
ORIGINAL RESEARCH

Endophenotypes in a Dynamically Connected Brain

D. J. A. Smit • M. Boersma • C. E. M. van Beijsterveldt •

D. Posthuma • D. I. Boomsma • C. J. Stam •

E. J. C. de Geus

Received: 20 February 2009 / Accepted: 29 December 2009 / Published online: 29 January 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We examined the longitudinal genetic archi-

tecture of three parameters of functional brain connectivity.

One parameter described overall connectivity (synchroni-

zation likelihood, SL). The two others were derived from

graph theory and described local (clustering coefficient,

CC) and global (average path length, L) aspects of con-

nectivity. We measured resting state EEG in 1,438 subjects

from four age groups of about 16, 18, 25 and 50 years.

Developmental curves for SL and L indicate that connec-

tivity is more random at adolescence and old age, and more

structured in middle-aged adulthood. Individual variation

in SL and L were moderately to highly heritable at each age

(SL: 40–82%; L: 29–63%). Genetic factors underlying

these phenotypes overlapped. CC was also heritable

(25–49%) but showed no systematic overlap with SL and

L. SL, CC, and L in the alpha band showed high phenotypic

and genetic stability from 16 to 25 years. Heritability for

parameters in the beta band was lower, and less stable

across ages, but genetic stability was high. We conclude

that the connectivity parameters SL, CC, and L in the alpha

band show the hallmarks of a good endophenotype for

behavior and developmental disorders.

Keywords Synchronization likelihood � Graph theory �
Functional brain connectivity � EEG � Heritability �
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Introduction

Measures of brain activity are good candidates to serve as

endophenotypes for behavior and behavioral disorders,

since most—if not all—behavior is governed by the brain.

For this reason, many studies investigated the usefulness of

electrophysiological measures to elucidate the pathway

from gene to behavior. For example, electrophysiological

measures of brain function such as the P300 have been

suggested as an endophenotype of alcoholism (e.g., Porjesz

and Begleiter 1990) and have been used in the identifica-

tion of chromosomal regions in alcoholism (Williams et al.

1999). Another example is Frontal Asymmetry of resting

state EEG as an endophenotype of depression and anxiety

disorders (Anokhin et al. 2006; Coan and Allen 2004; Coan

2003; Smit et al. 2007).

These EEG endophenotypes often reflect the response to

a specific class of stimuli or the activity in a particular

brain region. To capture brain activity underlying behav-

ioral traits it may be necessary, however, to additionally

focus on the capacity of the brain for dynamic interaction

between different brain regions. It has been argued that
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some disease states are linked to dysfunctional connectivity

rather than dysfunctions of particular brain areas. Autism,

for example, may be linked to increased local frontal brain

interconnectivity with increased frontal white matter vol-

ume (Herbert et al. 2004), but reduced long range con-

nectivity between the frontal lobe and the remaining brain

areas (Coben et al. 2008; Courchesne and Pierce 2005;

Koshino et al. 2005). In the non-clinical field, Thatcher

et al. (2005) have shown that measures of connectivity

outperform other psychophysiological measures in

explaining individual differences in IQ.

Due to their high temporal resolution, the electroen-

cephalogram (EEG) and magnetoencephalogram (MEG)

may be particularly useful for measuring functional con-

nectivity of the brain. Generally, coherence has been the

measure of choice to provide information on the overall

connectedness between two brain regions whose activity is

often represented by two separate EEG or MEG signals

(Thatcher et al. 1987, 2008). Coherence captures the linear

statistical dependencies in the frequency domain between

pairs of signals. The brain, however, may perhaps better be

viewed as a collection of dynamically interacting regions

(Friston 2000; Pereda et al. 2005). To measure this type of

connectivity, a measure has been proposed that captures

not just linear, but also non-linear interactions (Stam and

van Dijk 2002). Synchronization Likelihood measures the

coupling strength between two systems (e.g., brain

regions), each of which is represented by a signal. The SL,

like coherence, captures overall functional connectivity but

additionally detects non-linear coupling, does not show

spurious connectivity between bandpass filtered signals, is

insensitive to fluctuations in power, and robust to non-

stationarity of the EEG (Stam and van Dijk 2002).

Recently, it has become clear that the pattern of func-

tional brain connectivity, as measured by the SL has a very

specific structure. This structure is revealed by an analysis

strategy that is based on graph theory and was initially

proposed by Watts and Strogatz (1998). In their landmark

article, the authors reduced networks to their mathematical

essence: nodes and their connections. All types of these

simplified networks (called graphs) can be functionally

described by two parameters. The first describes the amount

of local connectivity: clustering coefficient CC. It takes a

value between 0 and 1 indicating the proportion of neigh-

boring nodes that are interconnected amongst each other.

The second parameter describes global interconnectedness

and is called the average path length L. It is a value simply

indicating the average number of steps required to go from a

node to all others taking the shortest route. It has been

argued that these parameters (and their derivations)

describe non-trivial aspects of connection patterns. Clus-

tering coefficient CC is a measure for low building cost and

robustness against perturbations. Path length L represents

the ability of the system to integrate information across

distant sources (Achard et al. 2006; Stam 2004).

The graph theoretical approach allows one to describe

networks along the dimension of ordered to random. Watts

and Strogatz (1998) showed that ordered graphs (lattices,

regular networks) are characterized by high CC and long L.

Random graphs, i.e., with all connections randomly reshuffled

between the nodes, have short L but low CC. By starting from

ordered graphs and slowly randomly reconnecting single

connections with a very small rewiring probability p, Watts

and Strogatz showed that the path length L drops surprisingly

quickly maintaining a high clustering coefficient CC. These

types of networks combine the best of both worlds (low

building costs, high integration), and are called Small-World

networks. Many networks have been proven to have a small-

world topology, such as human society (Milgram 1967),

power grids, the world wide web, and many types of collab-

oration networks (Newman 2003). An increasing number of

articles have shown that the resting human brain, too, has a

small world topology (see Bassett and Bullmore 2006). MEG

studies using graph theory to describe connectivity patterns in

different frequency bands have revealed a clear small world

topology (Stam 2004; Bassett et al. 2006). A small world

topology has also been found in the classical frequency bands

of the EEG (Micheloyannis et al. 2006).

All three connectivity measures (SL, CC and L) show

large individual differences that appear partly driven by

genetic factors (Posthuma et al. 2005; Smit et al. 2008). This

indicates that these measures could serve as endophenotypes

for many aspects of normal and abnormal brain function. In

this article, we will expand on previous studies in two ways.

First, we will investigate whether the three connectivity

parameters reflect a single source of genetic variation. That

is, are the graph parameters influenced by overlapping sets

of genes? Second, we will investigate the longitudinal sta-

bility and genetic stability spanning a period from adoles-

cence into young adulthood. We invited twins and siblings

into the EEG laboratory for resting EEG measurement as

part of longitudinal studies into the genetics of brain and

behavior by the Netherlands Twin Registry (NTR; Posthuma

et al. 2001, 2005; van Beijsterveldt et al. 1996). The current

study combined longitudinal EEG data in twins measured at

age 16, and returning at age 18 and 25 with EEG data in two

additional cohorts of young (ca. 25 years) and middle-aged

(ca. 50 years) twins and siblings.

Methods

Subjects

The sample for this study was derived from an ongoing

twin family study on cognition in twins and family
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members from the Netherlands Twin Registry (Posthuma

et al. 2001; van Beijsterveldt et al. 1996). Twins and sib-

lings were invited for detailed psychophysiological study

in the laboratory including eyes closed resting EEG and

several experimental EEG task designs. The adolescent

sample consisted of 213 twin pairs (75 MZ and 138 DZ,

including 48 opposite sex pairs) with average age of

16.05 years (SD = .55 years, range 14.84–17.99) (van

Beijsterveldt et al. 1996). 180 of the twin pairs revisited the

laboratory on average 1.52 years later (SD = .10 years,

range 1.29–2.50), and 53 twin pairs on average 5.85 years

after the last session (SD = .75). The latter twins were part

of a larger adult EEG sample that consisted of 760 subjects

(twins as well as siblings) from 309 families divided into

two age cohorts based on the age of the twins: a younger

cohort of 159 families (mean age of twins = 25.8 years,

SD = 2.9, range 18.75–33.9) and a middle-aged cohort of

150 families (mean age of the twins = 49.4 years,

SD = 6.8, range 36.0–71.0). This sample consisted of 141

families with an MZ twin, 168 families with a DZ twin (62

of which were opposite sex twins). Participating families

consisted of one to seven siblings (including twins). On

average, 2.50 participants per family participated (Smit

et al. 2005, 2008). Informed consent was obtained in

writing for the EEG study. The study received approval

from the appropriate ethical committees.

EEG recording

The experimental protocol for background EEG registra-

tion has been described in detail elsewhere (van Bei-

jsterveldt et al. 1996; Posthuma et al. 2001; Smit et al.

2005). A brief description is given here. Resting EEG for

the adolescent sample was measured using a Nihon Koden

4414A1K electroencephalograph and Ag/AgCl electrodes

in a lycra Electro-cap in positions Fp1, Fp2, F3, F4, F7, F8,

C3, C4, P7, P3, P4, P8, O1, and O2. Tin reference elec-

trodes were attached to the ears and linked using the high

input impedance pre-amplifier method of Pivik et al.

(1993). This method avoids artifacts due to imbalanced

electrode impedance. The vertical electro-oculogram

(EOG) was recorded bipolarly between two tin electrodes,

affixed one cm below the right eye and one cm above the

eyebrow of the right eye. The horizontal EOG was recor-

ded with tin electrodes affixed 1 cm left from the left eye

and 1 cm right from the right eye. Another tin electrode

placed on the forehead served as a ground electrode.

Resting EEG for the adult sample was measured using

either an amplifier developed by Twente Medical Systems

(TMS; Enschede, The Netherlands) for 661 subjects (375

young, 286 middle-aged) or a NeuroScan SynAmps 5083

amplifier for 104 subjects (24 young, 80 middle-aged), both

systems using Ag/AgCl electrodes mounted in a lycra

Electro-cap including positions F1, F2, F3, F4, F7, F8, C3,

C4, P3, P4, P7, P8, O1, and O2. Reference electrode was

A1, but later digitally rereferenced to linked ears. Amplifier

filter settings for TMS were a single order FIR bandpass

filter with cutoff frequencies of 0.05 and 30.0 Hz. Neuro-

Scan filter settings were a lowpass filter at 50.0 Hz. EOG

was measured with Ag/AgCl electrodes on the same

positions as the adolescent groups.

For all groups data were digitized at 250 Hz. Imped-

ances of all electrodes were kept below 10 kX. Subjects

were seated in a comfortable reclining chair in a dimly lit,

sound attenuated, and electromagnetically shielded room.

They were instructed to close their eyes, relax, but stay

awake and minimize eye and body movement.

EEG data processing

Three subjects’ data were unavailable because of technical

difficulties resulting in lost data. All available EEG was

visually checked for bad channels such as absence of signal,

hum, clipping, persistent muscle tone artifacts, and external

noise. In addition, bad episodes were marked. Subjects

without the full set of 14 leads were excluded. Next, the data

were filtered using a Matlab FIR filter from 2 to 38 Hz (zero-

phase shift, 6 dB roll off). To remove eye artifacts, we used

the ICA filtering technique implemented in EEGLAB, an

open source MATLAB toolbox (Delorme and Makeig 2004).

Independent components were determined in the combined

EEG ? EOG data. EOG artifacts were then selected on the

basis of showing a specific frontal loading (asymmetric

loadings for horizontal eye movements and symmetric for

vertical eye movements) and a high correlation with one of

the EOG channels (r [ .7). These components were then

removed via backprojection of the component activations

using only the remaining components.

Data were then cut into 8 s epochs of artifact-free sig-

nals. From these, 12 were randomly selected. Subjects with

less than twelve epochs were excluded. In total, none of the

16-year-olds, 2 of the 18-year-olds, 116 of the adult cohort

were excluded. Each epoch was filtered into alpha (7.0–

13.0 Hz), and beta (15.0–25.0) activity.

Synchronization likelihood

If a signal s1 is in a certain state (to be defined below) at

time i we may find a recurrence of that state at another time

points j. Next, we look if the second signal s2 is in the same

state at time points i and j, recording a hit if so. SL is

defined as the proportion of hits to the total number of

recurrences in the s1 and is thus a number between 0 and 1.

Note that SL is found even when signals s1 and s2 are in

different states at i and j, as long as s1 and s2 are self-

similar at i and j.
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More formally, the instantaneous state of an EEG signal

was represented by m-dimensional state vectors embedded

vector Xi = {xi, xi ? 1l, xi ? 2l, …, xi ? (m - 1)l} where

l is the lag and m the embedding dimension. The elements

of Xi are m samples taken from the signal spaced l apart.

The vector is taken to represent the state of the system at

time i. Within the same signal recurrences are sought at

times j that reflect a similar state: A threshold distance ex is

chosen such that a fixed proportion (pref) of comparisons

are close enough to be considered in a similar state. Next,

the same comparison is made for a different system Y at the

same time points i and j and with the same value for pref.

Now the synchronization likelihood Si between X and Y at

time i is defined as follows:

Si ¼
1

N

X

j

h ey � Yi � Yj

�� ��� �
h ex � Xi � Xj

�� ��� �

where h is the Heaviside step function returning 0 for all

values\0 and 1 for values C0. N represents the number of

recurrences in signal X, i.e.:
X

j

h ey � Xi � Xj

�� ��� �

Overall SL between X and Y is the average over all

possible i. To withhold the system to compare Xi and Xj while

they represent the same state, only values for j are considered

that are at sufficient time distance. The value of this distance,

W1, is the Theiler correction for autocorrelation (Theiler

1986). The value for |i - j| is upper bound to create a window

(W1 \ W2 \ N) to sharpen the time resolution of Si. More

details on SL calculation can be found in several other

publications (Montez et al. 2006; Posthuma et al. 2005; Stam

and van Dijk 2002). The parameter settings l, m, W1 and W2

were chosen based on the filter frequency settings (see

Montez et al. 2006). W2 and pref had fixed values of

W1 ? 400 and 0.02. These values reflect similar choices

from the previous literature (Ponten et al. 2007; Smit et al.

2008), but pref was increased from 0.01 to 0.02 to reflect the

lower number of recurrences possible in the shorter epoch

length of 8 s. These parameter settings are not critical (e.g.,

see Smit et al. 2008; Stam and van Dijk 2002).

CC and L calculation

SL was computed between each pair of electrodes resulting

in a (14, 14) matrix where the values on the diagonal will

be ignored. A binary graph was formed by applying a

threshold h such that the average degree was fixed at

K = 4, that is, each node had on average 4 connections.

Clustering coefficient CC and average path length L were

calculated following Watts and Strogatz (1998) and as

explained in detail elsewhere (Smit et al. 2008). In addi-

tion, we followed Newman’s (2003) proposal to assign the

value of ?? to the path length involving unconnected

nodes and use the harmonic mean to average the values

obtained for path length L across the different nodes.

Previous results had shown that measurement reliability

of SL in four 16 s epochs was relatively high (r [ .95), but

that of the graph parameters CC and L derived from these

SL estimates was much lower (for CC: r \ .62; for L:

r \ .82; Smit et al. 2008). We suspected that this dis-

crepancy might be ameliorated by using more epochs of

shorter period. Therefore, we used 12 epochs of 8 s

recordings, which increases the number of graphs calcu-

lated from the EEG signals.

EEG power

All three connectivity measures SL, CC, and L are to some

degree sensitive to signal-to-noise ratios. Since some sub-

jects may be lacking certain oscillations that are ubiquitous

in the population (e.g., the absence of alpha oscillations in

low voltage subjects; Vogel 2000), they may show spuri-

ously low scores on the connectivity parameters as well.

We therefore measured power of the oscillations in the

alpha and beta bands using the pmtm function in MATLAB

for each channel and frequency band implementing the

Thompson (1982) multitaper method for estimating power

spectral density. The average across channels was used to

represent average EEG power in a frequency band. EEG

power was included in the multivariate analysis.

Genetic and environmental variance decomposition

For all statistical modeling the freely available software

package Mx version 1.65a was used (Neale 2004).

Since DZ correlations were less than half the MZ cor-

relations in nearly all variables and not significant other-

wise we did not investigate the effects of common

environment (see ‘‘Results’’ section). Instead, dominant

genetic factors were used in all variance decomposition

models. Decomposition of variance consisted of Cholesky

decompositions into Genetic (Additive and Dominant

genetic) and Unique Environmental variance of the

observed scores of SL, CC, L, and power. A tetravariate

Cholesky decomposition was used to investigate genetic

and environmental covariation between the four measures:

SL, CC, L, and EEG power (see Fig. 1). These were per-

formed on each of the four age groups separately. Means

were modeled as a function of age group and sex.

To examine longitudinal stability in subjects that par-

ticipated at age 16, 18, and 25, a trivariate Cholesky

decomposition was used for each phenotype separately (see

Fig. 2). Data from age group 50 did not have any overlap in

sample with the other three age groups, and were therefore
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not included in the longitudinal models. Means were

modeled as a function of age cohort and sex.

To calculate phenotypic and genetic correlations (mul-

tivariate model) or phenotypic and genetic stability (lon-

gitudinal model) we used the estimates from the full ADE

decomposition. Since genetic effects comprised both

Additive genetic and Dominant genetic effects, we esti-

mated an overall statistic that summarizes the broad sense

genetic correlation (broad rG) by dividing the total genetic

covariation between x and y by the total genetic variation:

broad rG ¼
CovA;xy þ CovD;xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VA;x þ VD;x

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA;y þ VD;y

p

where x and y represent two different variables or two

different time points.

To test the effects of age on SL, CC, and L we fitted first

(linear) and second order (quadratic) polynomial regres-

sions by including age and age2 predictors in the means

prediction in Structural Equation Models taking within-

family correlational structure into account.

All testing was performed with an alpha level of 0.01.

SL161 Pow161C161 L161

E1 E2 E3 E4

D1 D2 D3 D4

A1 A2 A3 A4

SL162 Pow162C162 L162

E1 E2 E3 E4

D1 D2 D3 D4

A1 A2 A3 A4

rMZ=1, rDZ=.25

rMZ=1, rDZ=.5

...SL163

E1

D1

A1

Twin 1 Twin 2 Sibling

...

...

...

Fig. 1 Path model describing the multivariate variance decomposi-

tion across variables for age group 16 repeated for the other three age

groups. Variance in the observed variables SL, C, L, and Power was

explained in a Cholesky decomposition of environmental variance by

4 factors (E1–E4) that were uncorrelated between individuals 1 and 2

(no arrows), and genetic variance by 4 additive genetic factors

(A1–A4) that correlated 1.0 between MZ twin pairs and 0.5 between

DZ twins and siblings, and by 4 dominant genetic factors (D1–D4)

that correlated 1.0 between MZ twins and 0.25 between DZ twins and

siblings. The model can be expanded with additional siblings

SL161 SL181 SL251

E1 E2 E3

D1 D2 D3

A1 A2 A3

SL162 SL182 SL252

E1 E2 E3

D1 D2 D3

A1 A2 A3

rMZ=1, rDZ=.25

rMZ=1, rDZ=.5

...SL163

E1

D1

A1

Twin 1 Twin 2 Sibling

...

...

...

Fig. 2 Path model describing the trivariate model for longitudinal

variance decomposition of SL. The model was repeated for C and L.

Variance in the observed variable (i.e., SL) measured at three time

points (16, 18, and 25) was explained in a Cholesky decomposition of

environmental variance by factors E1 to E3 that were uncorrelated

between individuals (no arrows), and genetic variation by 4 additive

genetic factors (A1–A3) that correlated 1.0 between MZ twin pairs

and 0.5 between DZ twins and siblings, and by 4 dominant genetic

factors (D1–D3) that correlated 1.0 between MZ twins and 0.25

between DZ twins and siblings. The model can be expanded with

additional siblings

Table 1 Twin correlations from univariate models for connectivity

parameters SL, CC, and L in age groups 16–50

Frequency Age SL CC L

rMZ rDZ rMZ rDZ rMZ rDZ

Alpha 16 0.82 0.26 0.45 0.24 0.59 0.17

18 0.78 0.20 0.47 -0.07 0.65 0.19

25 0.78 0.07 0.66 0.08 0.55 0.14

50 0.64 0.10 0.59 0.21 0.64 0.13

Beta 16 0.78 0.24 0.33 0.09 0.33 0.13

18 0.73 0.21 0.29 0.14 0.47 0.12

25 0.51 0.00 0.58 0.05 0.36 0.05

50 0.69 0.44 0.60 0.03 0.47 0.13
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Results

Monozygotic and dizygotic twin correlations were esti-

mated in univariate saturated models (see Table 1). In all

cases but two, DZ correlations were less than half the MZ

correlations. In the two other cases, common environment

was not significant. Therefore, dominant genetic factors

were included in the multivariate and longitudinal variance

decomposition models.

Multivariate models at each age

Phenotypic and genetic correlations between the variables

SL, CC, L, and EEG power were estimated in the full ADE

models (Fig. 1) and shown in Fig. 3. The top panels show

the phenotypic correlations between the connectivity mea-

sures SL, CC, and L for each of the age groups, bars indicate

the 99% confidence intervals. SL and L showed moderate

(beta band, .40 \ r \ .53) to strong (alpha band,

.56 \ r \ .73) correlation, all highly significant. Genetic

overlap was high in both the alpha (.73 \ broad rG \ .79

across age groups) and beta band (.55 \ broad rG \ .68

across age groups). In addition, both SL and L were mod-

erately related to EEG power in the respective frequency

bands in the alpha band (SL and power: .30 \ r \ .46; L

and power: .36 \ r \ .52). The genetic correlation was of a

similar magnitude (SL and EEG power: .33 \ broad

rG \ .53; L and EEG power: .41 \ broad rG \ .64). In the

beta band, the phenotypic and genetic correlations of SL

and L with EEG power were either non-significant, less

strong, and/or varied in direction depending on age.

CC was a largely independent measure and did not show

a consistent or strong relationship with both L and SL

(alpha band: -.30 \ r \ .15; beta band: -.28 \ r \ .27).

Genetic correlations of CC with SL and L were at best low

(broad rG \ .30) that did not reach significance in most

cases. The single (anomalous) exception was a large and

significant genetic correlation between CC and L at age 16

(broad rG = .84). In addition, there was no substantial

relation to EEG power phenotypically (-.02 \ r \ .20) or

genetically (.05 \ broad rG \ .34).

Longitudinal models and heritability

Figure 4 shows the changes of the graph and connectivity

parameters across age. SL showed highly significant

quadratic regression terms (alpha: v2 = 138.7, df = 1,

p \ 10-31; beta: v2 = 116.8, df = 1, p \ 10-26). For CC,

a linear fit was significant in the alpha band (v2 = 17.45,

df = 1, p \ .0001), but no age regression was found for

CC in the beta band. L showed highly significant quadratic

polynomial regression coefficients in both the alpha
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CC, L, and EEG power from the

multivariate statistical models.
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the results
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(v2 = 28.6, df = 1, p \ 10-7) and beta band (v2 = 18.2,

df = 1, p \ .0001). EEG power was also included to test

for possible dependencies of the connectivity parameters

on overall signal strength of the alpha and beta oscillations.

EEG power showed no significant regression in the alpha

band (v2 = 6.2, df = 1, p = .011) but a significant 2nd

order polynomial in the beta band (v2 = 8.47, df = 1,

p \ .01). Given the differential developmental patterns in

EEG power and the connectivity measures it is unlikely

that power caused the age effects in connectivity.

We calculated phenotypic and genetic stability from

full ADE models. The upper panels of Fig. 5 show the

stability of the connectivity parameters between 16 and

18, 16 and 25, and 18 and 25. In the alpha band, stability

measures are generally high and significant. Stability was

[.73 for SL, [.52 for CC, and [.59 for L. Beta band

stability was lower ranging from about 0.0–0.6 and failed

to reach significance for beta band CC between 16 and 25

and 18 and 25. There was some evidence for a decrease

in stability with age as evidenced by the 99% confidence

intervals. Significance of a difference may be inspected

by determining whether the stability values fall out of

each other’s CI. Phenotypic correlation for alpha band L

from 16 to 25 was significantly lower than stability from

16 to 18, and marginally significantly lower than 18–25

(i.e., stability 16–25 was not included in the CI of sta-

bility 18–25, but stability 18–25 was included in the CI of

stability 16–25). Beta band CC stability from 16 to 18

was significantly higher than stability across longer age

ranges (18–25 and 16–25).

The lower panels of Fig. 5 show the broad genetic sta-

bility (broad rG) across the age groups with longitudinal
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Alpha BetaFig. 4 Plots of the effect of age

on the connectivity parameters.

Left column for Alpha

oscillations (7–13.0 Hz), right
column for Beta oscillations

(15–25 Hz). Plots show linear

(1st order) and quadratic (2nd

order) polynomial regressions

when significant. Dashed lines
indicate values for the graph

parameters obtained by

randomizing all connections in

the graphs (CCrnd, Lrnd) or by

calculating connectivity

between white-noise signals

(SLrnd). L show an inverted U in

both bands with a maximum at

*40 years. L was close but

systematically higher than Lrnd.

CC showed only slight changes

with age (alpha band) and was

much higher than CCrnd at all

ages and for all individuals.

L & Lrnd and CC � CCrnd

indicates a small world
connectivity pattern and can be

found at all ages.

Synchronization Likelihood

(SL). Overall synchronicity in

the signal develops similar to L
in an inverted U. EEG power

showed only developmental

changes for beta
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data available (viz., 16, 18, and 25). Genetic stability was

high for alpha band parameters, significantly higher than

zero and not significantly different from unity suggesting

high genetic stability. But in some cases significance could

not be established due to a lack of statistical power that

accompanies genetic correlations between factors with low

heritabilities; For example, even though the genetic sta-

bility of CC in the beta band between ages 16 and 25 was

0.88, it was not significantly different from zero because

the underlying genetic factor for age 16 was only just

significant (h2 = 25%, see Table 2).

Discussion

We computed overall SL from matrices of SL values cal-

culated between pairs of resting state EEG signals. In

addition, we applied the graph theoretical approach to the

SL matrices to derive the parameters CC and L. These three

functional connectivity measures were then subjected to

a series of genetic analyses that tested their viability

as endophenotypes in genetic association and linkage

research.

In the alpha band, all three parameters reflected stable

and moderately to highly heritable traits. Alpha SL proved

to be a highly stable measure across a 9-year period (.73 or

higher) and highly heritable. In adolescence heritability

estimates (82% at age 16, 77% at age 18) were about as

high as the heritability of EEG power (van Beijsterveldt

et al. 1996). Heritability decreased in adulthood (62% at

age 25 and 53% at age 50) but genetic factors remained the

main source of variance. CC and L were less stable across

the 9-year period (between .52 and .73) and less heritable

(37–63%). Importantly, however, genetic stability was high

([.81) from 16 to 25 years for all three connectivity

parameters CC, L, and SL.
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Fig. 5 Longitudinal stability

and genetic longitudinal

stability between age groups 16,

18, and 25 for connectivity

parameters SL, CC, and L.

Scores in the alpha band showed

all the hallmarks of a good

endophenotype, i.e., moderate

to high stability and high

genetic stability. Beta band

stability was much lower

(especially clustering coefficient

CC). Genetic correlations were

not significantly different from

unity, but in many cases also not

significantly different from zero

Table 2 Heritabilities and 99% confidence intervals for SL, CC, L, and EEG power estimated with the multivariate models

Frequency Parameter

SL CC L Power

Alpha 16 0.82 (0.73, 0.88) 0.45 (0.25, 0.61) 0.58 (0.40, 0.71) 0.95 (0.91, 0.96)

18 0.77 (0.62, 0.86) 0.37 (0.11, 0.58) 0.63 (0.45, 0.76) 0.84 (0.74, 0.89)

25 0.62 (0.31, 0.82) 0.49 (0.22, 0.70) 0.48 (0.26, 0.66) 0.93 (0.87, 0.96)

50 0.53 (0.25, 0.72) 0.44 (0.19, 0.63) 0.49 (0.20, 0.70) 0.92 (0.85, 0.96)

Beta 16 0.75 (0.62, 0.82) 0.25 (0.06, 0.43) 0.29 (0.13, 0.47) 0.94 (0.91, 0.96)

18 0.72 (0.54, 0.82) 0.29 (0.05, 0.49) 0.40 (0.08, 0.64) 0.84 (0.80, 0.90)

25 0.40 (0.06, 0.68) 0.40 (0.14, 0.62) 0.36 (0.10, 0.60) 0.85 (0.74, 0.91)

50 0.74 (0.58, 0.83) 0.35 (0.00, 0.66) 0.42 (0.20, 0.60) 0.81 (0.68, 0.89)
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Beta band activity showed similar results, with genetic

influences generally more modest than in the alpha band.

Heritability of beta SL ranged between 40 and 75%, and

heritability of L between 29 and 42% and CC between 25

and 40%. Temporal stability of the beta band connectivity

parameters was lower than in the alpha band, and not

significant for the CC parameter. As in the alpha band,

genetic stability was moderate to high (mostly [.60) and

not significantly different from unity. However, they

showed wider confidence intervals and were often also not

significantly different from zero. Lower heritability and

genetic stability may in part reflect the lower overall power

in the beta band—and therefore lower signal-to-noise

ratios. We suspect that beta band connectivity measures

may require much longer EEG recordings to sufficiently

reduce measurement error.

Both alpha and beta band heritability of the graph

parameters CC and L were similar to our previous findings

from the adult subset of the current sample (Smit et al.

2008), although a straightforward comparison may not be

entirely feasible due to differences in epoch selection (12

times 8 s epochs against 4 times 16 s epochs), and filtering

(two wide against five narrow frequency bands). Also in

keeping with previous results we found no evidence for

shared environment on the connectivity measures, and DZ

correlations were well below half the magnitude of the MZ

correlation.

Correlations across the different connectivity parameters

revealed that there is some interdependency between SL

and L. The correlation between SL and L was similar in all

age groups (ca. 0.65 for alpha and ca. 0.45 for beta), and

largely caused by shared genetic factors (broad genetic

correlation ca. 0.80 for alpha and 0.60 for beta). This could

indicate that the average path length L is a parameter that is

sensitive to the overall connectivity strength, even though

graphs were constructed using variable thresholds, i.e.,

corrected for the overall level of SL. CC showed low

correlations with both SL and L, and thus seems to reflect

different aspects of the organization of the connectivity

pattern. In addition, genetic correlations of CC with SL and

L showed an overall pattern of being nonsignificant or low

in magnitude suggesting that CC may index different

genetic sources of variation than L and SL. Note that

confidence intervals around these genetic correlations were

fairly large, which may be an indication of a lack of sta-

tistical power instead of truly separate genetic sources of

variation.

The connectivity parameters showed clear changes with

age. Overall synchronization, for instance, showed an

increase from adolescence to young adulthood, peaking at

40–50 years of age, and a decrease again into older age.

Path length L showed a similar inverted U shape, a further

indication of the interdependence of SL and L. It also

indicates that the resting state functional network resem-

bles a more randomly connected network in both adoles-

cent and older age groups, and a more organized structure

during young and middle-aged adulthood. Clustering

coefficient CC did not show developmental changes,

although a significant decrease with age was found for

alpha band connectivity. Figure 4 also showed that L is

quite near the L of a random graph (Lrnd; dashed line in the

figure) while CC was clearly higher than CCrnd. In addi-

tion, absolute values of CC were relatively stable over the

years. Therefore, at all ages the brain showed the small-

world network architecture characterized by L & Lrnd and

CC�CCrnd (Stam 2004). Recently, a study reported the

development of SL, C, and L from childhood (ranging

8–12 years) to young adulthood (ranging 21–26 years;

Micheloyannis et al. 2009). Some significant differences

were reported between these two age groups, but these

were restricted to the beta and gamma bands for resting

state EEG. Interestingly, SL showed higher values in

childhood, suggesting that the inverted-U shape of Fig. 4

may not continue into lower ages. CC also showed a

decrease from childhood to adulthood, suggesting that this

parameter is a marker of childhood development and stays

relatively stable in adulthood.

It might be argued that the observed age effects have

been caused by a lack of signal magnitude—and thus a

change in measurement quality rather than a ‘true’ devel-

opmental change within the subjects. We investigated this

issue by assuming that EEG power of alpha and beta

oscillations may be an indication of the amount of signal

available in the ongoing EEG. Developmental curves for

EEG power were either absent or very unlike the clear

polynomial regression coefficients found for SL and L.

Therefore, the age related changes in parameters SL and L

are unlikely to have been caused by a developmental

change in EEG power. Likewise, it could be argued that

individuals with low EEG power generally have graph

parameters closer to the random situation than those with

high power due to decreased signal-to-noise ratios. We

inspected this by correlating EEG power with SL, CC, and

L. The results indicated that in the alpha band power was

moderately but clearly and positively related to both L

(.36 \ r \ .52) and SL (.30 \ r \ .46) explaining on

average 20 and 16% of the variation in L and SL, respec-

tively. It was, however, largely unrelated to CC. In the beta

band power correlated significantly only to L (r = .21) but

failed to explain a substantial amount of variation (4%).

Therefore, power may explain some of the individual

variation connectivity parameters SL and L, but this effect

is restricted in magnitude and to alpha band connectivity.

The current results were limited in several ways. First of

all, we did not have a fully compatible set of electrodes

between the age groups. For age groups 16 and 18, we had
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frontal leads Fp1 and Fp2 available. For age groups 25 and

50, F1 and F2 were available. This limits the interpret-

ability of the results in some measures. However, the

(genetic) stability between adolescent and adult age groups

may serve as an indication that the substitution of leads did

not alter the results much. Secondly, we have no certainty

that volume conduction could have caused spurious syn-

chronicity between adjacent electrode pairs, thus increasing

overall SL and shortening path Length L. In addition, we

have provided no indication of whether all age related

changes did result from such a spurious effect. The

development of a single, large neural generator in one

particular area—for example, in the frontal brain—may

lead similar effects of increased path length and decreased

L through spurious conductivity effects. However, it should

be noted that electrodes were sparse and many combina-

tions of electrodes were close to or further apart than the

8 cm necessary to avoid a large influence of volume con-

duction (Nunez and Srinivasan 2006). Thirdly, many DZ

correlations were well below half the magnitude of the MZ

correlation. Although our sample was larger than any

previous sample and the use of more epochs of shorter

duration increased heritability compared to previous

reports (Smit et al. 2008) confidence intervals around

genetic correlations were wide. Larger samples and heri-

tability estimates less influenced by measurement noise

may perhaps ensure that the non-significant correlations

between CC and other parameters hold.

A final limitation may lie in the uncertain nature of

resting state condition. The resting state was chosen for its

large history in the extant literature as well as its proven

clinical status. Nevertheless, the uncontrolled free-flow of

thought may yield interindividual differences in the brain

network activation, thus confounding the current results:

MZ twins may respond similarly to the task instructions by,

for example, counting, or mentally creating grocery lists.

However, recent studies on resting-state fMRI have

examined the temporal fluctuation of the BOLD signal and

extracted networks of coactivated voxels using Indepen-

dent Components Analysis. The resulting resting-state

networks are highly consistent between subjects—includ-

ing the so-called default-mode network (Damoiseaux et al.

2006)—as well as highly consistent between task and

resting conditions (Smith et al. 2009). These findings

suggest that the resting state condition is not the source of

interindividual differences and generalizes to the cogni-

tively active brain. As a final note, it may be argued that

interindividual differences in network activation cause

behavioral differences in nature and content of thought.

Often cited criteria for endophenotypes are heritability,

stability and theoretical meaningful ‘intermediateness’

of the endophenotype for behavioral outcomes (de Geus

2002; Gottesman and Gould 2003). Since many genetic

association and linkage studies use subjects of different

ages, an additional criterion is genetic stability, where the

same set of genes is seen to influence the endophenotype

across a wide age range. Taken together, our results sug-

gest that the connectivity measures in the alpha band fulfill

three of the criteria of an endophenotype: They are phe-

notypically stable and heritable traits, and the underlying

genetic factors are stable. We further argue that connec-

tivity measures are theoretically meaningful constructs to

understand the brain phenotype. Small-world networks—

which combine high clustering with low average path

length—show resilience to perturbations and allow effi-

cient information exchange (Achard et al. 2006). In addi-

tion, they combine modularity with global information

integration (Bassett and Bullmore 2006). Moreover, a

small-world topology may be a natural end-state of neu-

ronal networks to evolve into (Siri et al. 2007).

In conclusion, we have shown that the connectivity

parameters SL, C, and L all showed the hallmarks of a good

endophenotype, at least in the alpha band, and may provide

insight into how the brain develops—and thus how brain

development may fail. Similar measures in the beta band

may require prolonged EEG registrations and a larger

number of epochs to obtain more reliable estimates of CC

and L from the SL connectivity matrix.
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