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Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses
triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of
immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis.
However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more
permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have
developed to interfere with dendritic cell activities as well as in the possible mechanisms involved.

1. Introduction

Dendritic cells (DCs) control the development of adaptive
immune responses due to their remarkable ability to inte-
grate signals coming from the environment, deliver this
information to naive T cells, and in turn activate them
inducing the appropriate response for the initial stimuli
[1, 2]. During infection, the responses induced by DC
are critical to control and eliminate the invading agent,
the infection itself being the inducer of DC activity. DC
maturation and activation involves upregulation of several
molecules that play main roles in costimulation and antigen
presentation to T cells such as CD80, CD86, CD40, and
major histocompatibility complex II (MHC-II), along with
the release of cytokines that influence the type and intensity
of the immune response [2–4]. Mature DCs are fully potent
antigen-presenting cells (APCs) that will prime naı̈ve T
cells inducing their differentiation and proliferation [1, 5].
Protozoan parasites can activate and induce the maturation
of different DC subsets and in most cases the activity of
these cells leads to a response that is effective in controlling
the infection [6–8]. The case of helminthes is more complex

since most reports show a partial maturation of DC in
response to these parasites or their antigens that does not
contribute with parasite elimination [9–11]. In any case, it
has been shown that both, helminthes and protozoan, are
capable to interfere with DC activity promoting a more per-
missive environment for their own survival inside their host
[11–14]. Different interactions of parasite-derived molecules
with receptors on DC such as Toll-like receptors (TLRs),
C-type lectin receptors (CLRs), and others seem to be the
key event in the mechanisms that ultimately will lead to the
altered function in these cells [15–18]. In this review we will
focus on some important protozoan and helminth parasites
and their ability to modify DC function, the implications of
such modulation, and the possible mechanisms involved. We
will discuss the differences and similarities in the interference
with DC activity between these two distinct parasite groups.

2. Protozoan Parasites

2.1. Plasmodium. It has been shown that different species
of Plasmodium sp. can modulate the response of DC
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[6, 13, 19–22]. While infection by some nonlethal strains
seems to induce the activation, maturation, and secretion
of important proinflammatory cytokines such as IL-12 by
DC [6, 22], infection not only with lethal strains such
as P. yoelii YM or P. berghei but also with the nonlethal
P. vivax can impair DC function. Modified DC function
by Plasmodium species can be achieved through varied
mechanisms. Some of these mechanisms involve a decre-
ment in total DC numbers as well as an altered ratio of
myeloid versus plasmacytoid cell subsets, the latter being
probably involved in the induction of a regulatory phenotype
mediated by regulatory T cells (Tregs) and IL-10 production
[12]. Other studies have reported null or reduced capacity
of Plasmodium-exposed DCs to prime T cells [6, 21–24],
situation that could be related with the inability of these
DCs to establish prolonged interactions with naı̈ve CD4+
T cells [23]. Interestingly, DCs from infected mice with
lethal or no lethal strains show an impairment in their
response to TLR stimulation, as a marked reduction in IL-
12 secretion is observed upon stimulation with LPS, CpG,
or poly:IC, resulting in some cases, in the inversion of the
IL-12/IL-10 secretion pattern displayed by DC [6, 21, 24].
Since these changes can occur as malaria infection progresses
[21], altogether these data suggest that Plasmodium has the
ability to switch an aggressive immune environment into
a more permissive one for its survival. Other effects that
Plasmodium has on the function of DC have been reported.
These effects can be attributed to the invading species,
the parasite life stages, or the products they release. For
example, a preferential increment in CD8− DC in spleen
is observed in the acute phase of P. chabaudi infection.
Importantly, only CD8− dendritic cells induce proliferation
of merozoite surface protein- (MSP1-) specific T cells, and
since these T cells produce considerable levels of IL-4 and
IL-10, it is suggested that the change from a Th1 to a Th2
response that takes place in P. chabaudi infection [25] can
be attributed to these already modified DC populations
[13].

Maturation of human monocyte-derived DC (MDC)
through CD40L can be also prevented by P. falciparum mero-
zoites. These DCs show a diminished IL-12p70 secretion
but enhance IL-10 production and prime CD4+ naive T
cells to produce higher levels of IL-10 and lower levels of
IFN-γ. These effects by merozoites on DC seem to involve
the activation of the extracellular-signal regulated kinase
(ERK) pathway [26]. In contrast, in the same study, DC
exposed to P. falciparum infected erythrocytes respond to
CD40 signaling secret proinflammatory cytokines that lead
to a proinflammatory response by naive CD4+ T cells, and
this time, p38 mitogen-activated protein (MAP) kinase plays
an essential role. These evidences indicate that P. falciparum
uses distinct kinase pathways to modulate the activity of
DC [26]. Moreover, those findings also indicate a different
activity on DC function between the whole parasite and its
products.

DC maturation can also be compromised in vivo during
the last stage of P. yoelii infection and in vitro when DC
are cultured in the presence of P. yoelii-infected erythrocytes
[27]. Interestingly, the presence of the complete parasite

is not necessary to interfere with DCs function and by-
products of hemoglobin degradation mediated by P. fal-
ciparum such as hemozoin can also modulate the activity
of DC. This malarial pigment inhibits the differentiation
and maturation of MDC, reducing the expression of major
MHC-II and the costimulatory molecules CD83, CD80,
CD54 and CD40 [28, 29]. T cells activated in the spleen
by hemozoin-containing DC, are not completely functional
since they can not secrete cytokines or migrate to B-cells
follicles [19].

More, recently it was shown that soluble factors released
by P. yoelii or P. falciparum-infected erythrocytes can inhibit
LPS induced maturation of DC and change their cytokine
secretion profile resulting in a failure to produce IL-12 [27].
Induction of regulatory DC that in turn promotes a Treg
response is another mechanism by which malaria parasites
may subvert host immune systems. Surprisingly, this effect
appears to be mediated by recognition of the parasite’s
molecules by TLR9 [12, 30, 31].

Considering the importance of IL-12 and the Th1
response along with the full activation of DC to prime effi-
ciently T cells in the immune response against Plasmodium
species, the modulatory effects over DC function discussed
above, seem to be an effective evasion strategy actively
induced by Plasmodium parasites that certainly can influence
the outcome of the infection.

There is evidence supporting the interaction of Plas-
modium parasites with several receptors expressed by DC.
For example, among the different surface antigens expressed
on P. falciparum, the Plasmodium falciparum erythrocyte
membrane protein 1 (PfRBC-1) seems to play a main role
[32]. This protein can mediate adherence to DC through
the interaction with the Scavenger receptor CD36 [33] but
also through the proteoglycan molecule, chondroitin sulfate
A (CSA) [34, 35]. However, the interactions of PfRBC -1
seem not to be related with the interference of P. falciparum
with DC function, in fact; in vitro studies have shown
that modulation of DC responses might not need contact
between these cells and the infected erythrocytes [35],
opening the possibility for parasite-soluble factors playing
a major role. This is well exemplified by the interaction
of Plasmodium parasites and TLR2, TLR4 and TLR9 which
can indeed recognize infected erythrocytes-derived products
[36–38]. Soluble extracts from P. falciparum and hemozoin
(by presenting malaria DNA) can activate DC in a TLR9
dependent fashion, inducing up-regulation of costimulatory
molecules and proinflammatory cytokines and chemokines,
some of them involved in host resistance against P. falciparum
[36, 37, 39]. Interestingly, it was recently shown that P.
yoelii uses the interaction with the same receptor on DC
to in turn induce Treg cells, a response that is associated
with P.yoelii-immune evasion [30]. This finding indicates
that different Plasmodium species may induce different
responses through their interaction with TLR9. However,
there is still little information about the receptors and ligands
involved in the DC downregulation consistently observed in
Plasmodium infections or in response to their products. See
Table 1.
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2.2. Leishmania. Clearance and resistance to Leishmania
infections is dependent on the development of a Th1
response and the production of IL-12 [40–42], and in this
regard, DCs play a critical role [43]. It has been shown that
during Leishmania infections, engulfment of amastigotes
and promastigotes by DCs leads to their activation and a
consequent IL-12 and TNF-α production that can contribute
with host resistance [44, 45]. However, more accurate is
the fact that the effect of Leishmania infection on DC
maturation and cytokine production could vary for the
different Leishmania species and strains; for example, while
the uptake of L. major promastigotes and amastigotes
results in DC maturation and IL-12 production [46, 47],
promastigotes of L. amazonensis can interfere with DC
responses affecting their differentiation and decreasing their
ability as APC [48]. Both stages of this specie can reduce
CD40 and CD83 surface expression and IL-12p40 produc-
tion by bone-marrow-derived dendritic cells (BMDCs) in a
mechanism that requires the activation of the MAP kinase
ERK [7, 49]. Additionally, IL-12p40, IL-12p70, and IL-6 are
downregulated and IL-10 secretion increased when infected
DC are treated with LPS [7]. Lack of activation and a reduced
IL-12 production by DCs also observed after L. mexicana
infection along with a delay in their apoptotic process [50,
51]. L. donovani can also inhibit DCs maturation and modify
their CCR7 expression, interfering with their migration to
the periarteriolar lymphoid sheath [52, 53]. Interestingly,
some of the regulatory effects that L. donovani has on DC
depend on the phosphoglycans present in the parasite [52].
In fact, several Leishmania products can also impair DC
activity as it has been shown that parasite culture media or
lipophosphoglycans (LPGs) from L. major inhibit the motil-
ity of murine splenic DC [54] or the migration of Langerhans
cells [55], suggesting that Leishmania products may interfere
with antigen transportation. L. major phosphoglycans (PGs)
are involved in downregulation of IL-12p40 production by
DC and in the ability of these cells to induce a Th1 response
since these molecules favor IL-4 and IL-10 but not IFN-γ
production [56]. Moreover, excreted-secreted antigens of L.
donovani or L. major induce a slight decrease in the surface
expression of CD40, CD86, human leukocyte antigen-DR
(HLA-DR), and cell-specific intercellular adhesion molecule-
3-grabbing nonintegrin (DC-SIGN) on DC concomitant
with a downregulation on IL-10 and IL-12p70 secretion
[57]. In the case of L. mexicana, the activity of LPGs on
DC function also includes a reduction in IL-12 production
that may depend on the impairment on NF-κB nuclear
translocation induced by parasite’s antigens [51]. Since the
maturation state of DC seems to determine the type of
immune response induced in Leishmania infections, where
an immature state promotes a Th2 response which does
not control the infection and a mature phenotype induces
a Th1 response with the subsequent host resistance [58],
the interference of these parasites and their products in
the maturation process of DC may be critical for parasite
survival.

Some studies have shown that activation and production
of IL-12 and IFN-α/β by myeloid DC (mDC) and plasmacy-
toid DC (pDC) after stimulation with L. major, L. brasilienzis,

or L. infantum is strictly dependent on TLR9 signaling [59,
60] and the maturation of splenic DC is improved by the
myeloid differentiation primary response gene 88 (MyD88)-
signaling pathway, indicating an important role of TLRs in
activation of DC by Leishmania [61]. In addition, others
found that TLRs such as TLR2 and TLR4 are involved in
the response to Leishmania parasites and their products, like
LPGs that might signal through TLR2 inducing a TNF-α
response [62–64]. Interestingly, a noncharacterized soluble
product from L. brasilienzis activates DC in a MyD88-
independent fashion, suggesting that receptors other than
TLRs may play a role in the responses induced by Leishmania
products on these cells [65]. But even when interaction of
Leishmania sp. parasites or their products with TLRs and
probably other receptors can induce the activation of DC,
it is still unknown which kinds of molecules, receptors, and
pathways are involved in the impairment of function that
has been observed in DC exposed to Leishmania parasites,
Leishmania LPGs, or Leishmania excreted-secreted products.
Therefore, deeper studies in this field should improve our
knowledge on Leishmania’s strategies to survive the immune
response. See Table 1.

2.3. Trypanosoma. Infection of MDC with Trypanosoma
cruzi induces functional changes in these cells. For example,
secretion of IL-12 and TNF-α is impaired and the maturation
process induced by LPS is affected, observing a marked
reduction in proinflammatory cytokines secretion as well
as on the expression of HLA-DR and CD40. Moreover,
the same effects are observed when DCs are cultured in
the presence of T. cruzi-conditioned medium, indicating
a modulatory activity of the molecules released by these
parasites [66]; in fact, the exposure of DC to T. cruzi-derived
GIPL (glycoinositolphospholipids) can also affect the LPS-
induced cytokine secretion and expression of costimulatory
molecules in similar way that the whole parasite does
[67]. Using also in vitro studies, Poncini and colleagues
showed that trypomastigote stage of T. cruzi fails to activate
DCs, these cells become in TGF-β and IL-10 producers
and are not efficient as lymphocyte stimulators. For these
reasons, the authors classify these cells as regulatory DCs
[68]. Importantly, in vivo experiments also robustly show
the interference of T. cruzi with DC function. At day 14
of an active infection, there is a progressive fall in the
number of splenic DCs and this is accompanied with a low
expression of the costimulatory molecule CD86, therefore
suggesting an immature phenotype. These DCs are unable
to migrate to the T cell area in the spleen or undergo
maturation upon LPS stimulation [69]. Interestingly, only
the infection with T. cruzi-virulent strain RA but not
the low-virulence strain K98 affects MHC-II expression
on splenic DCs and their capacity to prime T cells [70],
indicating a relation between virulence and a more effective
strategy to avoid immunity. This is further supported by
the evidence that the infection of the susceptible strain of
mice (BALB/c) with T. cruzi induces a downregulation of
splenic DC activity. These cells display a diminished CD86
and CD40 expression and a reduced potential to present
alloantigens. Importantly, these changes are not observed
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Table 1: Protozoan interactions and their regulatory effects on DC.

Parasite Product Putative DC Receptor ¶ Effect on DC
Effect on DC upon TLR
stimuli

Ref.

Plasmodium

P. berghei Infection N.D. ↓ Tcell priming ↓ IL-12p70,

endocytic activity [22]

↑ IL-10

Infection TLR9 Immature

↓ T cell priming, shorter
DC/T cell interactions

↓ CD40, CD86,

MHCII, IL-12p70
[6, 23, 24,

30]

↑ IL-10

P. yoelii ↑ Treg∗ [21, 31]

Soluble Factors N.D. ↓ IL-12 ↓ CD40, CD86, [27]

MHCII, IL-12

P. vivax Infection N.D. ↓ mDC:pDC N.D. [6, 12]

↑ Treg∗

P. chabaudi Infection N.D. ↑ CD8- DC N.D. [13]

Th2∗

P. falciparum Merozoite N.D. ↓ IL-12p70, IFNγ∗ N.D.

↑ ERK,IL-10, [2, 20]

IL-10∗

Hemozoin N.D. ↓
Immature
Differentiation
Migration

N.D. [19, 28]

Soluble extracts N.D. Immature ↓ IL-12 [27]

↓ IL-12

Leishmania

L. major Promastigote
Amastigote

N.D. Immature N.D. [55]

↓ IL-10

LPGs TLR2 ↓ Motility Migration N.D. [54]

PGs ↓ IL-12p40, IFNγ∗ ↓ IL-12p40 [56]

↑ IL-4∗, IL-10∗

ES N.D. Immature N.D.

↓ DC-SIGN, IL-10, [57]

IL-12p70

L. amazonensis Promastigote N.D. Immature IL-12p40, IL-10

↑ ERK ↓ IL-12p70,
[45, 48, 49,

65]

↓ IL-12p40 ↑ IL-6

L. mexicana Promastigote N.D. Immature N.D.

↓ IL-12 Apoptosis [50]
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Table 1: Continued.

Parasite Product Putative DC Receptor ¶ Effect on DC
Effect on DC upon TLR
stimuli

Ref.

LPG N.D. IL-12 N.D.

↓ NFkB [51]

L. donovani Promastigote N.D. Immature N.D.

Migration, CCR7,

↓ CD11b, CD51, [52, 53]

CD86, IL-12p70

ES N.D. Immature N.D.

↓ DC-SIGN, IL-10,
IL-12p70

[57]

Trypanosoma

T. cruzi Infection and Soluble
Factors

N.D. Immature Migration, IL-12, TNFα,

DC number, ↓ IL-6, HLA-DR,
[66, 69,

70]

↓ T cell priming, CD40,CD86

IL-12, TNF-α

Trypomastigote N.D. Immature TNF-α,IL-12p70, IL-6,

↑ TGF-β, IL-10 ↓ CD40, HLA-DR, [68, 71]

↑ IL-10

GIPLs N.D. IL-12, TNFα, TNF-α,IL-12, IL-10,

↓ IL-10 ↓ CD83, CD80, CD86, [67]

CD40, HLA-DR

Sialyted structures Siglec-E N.D. ↓ IL-12p40, IL12p70

↑ IL-10 [17]

Toxoplasma

T. gondii Infection N.D. N.D. ↓ IL-12p40 [87, 91]

Tachyzoites N.D. Immature IL-12p40,

↑ Motility Migration ↓ TNF-α, MHCII
[87, 89,

92]

↓ T cell priming

Soluble Factors N.D. Immature N.D. [91, 93]

↑ DC attraction

Endogenous LXA4

parasite-induced
FRPL-1 ↑ SOCS2 N.D. [16]

AhR ↓ IL-12

Giardia

Giardia lamblia parasite extracts N.D. CD80, CD86, ↑ IL-10 [94]

↑ CD40 ↓ IL-12, MHCII,

IL-12, TNF-α, CD80,CD86

↓ IL-10

¶ Involved in modulatory effects on DC.
∗T cell response.

in the C57Bl/6 mice, a strain capable to survive the acute
phase of this infection [71]. Together, these two studies
indicate that modulation of certain DC features by T. cruzi
depends on both host and parasite genetic backgrounds.
They also remind us that even when targeting of DC
functions by parasites is an important strategy for immune

evasion, it can also unbalance the delicate host/parasite
relationship in such a way that infection could be lethal for
both.

There are different ways for an intracellular pathogen
such as T. cruzi interacts with elements of the innate
immune system. Macrophages and DCs are cells that
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can be infected by this parasite; nevertheless; when these
cells become activated by TLR signaling, through either
the adaptor molecules MyD88 or TIR-domain-containing
adapter-inducing interferon-β (TRIF), both cell types are less
prone to allow parasite replication with IFN-β playing an
important role in parasite clearance [72]. Different molecules
derived from T. cruzi can be recognized by TLRs. Glyco-
sylphosphatidylinositol (GPIL) anchors from this protozoan
parasite trigger TLR2-dependent antiparasite responses in
macrophages [73] while T. cruzi DNA can induce their
activation by interaction with TLR9 [74]. Indeed, the
combination of TLR2 and TLR9 seems to account for
all the protective IFN-γ production generated by MyD88-
dependent signaling pathways in macrophages exposed to
live trypomastigotes in vitro [74]. More importantly for
this review’s topic, the Tc52-released protein from T. cruzi
signals via TLR2 and induces DC maturation and production
of the inflammatory chemokines IL-8, MCP-1, and MIP-
1α [75]. On the other hand, the bradykinin B2 receptors
(B2R) in DC might be also involved in the activation and
maturation of these cells, and in turn in the generation
of protective responses such as IL-12 production and the
development of Th1 immunity [76]. As for other protozoan
parasites, the interaction between DC receptors and T. cruzi
molecules that lead to downregulated responses in these
cells remain poorly understood; however, recent evidence
has brought some insights to this phenomena. Erdmann
and colleagues demonstrated that sialylated structures from
T. cruzi pathogenic Tulahuen and to a less extent the less
pathogenic Tehuantepec strain interact with the inhibitory
sialic acid-binding protein Siglec-E [17]. This lectin receptor
is expressed on DC and interestingly its ligation suppresses
the LPS-induced production of IL-12 by these cells. The
subsequent T cell response is also affected since a marked
decrease of IFN-γ production is observed when Siglec-E-
ligated DCs are used as APCs. This response could play a
role in the immunosuppression observed during T. cruzi
infection as well as determining the distinct pathogenicity
that these two different strains display [17]. In addition,
this finding suggests that the interference with DC function
induced by T. cruzi could be achieved through the interaction
of lectin receptors with parasite products. See Table 1.

2.4. Toxoplasma. Either live tachyzoites or a soluble tachy-
zoite extract from Toxoplasma gondii injected into mice
induces a rapid and strong production of IL-12 from splenic
DC [77, 78]. This IL-12 response is unusually potent since
not even stimuli like LPS or CpG can reach the IL-12 levels
induced by T. gondii antigens [79]. Such reaction is mediated
by the specific recognition of Toxoplasma-derived profilin by
TLR11 expressed specifically on CD8α+ DC [80], although
other molecules and other TLRs could be also involved
[81, 82]. Nevertheless, other reports indicate that the potency
of the T. gondii to induce IL-12 can be achieved thanks to the
engagement of CCR5 by cyclophylin-18 (C18), a chemokine
mimic of MIP-1β derived from the soluble extract of the
same parasite [83]. It is, however, important to highlight that
the production of high levels of IL-12 secreted by DC in the
presence of T. gondii antigens quickly reaches baseline level

(24 h post stimulation) and DCs become refractory to any
further exposure to T. gondii in a phenomenon called “DC
paralysis” [84]. It is believed that these dramatic changes in
the DC response are due to a parasite strategy that assures the
control of a potentially lethal parasite growth and prevents
a cytokine-mediated immunopathology, as both scenarios
could be deleterious for the host and in turn to the parasite
[79]. A line of evidence has further identified a sophisticated
T. gondii-induced modulation of the immune response. The
parasite-induced production of the eicosanoid lipoxin A4

(LXA4) has been linked to the downregulation of IL-12
production by DC [85] in a mechanism that seems to involve
the binding of LXA4 to the receptors formyl peptide receptor-
like 1 (FRPL-1) or aryl hydrocarbon receptor (AhR) on
the same cells [16]. This interaction triggers the expression
of the suppressor of cytokine signaling-2 (SOCS-2) that in
turn helps to control the proinflammatory and otherwise
potentially lethal immune response against T. gondii [16].
In line with this idea, in the absence of the AhR receptor
(AhR knock out) mice succumb rapidly to ME49 T. gondii
infection, a situation that is associated with the higher
proinflammatory response observed in these animals [86].

In contrast with the evidence discussed above, there
are some reports that show that invasion of immature
DC by T. gondii-living parasites does not induce their
activation and renders them also resistant to activation by
TLR ligands or CD40L [87, 88]. The differences in DC
responses upon T. gondii exposure could be explained by
the identification of different DC subpopulations that are
indeed involved in the initial response to T. gondii; among
those are CD8α+, CD11b+, and, surprisingly, pDC [8].
It is noteworthy to consider the findings from Diana and
colleagues who reported that soluble factors released from
low-virulent strains of T. gondii can inhibit DC maturation
[89] while other reports have demonstrated that T. gondii-
soluble extract can induce a marked IL-12 production by DC
[77]. Despite the fact that all these apparently contrasting
findings may suggest that different soluble molecules from
this parasite can provoke varied responses in DC, this is
probably due to different soluble antigens interacting with
distinct types of receptors.

T. gondii is capable of exploiting parasitism in a remark-
able way by using DC to invade other tissues [88, 90] or
other immune cells [91], promoting in turn the spreading
and establishment of the infection. This may be achieved
by the early target of these cells by T. gondii tachyzoites, an
interaction that seems to modify the DC motility, trafficking,
and migration properties as well as their cytokine effector
function following TLR stimulation [88–90, 92]; the last one
probably renders them unable to activate direct and indirect
killing pathways. In addition, T. gondii may use the NK-cell
mediating targeting of infected DC to disseminate, allowing
viable parasites to enter in NKs that later appeared not to be
efficiently targeted by other NK cells [91].

Different mechanisms could be related with the change
in trafficking and migration behavior of DC exposed to
T. gondii; however, it seems that most of these parasite-
induced alterations are mediated by G-protein signaling
pathways [83, 89, 92]. It has been shown that soluble
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factors in excreted-secreted T. gondii antigens appear to
possess a chemokine-like activity that attracts immature
human [93] and mouse DCs [83] while other factors from
a parasite extract can even trigger DC migration towards the
chemokine MIP-3β [93]. In both human and mouse cells, the
chemokine-like activity might be achieved by the T. gondii-
derived chemokine mimic C-18, although other parasite
factors could be involved [83, 93]. In any case, it is likely
that this DC attraction might enhance the chances for DC
infection while the alteration in DC trafficking and migration
properties could participate in parasite dissemination. See
Table 1.

2.5. Other Protozoan Parasites. There are several other species
of protozoan parasites including Trichomonas sp., Giardia
sp., Entamoeba sp., and Cryptosporidium sp. Unfortunately,
these parasites have generally been poorly studied as far as
their interactions with DC concern probably due to the fact
that they have less morbidity and mortality among human
populations. Nonetheless, recently it was shown that DCs
incubated with Giardia lamblia live parasites or its extracts,
display enhanced levels of CD40, CD80, and CD86 indicating
their mature state. These cells produce small amounts of
IL-6 and TNF-α and no IL-10 or IL-12 is detected [94].
Importantly, coincubation of DC with parasite extracts and
TLR ligands only enhance IL-10 production while markedly
reducing IL-12 secretion and MHC-II, CD80, and CD86
levels. The mechanism of DC inhibition involves the activity
of the phosphoinositide 3-Kinase (PI3K) since specific inhi-
bition of this enzyme restores IL-12 production by these cells
[94]. It is hypothesized that the ability of Giardia lamblia to
inhibit IL-12 and enhance IL-10 production may contribute
the maintenance of an antiinflammatory environment in the
gut.

It is also known that lipopeptidophosphoglycan (LPPG)
molecules from Entamoeba histolytica establish interactions
with TLR2, and TLR4 leading to the release of IL-10, IL-12,
and TNF-α [95]; and additionally, DNA from this parasite
can be recognized by macrophages through TLR9 triggering
TNF-α production [96]. With regard to DC, LPPG and
also the parasite’s surface Gal-lectin can activate these cells
and induce their maturation along with IL-12 production,
resulting in the induction of Th1-type responses [97, 98],
although no findings regarding DC downregulation are
available for this parasite.

TLR receptors are also involved in recognition of Cryp-
tosporidium parvum and Trichomonas vaginalis but these
interactions are normally between the parasites and host cells
other than DC [99–102]. See Table 1.

3. Helminth Parasites

In marked contrast to protozoan parasites, helminthes are
much larger hence they do not occupy intracellular spaces
or are engulfed, having their interactions with immune
system through the attachment of some immune cells to
their surface or mainly by the recognition of diverse antigens
released from the parasite. However, as for any parasite,

their survival will depend on their capacity to cope with
immune system’s attacks. In this sense, interfering with DC
activity is again one of the main ways to induce a permissive
environment that allows their development inside the host.
As noted earlier, during development and differentiation
DC can be exposed to different stimuli which significantly
influence their function and maturation, and helminth-
derived antigens are not the exception to this rule.

3.1. Nematodes. Semnani and coworkers demonstrated that
when monocytes undergoing differentiation to DC engulfed
B. malayi microfilariae antigens they display an inhibited
production of IL-12p40, IL-12p70, and IL-10 in response
to Staphylococcus aureus Cowan antigen (SAC) and SAC
plus IFN-γ, suggesting an interference with TLR and IFN-
γ signaling induced by this nematode [10]. Cell viability
or expression of costimulatory molecules, including MHC-
I and MHC-II is not altered; however, DC exposed to
these filarial antigens induce lymphocyte activation to a
lesser degree than DC that were not exposed [10]. The
same group recently reported a reduced TLR4, TLR3, and
MyD88 mRNA expression in HMDC, as well as an impaired
cytokine response to poly:IC and LPS upon exposure to live
B. malayi microfilaria (mf) [103]. This indicates that this
parasite can alter not just DC maturation but also their TLR
responses affecting in turn T cell activation. In addition,
MDC exposure to mf led to an enhancement in SOCS1 and
SOCS3 mRNA transcripts [103], which are molecules known
for their modulatory activity on cytokine production [104].
Furthermore, mf induces apoptosis in HMDC but not in
macrophages [103]. Thus, the interaction of this helminth
parasite and its antigens with DC clearly interferes with the
function of these cells at different levels, from downregulat-
ing proinflammatory receptors to the induction of molecules
involved in the suppression of cytokine production.

Another nematode, Nippostrongylus brasiliensis, secretes
in vitro diverse glycoprotein named excretory-secretory
products (NES). These antigens polarize the immune
response towards a Th2 type without requiring live infection
of the mice. Interestingly, BMDC pulsed with NES can upon
transfer to naive recipients prime them to a Th2 response
[105], suggesting that the Th2 driving properties of this
extract occur through DC. In fact, NES upregulates DC
markers associated with Th2 promotion, including CD86
and OX40L. In addition, the high levels of IL-12p70 induced
by LPS are suppressed in DC that have been preincubated
with NES [105]. This situation may contribute to the Th2
polarized response observed either during the infection with
N. brasiliensis or in response to its antigens.

In in vivo studies, adult Ascaris suum high-molecular-
weight components (PI) inhibit MHC-II and costimulatory
molecules in CD11c+ LN cells from OVA-PI-immunized
mice compared with those immunized with OVA-CFA [9].
In line with an immature phenotype, these CD11c+ are poor
inducers of proliferation, phenomen that is IL-10 dependent.
Interestingly, OVA+PI was administered in CFA (Freund’s
complete adjuvant), suggesting that PI could inhibit the
inflammatory effect of this adjuvant [9]. In addition,



8 Journal of Biomedicine and Biotechnology

peritoneal CD11c+ cells recruited by pseudocoelomic fluid
(PCF) from A. suum show basal levels in CD86 expression
while BMDCs exposed to the same extract exhibit low
increase in CD40 expression and are refractory to LPS
stimulus, displaying once again an immature phenotype
and a dose-dependent reduction in IL-12 production. [106].
Moreover, glycosphingolipids from A. suum containing
phosphorylcholine (PC) downregulate IL-12p40 and TNF-
α secretion from DC, as well as a MHC-II, CD40, CD80,
CD86, and CD54 in response to LPS. This modulation is due
to native glycosphingolipids and PC-removed glycosphin-
golipids, suggesting that a molecule other than PC possesses
immunomodulatory properties over DC, although this one
has not yet been elucidated [107].

ES-62 is another molecule that contains PC; it is
derived from excreted/secreted products of the nematode
Acanthocheilonema vitae and has been shown to display a
variety of immunomodulatory activities [108]. ES-62 exerts
its immunomodulatory effects on an array of cells of the
murine immune system, including macrophages and DC
[108–110]. In particular, exposure of immature DC to ES-
62 lead to an unexpected increment in the expression of
costimulatory molecules such as CD40, CD80, and CD86
and also, unlike other nematode molecules, ES-62 induce
low but significant levels of IL-12p40 and TNF-α production
in a MyD88-dependent manner. Interestingly when DC are
stimulated with ES-62, there is an up-regulation of TLR4
expression; however, ES-62 had overall inhibitory effects on
IL-12 and TNF-α production induced by TLR ligation. This
suppressive effect is abrogated in TLR4 knockout but not
in C3H/HeJ mice-derived BMDC, suggesting the use of a
coreceptor in this ES-62-TLR4-dependent signaling [108].
ES-62 is also capable of shifting BMDC into the “DC2”
activation state [108]; when these DC2 cells present an
ovoalbumin peptide to naı̈ve CD4+ T cells from OVA TCR
transgenic mice, an increase of IL-4 and a decrease of IFN-
γ production by lymphocytes are observed. In addition,
the switch to a Th2 response is not affected by differential
regulation of CD80 or CD86 and it is achieved even in the
presence of IL-12 [110]. Importantly, despite the fact that
ES-62 is a high Th2 inductor, this molecule is incapable to
overcome and bias the immune response to a Th2 type in
the context of some inflammatory Th1 conditions such as T.
gondii infection and O. volvulus synthetic protein [111, 112].

Other important data regarding DC activity modulation
have come from studies with Heligmosomoides polygyrus
excreted-secreted-derived products (HpES) and the adult
worm homogenate (AWH). None of these antigens induce
BMDC maturation and IL-12, TNF-α or IL-10 is not
found in culture supernatants [113]. Alike other helminth-
derived extracts, HpES alters TLR-induced cytokines and
chemokines, since limited IL-12, TNF-α, MCP-1, and
RANTES production is elicited by stimulation with CpG,
LPS, and poly:IC. Interestingly, the production of the
immunoregulatory cytokine IL-10 is also impaired. In addi-
tion, costimulatory molecules including CD40, CD86, and
MHC-II but not CD80 are drastically downregulated also in
response to TLR stimuli [113]. Even more, studies in vitro
with a model of CD4+ OVA restricted activation, show that

DC treated with HpES not only attenuate but also IL-4 and
IFN-γ production by CD4+ T cells but enhance IL-10 leading
to Treg induction [113]. The findings for HpES correlate
with an in vivo study where spleen DC isolated from H.
polygyrus infected mice have an increased IL-10 production
and a moderate up-regulation of CD80 and CD40. These
DC are poor inducers of CD4+ T cell proliferation and have
the ability to decrease IFN-γ and enhance IL-4 production
[114]. Thus, it is likely that the responses induced by H.
polygyrus in DC, participate in providing a safer environment
for parasite establishment and survival. Importantly, the
impaired cytokine effect observed in DC exposed to H.
polygyrus antigens is TLR2 and TLR4-independent [113]
while data are available showing that these same receptors
recognize molecules from other helminthes such as ES-62
from A. vitae [11, 15, 108, 115]. These findings imply that
the recognition and activity of helminth-derived molecules
occurs through different receptors. This hypothesis has been
further supported by a study that shows that calreticulin
(CRT) present in H. polygyrus antigens lead to a Th2
response in vivo and this same molecule can be recognized
by BMDC through Scavenger receptor A (SR-A) [116]. How-
ever; more studies are required to determine the phenotype
that such recognition may confer to DC, and whether this
phenotype is involved in the polarization toward Th2-type
responses observed in the previous studies. Importantly,
since CRT is preserved across the helminth parasites [86,
117–121], it is likely that this molecule might represent
a potential pathogen-associated molecular pattern (PAMP)
with a Th2-polarizing activity. See Table 2.

3.2. Trematodes. The most studied helminthes by far have
been Schistosomes and in particular S. mansoni. They pro-
duce a great variety of glycosilated proteins and lipids to
which mainly humoral immune responses are directed. In
the case of S. mansoni, proteins, glycans and lipoconju-
gates can induce Th2-type responses. Several groups have
shown that schistosome soluble egg antigens (SEA) contain
molecules that drive the polarized CD4+ Th2 response [122,
123]. Many involved mechanisms have emerged and in this
regard DC seem to have a critical role. For example, some
glycans found in SEA such as core α-3-fucose, β2-xylose
and Lewis X, have been shown to play an important role in
the changes observed in DC activity [18]. DC pulsed with
fractions containing a motif of α3-fucosylation of a GlcNac
or of β-xylosilated core sugar drive strong Th2-cell responses
in mice [124]. When egg-derived glycoconjugates are cap-
tured, processed, and presented to naı̈ve T lymphocytes by
DC, the immune response is again skewed to a Th2-type
response. Periodate treatment reverses this effect and CD1d
is apparently crucial to this phenomenon, indicating that
SEA glycolipids may be involved in the Th2 polarization by
DC [124]. SEA activity on DC is even more profound, for
instance; immature DC pulsed with this antigenic extract
do not show an increase in expression of costimulatory
molecules or cytokines while their LPS-induced activation,
including expression of MHC-I and costimulatory molecules
as well as IL-12 production is also suppressed. In addition,
SEA inhibits the ability of CpG, poly:IC and hyaluronic
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Table 2: Helminth products interactions and their regulatory effects on DC

Parasite Product Putative DC Receptor¶ Effect on DC
Effect on DC upon TLR
stimuli

Ref.

Nematodes

B. malayi Microfilarie alive N.D. Immature ↓
MIP-1, IL-12p70, IL-1α,
IFN-α, IL-12p40,
MyD88, NFkB
(p50-p65)

TLR4,TLR3

↓ IL-8, RANTES, [103]

↑ TNF- α, IL-1 α, IL-1β,

SOCS1, SOCS3

DC apoptosis

Microfilarie Ag N.D. ↑ CD80, CD40, MHCI ↓ IL-12p40,

IL-12p70, IL-10 [10]

N. brasiliensis NES N.D. ↑ OX40L, CD86Th2∗ ↓ IL-12p70 [105]

A. suum PI N.D. Immature ↓ IL-12p40 [9]

PCF N.D. Immature IL-12,

↓ CD40, CD86 [106]

Glycosphingolipids N.D. Immature ↓ IL-12p40,

(PC cointained but PC
independent)

TNFα, CD86 [107]

A. vitae ES-62 (PC contain) TLR4 TLR4, CD80 ∗ IL-12, TNFα

↑ IL-12p40 (low), ↓↑ IL-10

TNFα (low)

Th2∗ [108, 110]

H. polygyrus ES N.D. Immature IL-12, TNFα

IFNγ∗, IL-4∗ MCP1, RANTES, [113, 114]

↓↑ IL-10(Treg)∗ ↓ MHCII, CD40, CD86

Calreticulin SR-A N.D. N.D. [116]

Trematodes

S. mansoni SEA DC-SIGN, MR, MGL Immature

DC-SIGN,MR,
↓

IL-12p40,IL-12p70,
TNFα, IL-6, MHCII,
CD80, CD86

↑ DCIR, MGL,
[18, 124–

126]

Jagged 2,TLR4

Th2∗ ↑ IL-10

LNFPIII TLR4 Immature N.D.

↑ ERK, NFkB, [15, 128]

Th2∗

Lysophospahtidyl-serine TLR2 ↑ ERK, c-fos, ↓ IFNγ∗ [11, 115]

Th2∗, Treg∗

Cestodes

E. granulosus AgB N.D. IRAKp, NF-kB, IL-12p70,

↑ TNF-αlow, ↓ TNFα, IL-6,

IL-10low, IL-6low, IL-10, HLA-DR

Th2∗ CD80, CD86 [14]

T. crassiceps ES N.D. ↑ MHCII,

↓
IL-15, IL-12p40,
IL-12p70, TNFα, CD80,
CD86, CD40, CCR7,
IFNγ∗

(carbohydrate
dependent)

Th2∗

¶ Involved in modulatory effects on DC.
∗ T cell response.
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acid (HA) to induce production of IL-12 and up-regulation
of MHC-II, CD80, and CD86 on DC. Even though IL-
10 production is augmented in the presence of SEA, not
all the SEA effects on DC depend on this cytokine [125,
126]. SEA also suppresses the LPS-induced expression of
46 genes in DC, many of which are proinflammatory,
and it also prevents the LPS-induced downregulation of
37 genes that may be involved in the changes observed
in DC function upon SEA exposure [125]. Thus, SEA
appears to have a profound effect on TLR ligand-induced
DC maturation/activation, suppressing inflammatory events
associated with development of Th1-type responses. SEA
probably also affects the antigen-processing pathway as DC
exposed to SEA show a difference in antigen processing by
segregating SEA to a different compartment when compared
with a bacterial antigen (form Propionibacterium acnes).
Since these two antigens are handled very differently, this
could explain the contrasting responses they induce in these
cells [125].

In contrast with other helminthes, molecules from S.
mansoni have been more fully characterized and important
data regarding them have been reported (reviewed in
[127]). Lipids from S. mansoni, particularly those containing
phosphatidylserine, act as Th2-promoting factors through
the blockade of IL-12 production by DC while promoting the
development of IL-10-producing Treg cells [11]. It has been
shown that these molecules can be recognized through TLR2
and interestingly antibody blockade of TLR2 diminishes
their ability to induce a Treg response but not the Th2
polarization [11], suggesting another pathway and probably
another receptor involved in the DC Th2-driving activity.
New data show that these lysophosphatidylserine molecules
can increase ERK but not p38 phosphorylation on DC and
induce an up-regulation in c-Fos transcription; in contrast,
Delta4 (Notch ligand) is strongly downregulated. These
combined factors may ultimately lead to the development
of a Th2 response [115]. According to this report, the
glycoconjugate LNFPIII (also S. mansoni egg derived) leads
to ERK1/2 phosphorylation but not p38 in DC and posses
Th2-biasing ability through the induction of DC2 in a
TLR4-dependent manner [15]. NF-kB alternative activation
through p105 degradation is necessary for these LNFPIII-
mediated effects [128]. However, recent evidence show that
the Th2 polarizing effect of SEA is maintained in TLR2 or
TLR4 knockout mice and MyD88 is also unnecessary [126].
This finding may rule out the participation of TLR in the
effects induced by the molecules present in SEA. These data
also open the possibility of the involvement of many others
receptors such as CLRs, other lectin or Notch receptors in
the recognition and modulatory activity of the S. mansoni
antigens over DC. According to this idea, DC can recognize
carbohydrates present in SEA through CLRs like mannose
receptor (MR), macrophage galactose-type lectin (MGL) and
DC-SIGN while exposure of the same cells to SEA can
upregulate the expression of these same CLRs and the one
of DC-immunoreceptor (DCIR) [18]. In addition, there is
recent evidence showing that DC may recognize helminth
products through molecule-grabbing nonintegrin receptor 1
(SINGR1). This CLR has been shown to bind SEA in vitro,

however studies using SINGR1 knock-out mice have not
found any significant differences in the kinetic of immune
responses after S. mansoni infection [129]. SEA can also
enhance expression of Jagged 2 in DC, but downregulation
of Jagged 2 using RNAi does not affect the ability to prime
Th2 responses [130]. This situation could reflect the fact
that different receptors present in DC may have similar
effects [131]. Due to the diverse molecules found in SEA and
indeed in other different parasite products (crude extracts
or excreted/secreted products), many receptors could be
involved in the recognition of the different molecules present
in these extracts, in such a way, that the lack of one
receptor might not affect the immune response induced by
these antigens. Therefore, helminth parasites probably posses
redundant molecules to escape from immunity, unfortu-
nately so far, only few of them have been characterized and
their interaction with DC is still far from being understood.
Even when CLRs or Notch receptors could be involved in DC
recognition of helminth products, more studies are necessary
to establish whether these interactions participate in the
changes observed in these cells and in turn in the systemic
effects they induce. See Table 2.

3.3. Cestodes. Studies regarding the interaction of this class
of helminthes and DC are far less extensive when compared
with trematodes and nematodes. Nevertheless, most of them
point to similar pathways of alteration of DC function by
cestode-derived molecules. For example, Rigano and col-
leagues demonstrated that Echinococcus granulosus hydatid
cyst antigens affect DC in different stages of maturation
[14]. Purified antigen B (AgB) and sheep hydatid fluid (SHF)
affect host DC differentiation from monocyte precursors by
reducing the number of cells that differentiate into immature
DCs (iDCs) inhibiting as well the up-regulation of CD1a
while increasing CD86 expression. When these cells are
stimulated with LPS, there is a significantly lower expression
of CD80, CD86, and HLA-DR and lower quantities of TNF-α
and IL-12p70. In addition, E. granulosus antigens interfere in
the maturation process of these iDCs, inducing only a slight
up-regulation of CD80, CD86 and a small TNF-α, IL-10, and
IL-6 production ablating IL-12p70 completely. In response
to LPS, DC previously exposed to E. granulosus antigens,
express fewer CD80 and CD86 molecules and show reduced
TNF-α and IL-12p70 production. When DC matured in
the presence of E. granulosus antigens are used as APCs,
the majority of naı̈ve T lymphocytes differentiate into IL-
4-producing cells, suggesting the potential of these antigens
to skew the response to a Th2 [14]. However, neither the
receptors on DC nor the type of molecules derived from
Echinoccocus that are involved in DC modulation has been
identified in this model.

Another cestode that has recently been proved to inter-
fere with DC activity is Taenia crassiceps. Carbohydrates
present in soluble antigens of this parasite are responsible
for Th2 polarization in vivo [132] and induction of myeloid
suppressor innate cells [133]. We have found that DC
exposure to excreted/secreted products of high molecular
weight from T. crassiceps metacestodes (TcES) induce an
increment in MHCII expression but not in the costimulatory



Journal of Biomedicine and Biotechnology 11

molecules CD80, CD86 or CD40 or in cytokine production.
In line with findings for other helminthes, DC exposure
to TcES results in an abrogated response to TLR ligands
such as CpG, LPS and Toxoplasma soluble antigens; these
include the inhibition of IL-15, IL12p40, IL12p70, TNF-
α secretion and costimulatory molecules but no MHC-II
expression. In addition, the chemokine receptor CCR7 is
also downregulated, suggesting the reduced ability of DC to
migrate to rich T cell areas as another possible mechanism
used by T. crassiceps to evade the immune response. When
TcES-stimulated DC are tested in an allostimulation assay,
these cells are weak inducers of T cell proliferation and the
presence of TcES also downregulate the strong proliferation
expected by addition of LPS or CpG. Of particular interest
is that periodate-treated TcES are unable to inhibit the pro-
duction of proinflammatory cytokines elicited by different
TLR ligands and in the same way, carbohydrates in TcES
are necessary to polarize the immune response towards a
Th2 type in a CD4+ OVA transgenic model. This situation
opens the possibility for a role of carbohydrate receptors
in the modulation of DC function by T. crassiceps-antigens
(C, Terrazas, manuscript under review). Interestingly, the
limited responses observed in DC of BALB/c mice (a
susceptible strain for T. crassiceps infection) upon TLR
stimulation is not observed when DC derived from the
resistant mice C57Bl/6 are exposed to TcES [134], indicating
that modulation of DC response by T. crassiceps-products
is a key element in the outcome of this infection. See
Table 2.

4. Parasites and the Interference with
DC Function: Is There a Common Pathway in
a Common Strategy?

The evidence discussed in this review clearly show that
by targeting the principal sentinels and directors of the
immune system, DC, parasites actively evade immune attack.
DC pleiotropy allows protozoan and helminth parasites to
interfere with different aspects of the immune response. In
most cases, either protozoan or helminth parasites, are able
to impair the maturation process and the proinflammatory
cytokine production of DC [9, 14, 19, 52, 66, 113], but
other effects like a modified migration or an inability to fully
differentiate are also found on DC exposed to these parasites
or their products [14, 28, 55, 92]. The consequences of these
different effects on DC function are diverse, but ultimately
it is believed that they provide a less aggressive environment
for parasite development inside their host. Several findings
indicate the recognition of parasites and their molecules
through TLRs [11, 36, 65, 108]. However, it has been more
complicated to define whether these interactions lead to
the altered phenotype and function that is observed in
DC exposed to protozoan and helminth parasites. For the
protozoan parasites, most data indicate that recognition and
signaling of the whole parasites or their products through
TLRs trigger activation pathways in DC that ultimately
confers resistance against infection [36, 75, 82]. However, it
is important to point out that some of the same molecules

that act as TLR ligands and induce a protective response,
can also interfere with the DC function by inhibiting
their maturation and production of the proinflammatory
cytokines associated with parasite clearance [28, 37, 51, 62].
The mechanisms involved in DC “inactivation” are far from
being completely understood. One possible explanation for
this is the recognition of protozoan-derived molecules by
other receptors than TLRs that in turn might interfere with
TLR function. According to this rationale, in the last years
new evidence has implicated CLRs as important players in
intracellular signalling rather than only phagocyte receptors
and more importantly, these receptors are also capable of
inhibit TLR-mediated signalling [131]. Of special interest
is to note, that impairment of TLR-induced response has
turned out to be a common and a main feature in the
modulation of DC induced not just by protozoan, but also by
helminth parasites [66, 87, 103, 113]. Interference with TLR
signalling may explain most of the downregulatory effects
that these parasites have on DC, since MyD88-dependent
pathways are involved in DC maturation and secretion of key
cytokines such as IL-12 [61, 135]. However, evidence shows
that other receptors and hence other signalling pathways may
be involved in DC downregulation. An example of this is
the phenomenon of “DC-paralysis” observed after the peak
of IL-12 production in response to T. gondii parasites or its
antigens. This is achieved by the parasite-induced production
of lipoxin A4(LXA4) [85, 136], which in turn is recognized by
the FRPL-1 or AhR receptors on DC [16], triggering SOCS2
and turning off IL-12 production [137]. Likely, similar
mechanisms could promote the low response observed on
DC exposed to other protozoa and even helminthes since
B. malayi microfilariae can also up-regulate expression of
SOCS1 and SOCS3 [103]. Alternatively, TLR-stimulation
could trigger different responses from DC, probably by
becoming tolerogenic [30] or exhausted [84, 138, 139]
(Figure 1).

For helminthes, the interaction with TLRs on DC lead, in
general, to a “immature state” characterized by an absence or
a moderate expression of costimulatory molecules together
with no proinflammatory cytokines secretion, features that
in turn seem to induce the development of a Th2 immune
response [140]. Once again, the exact mechanism impli-
cated in DC proinflammatory cytokine downregulation in
response to TLR stimulus and the signals elicited by helminth
products that condition these same cells to induce a Th2
response still remain unclear [140, 141]. Interestingly, not
all the costimulatory molecules are downregulated in DC
exposed to helminth products. For OX40L, a molecule
important for an optimal Th2 response, there is an up-
regulation in presence of some helminth products [105, 142].
In this regard, it would be important to determine if other
molecules can be expressed selectively after helminth antigen
recognition and this knowledge could lead to a definition of
a truly Th2 polarizing DC phenotype. Other features have
been investigated in an effort to define the phenotype and
characteristics of helminth pulsed DC. While most of the
evidence shows these DC are in an “immature state”, recent
data indicate that SEA can induce phagosome maturation, a
characteristic that is associated with DC maturation. In this
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Figure 1: Overview to protozoan and DC interactions. Protozoan parasites and their products interact with TLRs on DC leading to their
activation and release of proinflammatory cytokines and up-regulation of costimulatory molecules promoting a Th1 responses and the
control of the infection. However, in some cases (T. gondii infection), this response can be later impaired by the same parasites through
mechanisms that involve enhancement of SOCS proteins expression and downregulation of IL-12 production. In addition, interactions
of parasite molecules with Siglecs and CLRs may be responsible of maintaining DC in an immature state and refractory to TLR stimuli,
diminishing their proinflammatory response likely by using ERK and PI3K-dependent pathways. These DC may lead to activation of Treg
responses that presumably favour parasite survival.
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Figure 2: Overview to helminth and DC interactions. Helminth products are recognized by receptors such as TLRs, CLRs or Scavenger
receptors. These cells remain in an immature state and unresponsive to further TLR stimuli probably due to interaction and signalling of
parasite molecules through CLRs. Signalling pathways that implicate ERK phosphorylation, c-Fos up-regulation and expression of SOCS
proteins may play a role in downregulation of DC responses particularly by suppressing IL-12 production. Once again, interactions of
helminth molecules with CLRs but also with TLRs may be involved in these inhibitory effects. Finally, these helminth-conditioned DC
induce a Th2 or Treg lymphocyte responses.
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study, LPS and SEA-stimulated DC have similar phagosome
acidification and proteolytic activity and this effect is MyD88
independent disregarding the activity by most TLRs [143].
Thus DC exposed to helminth products could exhibit an
immature phenotype along with some features of a mature
phenotype (Figure 2).

As mentioned earlier in this review, ligation of some
CLRs might lead to the impairment of TLR-mediated
signalling [131]. For instance, ligation of DC-SIGN on the
DC can preferentially induce IL-10 production upon LPS
addition [144] and the interaction of this receptor with
pathogens such as Mycobacterium sp., HIV-1 and Candida
albicans, affects TLR-4-mediated immune responses by the
same cells [145, 146]. Interestingly, DC-SIGN binds SEA and
this antigen extract and other glycoconjugates derived from
S. mansoni, can alter DC responses after TLR-stimulation
[18].

Other lectin receptors might also posses the ability to
interfere with TLR-induced response in DC. Recently, it has
been shown that sialylated structures from T. cruzi bind the
inhibitory lectin, Siglec-E. Of special interest, is that this
interaction likely account for the suppression of LPS-induced
IL-12 production and the enhanced levels of IL-10 observed
in DC exposed to T. cruzi parasites [17]. Supporting this idea,
other studies have shown a downregulation of immune cells
responses after ligation of Siglecs [147, 148].

Signalling pathways involving activation of the kinases
ERK and PI3K have been implicated in the negative reg-
ulation of DC maturation and IL-12 synthesis as well as
in the enhanced production of IL-10. It is believed that
pathogens use these signals to preferentially evoke Th2-
type immune responses or at least impaired their opposing
party [141, 144, 149–151]. In this regard, it is important
to note, that among protozoan and helminth parasites,
activation of ERK and PIK3 seem to play indeed, a main
role in the interference of DC function. Different examples
of ERK activation implicated in impaired DC maturation,
downregulation of IL-12 production or polarization of the
immune response to Th2 have been reported for both types
of parasites [26, 49, 115, 128], whereas the protozoos G.
lamblia and L. major can also inhibit IL-12 synthesis in a
PI3K-dependent pathway [94, 151]. Interestingly, pathways
ERK and PI3K-dependent can be activated by engagement of
CLRs [144, 152],

We believe that interaction of protozoan and helminth
molecules with CLRs and probably other lectin receptors,
along with the consequent activation of ERK and PI3K-
dependent pathways, are key events that might determine
the way a DC respond, either to direct parasite stimuli or
to heterologous TLR ligands. This mechanism may explain,
the induced immature phenotypes observed in DC exposed
to these parasites and their products as well as the decreased
proinflammatory cytokine production (IL-12 mainly). The
enhanced IL-10 synthesis and Treg or Th2 polarization activ-
ity of DC exposed to protozoan and helminthes antigens,
may also be a consequence of such interactions. Therefore,
even when more studies are necessary to determine the exact
mechanisms involved in downregulation of DC function by
parasites, after all, there is maybe a common pathway that

helminth and protozoan parasites use to achieve it (Figures 1
and 2).

5. Concluding Remarks

During evolution, parasites have developed several sophisti-
cated strategies in order to avoid or deal with the attacks of
immune system. These studies have shown that interfering
with the activity of DC can be one of the most effective ways
to induce a safer environment to parasite development. Inter-
estingly, despite the phylogenic distance between protozoa
and helminthes and even among helminthes, there seems
to be a remarkable similarity in the way all these parasites
modulate DC responses. Interaction with different receptors,
particularly CLRs, may induce the downregulation in DC
function although several other molecules like, Scavenger,
lectins or G-coupled signaling receptors could also be
involved. Understanding the different mechanisms that these
parasites use to interfere with DC will certainly answer
important questions that will increase our understanding
of these pleiotropic cells and help us to design targeted
therapeutic strategies based on this knowledge.
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