1.13–3.49, p=0.015) (Fig 3B). In patients who received both
hormonal therapy and chemotherapy, the difference in DFS by EGFR status was even more
prominent (HR=2.20, 95%CI=1.30–3.71, p=0.003) (Fig 3C).

Similar patterns were also found in OS in these groups. Specifically, patients who were
EGFR-positive and received only chemotherapy had worse OS (HR=1.56, 95%CI=1.09–
2.23, p=0.0142), and those who received both hormone therapy and chemotherapy had
worse OS than EGFR-negative patients (HR=2.97, 95%CI=1.77–4.99, p<0.0001).

In the subgroup of patients who experienced relapse, patients with EGFR-positive tumors
had significantly worse post-relapse survival than patients with EGFR-negative tumors
regardless of their treatment status prior to relapse (17 months vs. 28 months, respectively,
HR=1.72, 95%CI=1.34–2.20, p<0.0001) (Fig 4).

In multivariate analyses by treatment group, the role of EGFR as a prognostic variable for
disease-free survival DFS and OS was evaluated. Variables included were: age, race, tumor
size, nodal status, ER, PR, HER2, S-phase fraction, DNA ploidy, and EGFR status. In
untreated patients, EGFR was not associated with DFS or OS after adjusting for the effect of
other characteristics (data not shown). However, in patients treated with systemic adjuvant
therapy, EGFR expression was independently associated with worse DFS and OS. EGFR-
positive patients had 66% higher risk of relapse and almost double the risk of death than
EGFR-negative patients (DFS adjusted HR=1.66, 95%CI=1.15–2.41, p=0.0074; OS adjusted
HR=1.98, 95%CI=1.36–2.88, p=0.0004).

Discussion
This is the largest and most comprehensive study to date analyzing EGFR expression in
breast cancer patients. It demonstrates that EGFR expression is associated with an
aggressive phenotype with distinct clinical and biologic characteristics. EGFR expressing
tumors occurred more often in young and minority women. These tumors were larger and
slightly more likely to metastasize to the lymph nodes. They had a substantially higher
proliferation rate and greater genomic instability. They were also more likely to co-express
HER2 but much less likely to express hormone receptors, especially PR.

EGFR has been extensively studied in the preclinical and clinical settings in different types
of cancer. In breast cancer, preclinical evidence has indicated its clear role in increasing
proliferation, resistance to apoptosis, and ligand-independent activation of the estrogen
receptor, and in mediating hormone therapy resistance [4,35,36]. Additionally, activating
mutations of pathway elements downstream of EGFR in cancer cells may render them
resistant to EGFR inhibition [37]. This was recently shown in colon and lung cancers [38–
40].

In the clinical setting, multiple studies have examined EGFR expression in breast cancer, but
results have varied possibly due to relatively small sample sizes and non-uniform
methodologies for the measurement of EGFR [31,37,41]. These studies reported that EGFR
is expressed in 15%– 45% of breast tumors, is inversely related to hormone receptor
expression, and they inconsistently linked EGFR expression to poor prognosis [6–15,41,42].
A recent study utilized a quantitative immunofluorescence-based technology to measure
EGFR in a subset of premenopausal women treated with adjuvant tamoxifen [43]. The
authors found EGFR in 39% of the tumors they tested, and linked its expression to higher
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tumor grade and worse clinical outcome in patients treated with tamoxifen but not in
untreated patients. However, that study found no correlation with tumor size, lymph node
status or co-expression of HER2. This technology is promising and warrants further study.

The present study sought to overcome these deficiencies by analyzing frozen tumors from a
large number of patients. EGFR expression was objectively quantified by ligand binding
assay and all measurements were performed at a central lab with strict quality control.

Only a minority of breast cancer specimens (18%) expressed EGFR and apparently only low
levels are needed to exert an effect on biologic and clinical characteristics. The association
with a different biology, such as down-regulation of ER or PR, was strong– 37% of EGFR-
positive tumors were negative for both ER and PR compared to only 9% of EGFR-negative
tumors, representing a fourfold difference. b

This study provides further evidence of the inverse relation between hormone receptor
expression and growth factor receptor expression and signaling, in this case EGFR. This
relationship was most pronounced with PR expression, where only a quarter of EGFR-
positive tumors expressed PR compared to almost two thirds of the EGFR-negative tumors.

In recent years, DNA microarray profiling studies on breast tumors defined distinct subtypes
of breast carcinomas and linked them to varying clinical outcomes [44,45]. Basal-type breast
cancer is one such subtype that has been associated with EGFR expression [46,47] and a
poorer prognosis [44,48]. The triple-negative phenotype (ER-negative, PR-negative, HER2-
negative) is considered a surrogate for this basal type breast cancer. In our study, nearly half
(48%) of these triple-negative tumors were EGFR-positive compared to 18% of the overall
study tumors. These findings are also consistent with other studies of triple-negative or basal
tumors which also found a higher incidence of EGFR expression [46,47].

EGFR expression was positively correlated with HER2 over-expression, which has been
associated with worse prognosis as well. The two molecules may be potent signaling
partners, and based on animal models, effective EGFR and HER2 double blockade may
result in improved clinical therapies and thus warrants further study in the clinical setting.

One of our most intriguing findings is the association of EGFR expression with clinical
outcome. There were notable associations between EGFR expression and worse DFS and
OS in patients who received systemic treatment (chemotherapy, tamoxifen, or both) but not
in those who did not receive systemic therapy.

These findings have two possible explanations. First, the two groups were unbalanced in
regards to a number of factors. As expected, the untreated patients tended to have tumors
with more favorable clinical and biologic features (Table 4). If the event rate in this group is
relatively low, the effect of EGFR expression would need even larger numbers to become
evident. In a higher risk population with greater event rates, the adverse prognostic effect of
EGFR would be more clearly discernable.

Alternatively, EGFR may result in poorer outcome by causing resistance to systemic
treatments. In support of this, EGFR expression has been associated with resistance to
hormone therapy and chemotherapy in a number of studies [9,11,43,49–51]. These two
possible possibilities may also explain the significant difference in post-relapse survival
between patients with EGFR-positive and EGFR-negative tumors.

Targeting EGFR therapeutically resulted in limited efficacy with the use of small molecules
such as gefitinib and erlotinib [52–54], or with monoclonal antibodies such as cetuximab
[55]. Reasons for this may be the complexity and redundancy of its signaling network, and
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therefore, multiple points in the pathway may need to be blocked [56]. Unlike lung cancer,
there is no evidence that altered forms of the receptor influence the efficacy of current
therapeutics [57,58]. However, there may be activating mutations of downstream
components of the signaling axis. Recent evidence shows that downstream mutations in K-
RAS limits response to EGFR targeted therapies in colon and lung cancer [38–40] and
warrants investigation in breast cancer. Additionally, there is a clear need for technologies
that functionally or globally assess the activated status of EGFR and related downstream
pathways.

This study has several limitations: It is a retrospective review of a non-randomized database
collected over a long period of time. Treatment was not controlled or specified, and
chemotherapy was heterogeneous, although most patients received CMF or a CMF-like
regimen. However, this remains the largest and most comprehensive study of EGFR in
breast cancer. It provides further insight into this so-far elusive biomarker, its effect on
tumor biology, and its clinical impact.

EGFR needs to be studied as part of a robust signaling network with multiple signaling
partners, intricate downstream components, and crosstalk with other pathways. Only small
amounts of this receptor may need to be expressed to exert an effect on tumors. Assessment
of the EGFR pathway may also need a functional assay to discern its signaling activity. This
may help identify subgroups of patients in whom EGFR or related pathways play an
important role, and may enable specific and effective inhibition of these active signaling
elements by targeting EGFR, its signaling partners, or downstream pathways. This may be
the best way to realize the promise of EGFR as a biomarker and therapeutic target, a
promise that is earnestly awaited and long overdue.
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Figure 1.
EGFR concentration histogram: EGFR concentration was determined using ligand binding
assay. Tumors with protein concentration of ≥10fmol/mg membrane protein were
prospectively deemed positive. Of the tumors with known EGFR status, 18% (n=475) were
EGFR positive and 82% (n=2092) were EGFR negative. EGFR levels of EGFR-positive
tumors varied widely (10–11084 fmol/mg) but 90% had concentrations less than 100 fmol/
mg.
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Figure 2.
Kaplan-Meier curves for disease-free survival by EGFR status. A) In patients who did not
receive any adjuvant systemic therapy (untreated patients), HR = 1.37, 95% CI (0.85 –
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2.21), (p=0.20). B) In patients who received any form of adjuvant systemic therapy:
chemotherapy, hormonal therapy, or both (treated patients), HR = 1.77, 95% CI (1.36 –
2.29), (p<0.0001).
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Figure 3.
Kaplan-Meier curves for disease-free survival by EGFR status. A) In patients who received
any adjuvant chemotherapy, HR = 1.30, 95% CI (0.91 – 1.86), (p=0.15). B) In patients who
received adjuvant hormonal therapy, HR = 1.99, 95% CI (1.13 – 3.49), (p=0.015). C) In
patients who received both chemotherapy and hormonal therapy, HR = 2.20, 95% CI (1.30 –
3.71), (p=0.003).
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Figure 4.
Kaplan-Meier curves for post-relapse survival by EGFR status. In the subgroup that suffered
tumor relapse (n=416), patients whose primary tumors were EGFR-positive had a
significantly worse post-relapse survival than those with EGFR negative primary tumors,
(HR = 1.72, 95% CI (1.34 – 2.20), p < 0.0001).
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Table 1

Clinical and biological characteristics between EGFR-positive and EGFR-negative groups

Variable EGFR + EGFR − p-value

Age No. tested 473 2079

Median age 54 62

<50 yrs 40% 24% <0.0001

≥50 yrs 60% 76%

Race No. tested 401 1793

White 87% 92%

Black 9% 6% 0.0029*

Other 3% 2% 0.1490**

Menopause status No. tested 258 1459

Pre/Peri 20% 10% <0.0001

Post 80% 90%

Histology No. tested 475 2092

DCIS/LCIS 0 0 <0.0001

IDC 87% 81%

ILC 3% 9%

Other 10% 10%

Tumor size No. tested 454 1966

≤2 cm 36% 54% <0.0001

>2cm 64% 46%

Nodal status No. tested 424 1839

0 57% 63%

1–3 26% 22% 0.034

>3 17% 15%

DNA ploidy No. tested 469 2046

% diploid 32% 54% <0.0001

% aneuploid 68% 46%

S-phase No. tested 396 1855

Low 27% 57%

Intermediate 20% 21% <0.0001

High 53% 22%

ER No. tested 475 2092

Positive 60% 88% <0.0001

Negative 40% 12%

PR No. tested 475 2092

Positive 26% 65% <0.0001

Negative 74% 35%

HER2 No. tested 430 1770

Positive 26% 16% <0.0001

Negative 74% 84%
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Variable EGFR + EGFR − p-value

Hormone receptor groups No. tested 475 2092

ER+/PR+ 23% 63% <0.0001

ER+/PR− 37% 25%

ER−/PR+ 3% 2%

ER−/PR− 37% 9%

*
This Chi-square test p-value compares the distribution of EGFR status between White and Black patients.

**
This Fisher’s test p-value compares the distribution of EGFR status between White and Other Race patients.
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Table 2

Comparison of EGFR dataset to all patients in the database

Characteristic EGFR data No EGFR data

Age Number tested 2552 52,293

Median Age 61 62

< 50 years 27% 25%

≥ 50 years 73% 75%

Tumor size Number tested 2420 50,229

≤ 2 cm 51% 51%

2 – 5 cm 42% 42%

> 5 cm 7% 7%

Nodal status Number tested 2263 48,376

0 62% 60%

1–3 23% 23%

> 3 15% 18%

Tumor ploidy Number tested 2515 4366

% Diploid 50% 47%

% Aneuploid 50% 53%

S-phase Number tested 2251 3912

Low 52% 52%

Intermediate 20% 19%

High 28% 28%

ER Number tested 2567 52,298

Positive 83% 82%

Negative 17% 18%

PR Number tested 2567 52,298

Positive 58% 60%

Negative 42% 40%

HER2 Number tested 2200 56

Positive 18% 7%

Negative 82% 93%

Hormone receptor groups Number tested 2567 52,298

ER+/PR+ 56% 57%

ER+/PR− 27% 24%

ER−/PR+ 2% 3%

ER−/PR− 14% 15%
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Table 3

Final fitted model of main effects on survival

Variable

Treated
Multivariate DFS

HR (95% CI)

Treated
Multivariate DFS

p-value

Treated
Multivariate OS

HR (95% CI)

Treated
Multivariate OS

p-value

EGFR positive vs. EGFR negative 1.66 (1.145, 2.408) 0.0074 1.98 (1.360, 2.880) 0.0004

Race: black vs. white 1.96 (1.143, 3.370) 0.0145 2.94 (1.765, 4.887) < 0.0001

Tumor size: > 2 cm vs. ≤ 2 cm . . 2.08 (1.413, 3.064) 0.0002

Node positive vs. node negative 2.72 (1.875, 3.939) < 0.0001 2.15 (1.478, 3.136) < 0.0001

Age: ≥ 50 yrs vs. < 50 yrs . . 1.51 (1.039, 2.193) 0.0308
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Table 4

Comparison of tumor characteristics by treatment group

Any Treatment
(n=1256)

No Treatment
(n=1068)

p-value

EGFR EGFR+ 22% 14%
p < 0.0001

EGFR− 78 86%

Age (years) Median Age 57 65

< 50 years 34% 18% p < 0.0001

≥ 50 years 66% 82%

Tumor Size (cm) > 2 cm 55% 41%

≤ 2 cm 45% 59% p < 0.0001

Positive Nodes > 3 22% 6%

1–3 30% 14% p < 0.0001

0 48% 80%

Tumor Ploidy Aneuploid 53% 45%

Diploid 47% 55% p = 0.0002

S-phase High 31% 22%

Intermediate 21% 19% p < 0.0001

Low 47% 58%

ER Negative 18% 14%

Positive 82% 86% p = 0.0118

PR Negative 42% 41%

Positive 58% 59% p = 0.6068

HER2 Positive 19% 16%

Negative 81% 84% p = 0.0560
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