
Dehydroepiandrosterone and age-related cognitive decline

Krystina G. Sorwell & Henryk F. Urbanski

Received: 12 March 2009 /Accepted: 3 August 2009 /Published online: 27 August 2009
# American Aging Association 2009

Abstract In humans the circulating concentrations of
dehydroepiandrosterone (DHEA) and DHEA sulfate
(DHEAS) decrease markedly during aging, and have
been implicated in age-associated cognitive decline.
This has led to the hypothesis that DHEA supple-
mentation during aging may improve memory. In
rodents, a cognitive anti-aging effect of DHEA and
DHEAS has been observed but it is unclear whether
this effect is mediated indirectly through conversion
of these steroids to estradiol. Moreover, despite the
demonstration of correlations between endogenous
DHEA concentrations and cognitive ability in certain
human patient populations, such correlations have yet
to be convincingly demonstrated during normal
human aging. This review highlights important
differences between rodents and primates in terms of
their circulating DHEA and DHEAS concentrations,
and suggests that age-related changes within the
human DHEA metabolic pathway may contribute to
the relative inefficacy of DHEA replacement therapies

in humans. The review also highlights the value of
using nonhuman primates as a pragmatic animal
model for testing the therapeutic potential of DHEA
for age-associate cognitive decline in humans.
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Introduction

Dehydroepiandrosterone (DHEA) and its ester,
DHEA sulfate (DHEAS; together, referred to hereon
as DHEA/S), are together the most abundant circu-
lating hormones in young adult humans and nonhu-
man primates. Although their exact physiological
function is still unclear, they represent a major source
of active androgens and estrogens when metabolized
in central nervous system (CNS) and peripheral
tissues. A number of observations, including a unique
age-related profile of production and neuroprotective
and pro-cognitive effects on cultured tissue and
behaving rodents, have led many researchers to
investigate DHEA/S’s role in the aging process and
possible therapeutic actions in learning and memory.
Despite a wealth of evidence suggesting DHEA/S
supplementation can improve memory in rodent
models, similar actions in healthy elderly humans
has yet to be demonstrated. Nevertheless, it is
plausible that hormonal replacement therapies (HRTs)
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comprising DHEA/S, rather than more conventional
sex-steroid HRT, could provide an alternative and
possibly safer approach in the treatment of aging-
associated human pathologies. This paper provides a
brief review of the evidence, from both rodent and
human studies, arguing for and against the benefits of
DHEA supplementation in the treatment of age-
associated cognitive decline, and also offers possible
explanations for the inconsistencies in the published
literature.

Observations of a DHEA/S–cognition relationship
in the elderly

DHEA/S is a prohormone secreted by the zona
reticularis of the adrenal glands in a highly age-
specific manner. While other adrenal hormones, such
as cortisol, show a relatively steady level of secretion
throughout aging, DHEA/S synthesis peaks in young
adulthood and declines by up to 80% in old age
(Orentreich et al. 1992; Labrie et al. 1997). Indeed, it
has been suggested that this decline in the DHEA:
cortisol ratio underlies some of the cognitive decline
associated with aging, as DHEA/S can attenuate the
deleterious effects of cortisol (van Niekerk et al.
2001; Karishma and Herbert 2002). Additionally,
lower levels of DHEA and DHEAS have been
associated with cognitive disorders with a higher
prevalence in the elderly, such as Alzheimer’s disease
(Weill-Engerer et al. 2002) and depression (Micheal et
al. 2000). In men (van Niekerk et al. 2001) and
healthy postmenopausal women (Davis et al. 2008),
endogenous DHEAS levels are associated with better
cognitive ability; however, the only similar study to
date in nonhuman primates failed to find such an
association (Herndon et al. 1999) and studies of the
frail elderly reveal an inverse relationship between
DHEAS and cognitive ability (Morrison et al. 1998,
2000). As the previous studies did not simultaneously
measure cortisol levels, which are significantly higher
in frail versus healthy elderly humans (Varadhan et al.
2008), such findings may be due to a concurrent rise
in cortisol resulting in a decreased DHEA:cortisol
ratio. While the immediate effects of DHEA/S have
not yet been attributed to a specific receptor, some of
its protective effects may result from its conversion to
sex steroids. For example, it has been estimated that
30–50% of active sex steroids in men and 75% (100%

after menopause) of active sex steroids in women are
derived peripherally from DHEA/S (Labrie 1991).
Thus, an 80% decline in DHEA from the adrenals
may be greatly enhancing cognitive deficits due to the
decline in sex steroid production from the gonads.

Healthy aging is often accompanied by a decline in
cognitive ability that does not meet the criteria for
dementia, termed age-associated mental impairment,
or AAMI (Larrabee and Crook 1994). Included in this
decline are deficits in working, spatial, and episodic
memory (Verhaeghen and Salthouse 1997), which, in
part, is maintained by the prefrontal cortex and
hippocampus. As the age-related cellular changes in
these areas can be reduced by estrogen (Hao et al.
2007; Saravia et al. 2007), the age-related loss of
DHEA/S may further exacerbate the age-related loss
of sex steroids from the gonads, thereby potentiating
the deficit in these memory domains seen in old age.
Some evidence suggests that HRT involving estrogen
may attenuate cognitive decline (Sherwin 2007a;
Løkkegaard et al. 2002), particularly in women at
risk for developing Alzheimer’s disease (Hu et al.
2006; Yue et al. 2007). These results remain contro-
versial, however, as other HRT replacement studies,
including that of the Women’s Health Initiative, have
shown null effects or negative influences of HRT on
cognitive decline (Craig et al. 2005; Lethaby et al.
2008). Many postulate that these discrepancies may
be due to the age of HRT initiation relative to
menopause, as in both humans and rodents this
variable seems to determine the direction of estro-
gen’s effect on cognition (Kang et al. 2004; Daniel et
al. 2006; Sherwin 2007b; Bohacek et al. 2008).
Regardless, estrogen therapy carries with it an
increased risk for breast malignancy (Rohan et al.
2008). In contrast, DHEA/S does not exhibit the
same proliferative effects on breast cancer tissue as
estrogen (Labrie et al. 1998), yet can be converted
into estrogen in some peripheral tissues. Conse-
quently, it is plausible that supplementation with
DHEA/S may offer some of the same benefits as
estrogen replacement, but with reduced risk.

Effects of DHEA/S and neurosteroidogenesis
in rodents

While a receptor specific to DHEA or DHEAS has
not been isolated, rodent studies have observed a
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number of effects of the steroid that, on a cellular
level, may improve memory. DHEA/S has been
shown to antagonize the androgen receptor and
agonize estrogen receptor β; thus, it may exert some
of the same actions as estradiol (Chen et al. 2005).
Also, DHEA/S may affect synaptic plasticity in the
hippocampus through antagonism of the GABAA

receptor (Majewska 1992), facilitating long-term
potentiation via NMDA agonism (Mellon and Griffin
2002; Chen et al. 2006), and enhancing glutamate
release during learning (Lhullier et al. 2004). As
mentioned earlier, DHEA/S significantly protects the
CNS against the effects of cortisol by attenuating its
suppression of neurogenesis (Karishma and Herbert
2002). Additionally, DHEA/S has been observed to
be neuroprotective against oxygen-glucose depriva-
tion (Kaasik et al. 2001), oxidative stress (Bastianetto
et al. 1999; Kumar et al. 2008), and excitotoxicity
(Kimonides et al. 1998; Mao and Barger 1998), as
well as effective at enhancing cell survival, prolifer-
ation, and neurogenesis (Karishma and Herbert 2002;
Suzuki et al. 2004). In line with this evidence, in vivo
studies have shown an anti-amnestic effect of DHEAS
(Flood et al. 1988) as well as an anti-aging effect on
cognition (Flood and Roberts 1988) in rodents.

Although DHEA/S supplementation studies have
been performed both in vitro, using cell culture, and
in vivo, using rodents, in many cases endogenous
neurosteroidogenesis was not blocked. Therefore, the
observed effects may have been mediated by endog-
enous conversion of DHEA/S to estradiol. This is
certainly plausible given that estradiol supplementa-
tion can produce many similar results (DeNicola et al.
2008). The proteins and enzymes necessary for the
conversion of DHEA/S to estradiol, as well as for the
synthesis of DHEA/S from cholesterol (Fig. 1), are
present in a region-dependent manner in the rodent
brain (Zwain and Yen 1999; Hojo et al. 2003; Kohchi
et al. 1998; Gottfried-Blackmore et al. 2008), suggest-
ing that this may be a valid mechanism of action.
Interestingly, adrenalectomy combined with gonadec-
tomy has no effect on the central levels of DHEA/S in
rodents (Robel et al. 1987) and suppression of adrenal
activity with dexamethasone has no effect on DHEA/
S levels in the nonhuman primate brain (Corpechot et
al. 1981), suggesting that the hormone is indeed
synthesized de novo from cholesterol in the brain.
Indeed, locally produced estradiol has been shown to
have significant impacts on hippocampal synaptic

plasticity in rodent models (Kretz et al. 2004; Rune
and Frotscher 2005; Mukai et al. 2006). It is
important to note, however, that while similar neuro-
steroidogenesis has been suggested in primates and
humans (Robel et al. 1987), this pathway has yet to be
investigated in detail.

Clinical studies of DHEA/S supplementation

Because of the strong pro-cognitive and anti-aging
effects of DHEA/S previously observed in rodents,
attempts have been made to examine the efficacy of
DHEA/S supplementation in elderly humans. There is
general agreement that DHEA supplementation can
exert beneficial effects on mood and well-being in
populations with adrenal insufficiency (Arlt et al.
1999; Bloch et al. 1999; Hunt et al. 2000) and
depression (Wolkowitz et al. 1999; Schmidt et al.
2005), and that it shows some benefit in a primate
model of Parkinson’s disease (Bélanger et al. 2006);
this suggests that DHEA supplementation might also
enhance cognitive functions in the elderly. Addition-
ally, low circulating DHEA/S levels are thought to
play a role in the development of Alzheimer’s disease
(Weill-Engerer et al. 2002) and in some domains of
memory impairment (van Niekerk et al. 2001; Davis
et al. 2008), again, supporting the hypothesis that
DHEA/S supplementation may improve cognition in
the elderly. So far, however, clinical studies of
DHEA/S supplementation have failed to provide
convincing evidence in support of this hypothesis.
No studies of DHEA replacement on healthy
elderly populations, either acute administration or
chronic (up to 12 months) supplementation, have
shown a benefit in memory with treatment (Wolf et
al. 1997, 1998; Wolf and Kirschbaum 1999; Arlt et
al. 2001; Grimley Evans et al. 2006; Kritz-
Silverstein et al. 2008), and some have even
observed a negative effect on memory (Wolf et al.
1998; Parsons et al. 2006). DHEA supplementation
has also shown no benefit in the treatment of
Alzheimer’s disease (Wolkowitz et al. 2003).

Sources of discrepancies and future directions

With the substantial evidence pointing to a cognitive
benefit of DHEA/S supplementation in rodents, why

AGE (2010) 32:61–67 63



are similar causal effects of DHEA/S not seen in
human studies? One possible explanation may lie in
the method of supplementation. DHEA is marketed as
a dietary supplement in the United States, most often
in doses of 25–50 mg per day, and thus this is the
form and dose most often chosen for clinical studies,
although doses as high as 450 mg per day have also
been used (Bloch et al. 1999). In rodent studies,
however, the sulfated form of DHEA (DHEAS) has
been commonly used. DHEA has a half-life of only
30 min while the half-life of DHEAS can be up to
12 h (Wolf and Kirschbaum 1999), thus, rapid
clearance of DHEA may explain the lack of observed
effects. A difference in the adrenal glands of rodents
and humans may be another cause of discrepancy:
while humans synthesize a large portion of DHEA/S
from the adrenal glands, rodent adrenal glands do not,
and it has been proposed that most, if not all, active
DHEA/S is produced locally. Similarly, rodents lack
the observed age-related decrease in DHEA/S pro-
duction, and thus DHEA/S “replacement” may not be
as physiologically relevant in a rodent model as in a
primate or human model (Wolf and Kirschbaum
1999). It should also be emphasized that the human
clinical studies were performed in elderly subjects,
who already had attenuated circulating DHEA/S
concentrations. Therefore, the studies specifically
tested whether DHEA supplementation could reverse
cognitive decline. They did not, however, examine
whether maintenance of “youthful” circulating
DHEA/S concentrations can prevent or delay age-
associated cognitive decline. It is generally assumed

that the beneficial effects of estrogen on cognitive
function are dependent upon when the HRT is
initiated relative to the onset of menopause, and so
the lack of an obvious beneficial effects of DHEA
supplementation are not surprising.

To fully understand the potential for DHEA/S
supplementation to yield cognitive benefits in humans
it might be necessary to perform studies in nonhuman
primate animal models, rather than rodents. Rhesus
macaques, for example are long-lived primates that
show many similar aging-associated changes in
cognitive function to those seen in humans. Further-
more, like humans rhesus macaques show similar
adrenal gland structure and endocrine function
(Conley et al. 2004; Nguyen and Conley 2008;
Abbott and Bird 2008), and show a marked age-
related decline in circulating DHEAS concentrations
(Urbanski et al. 2004; Downs et al. 2008). Also, like
women, female rhesus macaques undergo menopause
(Downs and Urbanski 2006). One possible target of
investigation includes the neurosteroidogenic pathway
(see Fig. 1). An age-related decline in expression of
the enzymes necessary to form estradiol from DHEA/
S may explain the negative results reported by clinical
studies. In particular, the enzyme responsible for the
age-related decline in DHEA/S production in the
adrenal glands, 17,20-desmolase (Liu et al. 1990;
encoded by the p450c17 gene and necessary in
forming DHEA from pregnenolone), may also decline
in central tissues, resulting in reduced central produc-
tion of DHEA. Other genes responsible for the
conversion of DHEA itself to estradiol may decline

Fig. 1 Schematic representing sex steroid synthesis from
cholesterol and DHEA. Cholesterol is transported into the
mitochondrion by steroidogenic acute regulatory protein
(StAR) and the peripheral benzodiazepine receptor (PBR),
where it is converted into pregnenolone by the cytochrome
p450 side-chain cleavage enzyme (p450scc). After diffusing
into the cytoplasm, pregnenolone is converted to DHEA by a

17,20-desmolase enzyme, p450c17. DHEA can then be
converted to its ester via sulfyl transferase (and back to DHEA
by steroid sulfatase), or can be converted to testosterone by 3β-
and 17β-hydroxysteroid dehydrogenase (HSD). Aromatization
of testosterone then results in the formation of estradiol, or 5α-
reduction forms dihydrotestosterone (Stoffel-Wagner 2003).
Enzymes are depicted in italics
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in expression as well. Targeting these enzymes
instead of, or in addition to, DHEA/S supplementa-
tion may provide another route of cognitive therapy in
healthy older adults. Because rhesus macaques can be
maintained under tightly controlled environmental
conditions (including temperature, photoperiod, diet,
and medication), and subjected to long-term in vivo
studies, they may represent an ideal animal model in
which to comprehensively examine the therapeutic
potential of DHEA in elderly humans. Moreover,
because rhesus macaques can yield high quality
mRNA from post-mortem tissues, in vitro studies
could help to elucidate the underlying mechanisms by
which DHEA/S exert its beneficial effects within the
CNS (Racchi et al. 2003).
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