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Abstract
Signatures of natural selection occur throughout the human genome and can be detected at the
sequence level. We have re-sequenced ABCE1, a host candidate gene essential for HIV-1 capsid
assembly, in European- (n=23) and African-descent (Yoruban; n=24) reference populations for
genetic variation discovery. We identified an excess of rare genetic variation in Yoruban samples,
and the resulting Tajima’s D was low (−2.27). The trend of excess rare variation persisted in flanking
candidate genes ANAPC10 and OTUD4, suggesting that this pattern of positive selection can be
detected across the 184.5kb examined on chromosome 4. Because of ABCE1’s role in HIV-1
replication, we re-sequenced the candidate gene in three small cohorts of HIV-1-infected or resistant
individuals. We were able to confirm the excess of rare genetic variation among HIV-1 positive
African-American individuals (n=53; Tajima’s D = −2.34). These results highlight the potential
importance of ABCE1’s role in infectious diseases such as HIV-1.
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Introduction
The candidate gene ABCE1, located on chromosome 4q311, is a member of the ATP binding-
cassette (ABC) family. ABCE1 has two main isoforms and is widely expressed1. Unlike other
ABC family members, ABCE1 maintains an ATP-binding cassette lacking a transmembrane
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domain2. The product of ABCE1 was first described as an inhibitor of ribonuclease (RNase)
L3, but more recently it has been shown to be involved in eukaryotic translational initiation4–
9, and is essential in the assembly of immature HIV-1 capsids10, 11.

In human populations, little is known about the patterns of genetic variation in ABCE1. To
date, four variation discovery efforts have been published for ABCE112–14; however, none
provide a comprehensive reference of common variation across multiple populations or across
both intronic and exonic sequence. Given the potential role ABCE1 has on HIV-1 replication,
we, as part of the Program for Genomic Applications SeattleSNPs, re-sequenced both
ABCE1 and the flanking sequence in 23 Centre d’Etude du Polymorphisme Humain samples
(CEPHs) and 24 Yoruban samples using standard dye terminator sequencing technology15 to
identify single nucleotide polymorphisms for future genetic association studies. In a parallel
study approved by the University of Washington’s Human Subjects Review Committee, we
also re-sequenced ABCE1 in three small populations ascertained for features of HIV-1
resistance or disease progression. In both the variation discovery dataset and the HIV-1
infection-related population dataset, we observed an excess of rare genetic variation in
ABCE1 that extends to its neighboring genes ANAPC10 and OTUD4. These data suggest that
the genomic region containing ABCE1 may have been a target for positive selection that has
affected present day genetic diversity in human populations.

Results and Discussion
We successfully re-sequenced 30,773bp of ABCE1 (all introns and exons) as well as 1,870bp
and 2,073bp of 5′ and 3′ flanking sequence, respectively, in 23 European-descent (CEPH) and
24 African-descent (Yoruban) samples. We identified 125 SNPs in these 47 reference DNA
samples: 40 SNPs in the European-descent and 93 SNPs in the African-descent discovery
panels (Table 1). Nucleotide diversity (π) was lower in the European- and African-descent
discovery panels (5.5×10−4 and 7.6×10−4, respectively; Table 1) compared to the average
nucleotide diversity based on 180 candidate genes re-sequenced in similar DNA discovery
panels (7.0×10−4 and 9.0×10−4, respectively)16. In other words, based on 180 genes, one SNP
is expected per 1,100 bps and 1,435 bps in African- and European-descent populations,
respectively, compared to our observed rate of one SNP per 1,315 bps and 1,818 bps,
respectively, in ABCE1.

In addition to the lower-than-expected nucleotide diversity, we observed low Tajima’s D
statistics17, 18, a common test for deviation from the expected rate of mutation and genetic drift
in the absence of selection, for both the European- and African-descent discovery panels (−1.36
and −2.27, respectively; Table 1). Based on 323 candidate genes re-sequenced in a similar
DNA discovery panel, the average Tajima’s D is 0.14 and −0.49 in European- and African-
descent populations, respectively16, 19. Lower Tajima’s D statistics have been observed for
European-descent populations in candidate genes such as TRPV620, 21; however, lower
Tajima’s D statistics have not yet been reported for African-descent populations for any one
re-sequenced candidate gene19. The Tajima’s D statistic observed here is 2.65 standard
deviations from the mean Tajima’s D statistic calculated for 323 candidate genes in African-
descent samples, indicating that the pattern of ABCE1 genetic diversity is an extreme outlier
and adding weight to the suggestive evidence of positive selection22.

Recent genome-wide screens for extreme Tajima’s D statistics based on Perlegen23, 24 data
identified several genomic regions as extreme outliers in African-descent populations25; These
analyses did not identify the region of chromosome 4 containing ABCE1 as an outlier of this
statistic for either population. This is likely due to the ascertainment bias toward high-frequency
alleles present in the Perlegen dataset 24, 26. Carlson and colleagues25 noted that this bias is
evident from the higher mean value for Tajima’s D for 178 candidate genes in the Perlegen
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data (0.94 for African-descent) compared to the SeattleSNPs data (−0.54 for African-descent).
For ABCE1, the Perlegen dataset only contains data for nine SNPs in for 23 African-American
samples in contrast to the 93 SNPs in the 24 Yoruban samples described here
(http://gvs.gs.washington.edu/GVS/). Of the nine SNPs in the Perlegen dataset, three are
common (>5% minor allele frequency) with all three in high linkage disequilibrium with one
another (r2=1 for all pair-wise combinations). Perlegen23, like HapMap27, is biased towards
common variation, and this bias can impact statistics such as Tajima’s D which aims to
summarize the natural allele frequency distribution of variations in the gene or region of
interest.

Our variation discovery dataset, in contrast to the genome-wide datasets such as Perlegen23

and HapMap27, is based on re-sequencing that is less likely to be influenced by ascertainment
bias28. The extreme low Tajima’s D statistics signal detected in this re-sequencing data may
be due to positive selection but the possibility of population expansion cannot be formally
excluded in this dataset. By comparison, it has been postulated that the signature of selection
in and around TRPV6 in European-descent populations is more likely to be due to positive
selection than population demography based on extensive simulations21. Also, that signature
is observed only among European-descent populations, which suggests local adaptation21.
Despite the uncertainty in the interpretation of the Tajima’s D statistic for ABCE1, it is notable
that other host candidate genes associated with HIV-1, such as CCR5 (Tajima’s D = 2.2 in
Europeans29) and APOBEC3G30, exhibit genetic signatures of natural selection in human
populations. Indeed, pathogens in general are thought to have had a major impact on the
landscape of the host genome over the course of human history31, 32.

Based on the preliminary evidence that ABCE1 may be subject to positive selection, and given
its putative involvement in HIV-1 replication, we expanded our re-sequencing efforts to include
clinical samples collected from volunteers enrolled in three separate study cohorts from the
Seattle area: African-American HIV-1 positive individuals (n=53), HIV-1 positive, long-term
non-progressing individuals (n=28), and HIV-1 high-risk seronegative individuals (n=10)33,
34. Overall, the pattern of genetic diversity in these populations was similar to that observed
for the variation discovery dataset. That is, Tajima’s D is similar between the African-American
HIV-1 infected individuals and the African population re-sequenced for SNP discovery, −2.34
and −2.27, respectively, (Table 1). The other patient populations also have negative Tajima’s
D statistics that are consistent with a trend of to an excess of rare alleles despite the small
samples sizes.

In addition to similar patterns of overall genetic diversity, both the HIV-1 infection-related
populations and the SNP discovery panels have similar patterns of intronic and exonic diversity
(Tables 1 and 2). Overall, we identified almost twice as many SNPs among the African-
American HIV-1 infected individuals compared with the Yoruban sample (170 vs. 93), but this
was expected given the sample size for the HIV-1 infected individuals was twice as large as
the SNP discovery set (Table 1). In fact, of the SNPs not in common between these two sample
sets, ~90% were rare (<5% minor allele frequency). Of the common SNPs not shared between
the two African-descent samples, six were found only in the CEPH variation discovery and
the African-American HIV-1 positive individuals datasets but not among the Yoruban sample
dataset, suggesting that these variations represent a genetic admixture typical of African-
descent populations ascertained in the United States35. Among the common SNPs shared
between the two African-descent populations, only one (intronic rs34492893) was significantly
less frequent among HIV-1 positive African-American samples (MAF=5%) compared to the
samples from presumably healthy Yorubans (MAF=15%; p=0.05; Table 3). No differences in
allele frequencies were observed when the CEPH data were compared with the data from the
European-descent individuals of the long-term non-progressing cohort (data not shown). It is
possible that the allele frequency difference observed for rs34492893 is due to statistical
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fluctuation from small sample sizes and/or to differences in European admixture in African-
Americans and Yorubans36. Additional tests of association with larger sample sizes are needed
to confirm this potential difference between HIV-1 positive and general population samples
of African-descent.

For exonic diversity, no nonsynonymous variation was identified in re-sequencing any of the
patient populations or the SNP discovery panels. We identified a total of five synonymous
SNPs and eight diallelic variants in the untranslated regions (Table 2). All identified exonic
variations had minor allele frequencies of 7% or less in their respective samples.

The genetic profile of ABCE1 observed among African-descent populations suggests positive
selection, and it is intriguing to speculate that the gene’s function is associated with this
selection event. It is possible, however, that ABCE1 is contained within the region that exhibits
the signature of selection but is not the locus under selection. To better define the boundaries
of the signature of selection on chromosome 4, we merged the SeattleSNPs discovery dataset
with the NIEHS Environmental Genome Project discovery dataset37 and surveyed the genetic
diversity of a 184.5kb region that contains the candidate genes ANAPC10, ABCE1, and
OTUD4 in 12 overlapping Yoruban samples (Figure 1). ANAPC10 (anaphase promoting
complex subunit 10) has been reported essential for mitosis38, 39. Recent expression studies
suggest that ANAPC10 is highly expressed in glioblastoma endothelial cells compared with
normal brain and other tissues40. Interestingly, the neighboring gene OTUD4 (OTU domain
containing 4), was identified in a screen for HIV-associated chimeric provirus-host gene
transcripts 41. Tajima’s D for this region in the Yoruban samples was low (−1.72), suggesting
the signature for positive selection is contained within this expanded region surveyed. This
region also exhibits relatively low levels of linkage disequilibrium (Figure 2), a finding which
may be expected given the excess of rare variation.

Conclusions
Based on our variation discovery efforts, we show here that the genomic region containing
ABCE1 has an excess of rare variation, resulting in a signature of natural selection in African-
descent populations. The product of ABCE1 is highly conserved across species and is essential
for life4. However, given that our data suggest positive selection across ABCE1 and
surrounding genomic regions in African-descent compared to European-descent populations,
it is possible that some factor separate from basic biological conservation is responsible for
this signature. It is intriguing to speculate on the trigger of the selection event, given
ABCE1’s role in HIV-1 assembly. Notably, an ABCE1 insertion/deletion variant (rs9333571)
has been reported as associated with reduced HIV-1 replication13. This genetic variant was
rare in its respective cohort (MAF=1%) and, as such, not identified in our small cohorts. Rare
genetic variations such as this indel will require deep re-sequencing efforts in patient
populations to identify associations with complex phenotypes42. These rare variations will
likely be missed by current genome-wide association studies, which rely on common variation
and linkage disequilibrium to detect associations for variations not directly genotyped in the
experiment43.

The advent of HIV-1/AIDS is likely too recent in human history to have left a detectable
footprint in present day populations, and we cannot formally exclude the possibility that the
signature we are observing is due to recent population expansion. Further work with larger
cohorts is needed to better understand potential sources of ABCE1 positive selection and to
better characterize any possible association of rare variation within the ABCE1 gene in African-
Americans with HIV-1 infection.
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Figure 1. Location and density of SNPs discovered across ANAPC10, ABCE1, and OTUD4 on
chromosome 4 the Yoruban population
Candidate genes were re-sequenced in 12 Yoruban DNA samples (NA18502, NA19238,
NA18504, NA18870, NA1855, NA19137, NA19201, NA19200, NA19203, NA19223,
NA19153, and NA19144) for variation discovery. All ABCE1 and OTUD4 introns and exons
were targeted for re-sequencing while ANAPC10 exons and representative intronic sequence
was targeted for variation discovery. The presence of a SNP and its frequency are denoted by
the vertical lines at the top of the figure generated by the Genome Variation Server
(http://gvs.gs.washington.edu/GVS/). The lines are color coded to correspond with the gene
model for each candidate gene (for example, orange represents the untranslated region of a
gene). The graph below the gene model represents the SNP density per ~738 basepairs across
this genomic region. Candidate genes and their direction are labeled at the bottom of the figure.
All DNA variations were deposited into dbSNP and GenBank (accession numbers DQ304649,
DQ148409, and DQ427109)
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Figure 2. Patterns of linkage disequilibrium (r2) in Yoruban Africans (n=12) across ANAPC10,
ABCE1, and OTUD4
Common SNPs (minor allele frequency >5%) are numbered across the top of the figure, and
samples are numbered to the left side of the figure. SNPs are numbered according to their
chromosomal position based on NCBI Build 36. Each square represents the individual’s
genotype for a specific SNP, and each square is color-coded so that blue represents
homozygosity for the common allele, red represents heterozygosity, and yellow represents
being homozygosity for the rare allele. Gray represents missing data.
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Table 1

Number individuals re-sequenced, number of SNPs (S), nucleotide diversity (π and θ), and Tajima’s D for
ABCE1.

Cohort/Samples # individuals S (# with MAF >5%) π(×10−4) (θ) Tajima’s D

CEPH 23 40 (14) 5.5 (7.0) −1.36

Yoruban 24 93 (27) 7.6 (34.5) −2.27

HIV-1 positive African-Americans1 53 170 (21) 9.6 (95.4) −2.34

HIV-1 positive, non-progressing2
 EA
 AA

25
3

34 (17)
11 (11)

5.9 (5.1)
3.8 (0.7)

−0.77
−0.54

Exposed, seronegatives3 10 24 (13) 5.3 (3.1) −0.82

1
University of Washington/Center for AIDS research (UW/CFAR) cohort: This cohort consists of HIV-infected individuals cared for at the University

of Washington HIV clinics who were invited to donate their blood to the UW/CFAR HIV specimen repository for use in HIV-related virology,
immunology, and disease pathogenesis studies. All 53 DNA samples are from African-Americans and the majority from men (62%). At enrollment,
the average age of participants was 39 years (range: 20–51 years), the length of HIV-1 infection and treatment information was unknown, the mean
viral load was 4.0 log10 copies/ml (range: 2.7–5.7 log10 copies/ml), and the mean CD4+ T-cell count was 341 cells/μl (range: 2–974 cells/μl). In
follow-up exams, these participants had a mean viral load of 2.6 log10 copies/ml (range: 1.5–5.4 log10 copies/ml) and a mean CD4+ T-cell count of
409 cells/μl (range: 15–1439 cells/μl). 37 of the 53 participants (70%) eventually began antiretroviral therapy (ART), with a mean follow-up length
of 6 years (range: 0–14 years).

2
Long-term non-progressor (LTNP) cohort: These volunteers were HIV-1 infected individuals who had a documented HIV-1 seropositivity for ≥ 10

years and CD4+ T-cell counts that were either ≥ 600 cells/μL or > 500 cells/μL, with a slope that was either zero or positive during the two years prior
to enrollment. All of the 28 DNA samples sequenced were from male volunteers, while 25 of the 28 samples (89%) were from European-Americans
and the remaining (11%) were from African-Americans. At enrollment, this subgroup of volunteers had the following characteristics: the average age
was 41 years (range: 30–52 years), the average length of HIV-1 infection was 14 years (range: 10–20 years), the mean viral load was 3.3 log10 copies/
ml (range: 2.7–5.1 log10 copies/ml), the mean CD4+ T-cell count was 819 cells/μl (range: 364–1372 cells/μl), and all individuals were ART naïve.
In follow-up exams, these individuals had a mean viral load of 2.6 log10 copies/ml (range: 1.5–5.3 log10 copies/ml), a mean CD4+ T-cell count of
675 cells/μl (range: 262–1724 cells/μl). In addition, 9 of the individuals (32%) began ART during the follow-up examination period, with as the mean
length of 18 years (range, 12–27 years) for the period between HIV-1 infection and the start of ART. The mean length of follow-up was 7 years for
the 28 individuals (range: 1–11 years).

3
HIV-1 high-risk exposed seronegatives (ES) cohort: These volunteers were predominantly European-American men having sex with men (MSM).

The ES cohort, their enrollment criteria, and the study procedures associated with this cohort have been previously described33. All 10 individuals
were European-American and 7 (70%) were male. The mean age of the individuals was 34 years (range: 24–53 years).

Abbreviations: African-American (AA), Centre d’Etude du Polymorphisme Humain (CEPH), European-American, minor allele frequency (MAF)
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Table 2
SNPs in ABCE1 exons

Location and frequency of the SNP is given for each sample that was re-sequenced for variation discovery.

Site1 (rs number) Nucleotide Amino Acid (position) Sample (Frequency)

8026 (rs34265438) G>A Lys to Lys (27) CEPH (0.02)

12707 (−)2 A>T Gly to Gly (110) African-American HIV-1 positive (0.03)

15787 (rs35406092) G>A Glu to Glu (242) African-American HIV-1 positive (0.01)
Yoruban (0.05)

26775 (rs35729907) A>G Leu toLeu (467) Yoruban (0.04)

26799 (rs34070877)2 C>T Cys to Cys (475) African-American HIV-1 positive (0.07)
Yoruban (0.06)

31200 (rs34305988) C>G N/a Yoruban (0.02)

31222 (−) A>G N/a African-American HIV-1 positive (0.03)

31291 (−) C>T N/a African-American HIV-1 positive (0.02)

31703 (rs35984115) G>A N/a African-American HIV-1 positive (0.02)
Yoruban (0.03)

31810 (−) A>T N/a African-American HIV-1 positive (0.01)

31865 (−) −/+ N/a African-American HIV-1 positive (0.01)

32165 (rs17019897) C>G N/a African-American HIV-1 positive (0.01)
Yoruban (0.05)

32304 (rs34634683) G>A N/a African-American HIV-1 positive (0.03)
Yoruban (0.02)

1
Based on GenBank reference sequence DQ148409

2
Also identified in the re-sequencing of 48 Afro-Caribbean prostate cancer patients.12
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Table 3
ABCE1 SNP allele frequency comparisons between Yorubans and African-American HIV-1
infected individuals

Common tagSNPs were identified in the Yoruban dataset for SNPs with MAF≥0.05 in ABCE1 using the Genome
Variation Server (gvs.gs.washington.edu/GVS/) at r2>0.80.

SNP rs number (minor allele) SNP location Yoruban MAF (n=48)

African-American HIV-1
infected individuals MAF

(n=106)

rs959304 (A) Intron 0.09 0.05

rs34291406 (T) Intron 0.09 0.05

rs17019887 (C) Intron 0.08 0.08

rs35406092 (A) Synonymous 0.05 0.00

rs34766684 (C) Intron 0.08 0.10

rs34776612 (T) Intron 0.07 0.06

rs34070877 (T) Synonymous 0.06 0.07

rs34492893† (G) Intron 0.15 0.05

rs34935304 (T) Intron 0.09 0.00

rs35207405 (A) Intron 0.06 0.00

rs35407026 (T) Intron 0.19 0.11

rs35665369 (T) Intron 0.07 0.00

rs36114072 (−) Intron 0.05 0.00

n = number of chromosomes

Abbreviations: minor allele frequency (MAF)

†
The minor allele frequency in Yorubans is higher compared with African-American HIV-1 infected individuals (p=0.05; Fisher’s exact test).
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