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Abstract
We present a Lie-group-theoretic method for the kinematic and dynamic analysis of chiral semi-
flexible polymers with end constraints. The first is to determine the minimum energy conformations
of semi-flexible polymers with end constraints, and the second is to perform normal mode analysis
based on the determined minimum energy conformations. In this paper, we use concepts from the
theory of Lie groups and principles of variational calculus to model such polymers as inextensible
or extensible chiral elastic rods with coupling between twisting and bending stiffnesses, and/or
between twisting and extension stiffnesses. This method is general enough to include any stiffness
and chirality parameters in the context of elastic filament models with the quadratic elastic potential
energy function. As an application of this formulation, the analysis of DNA conformations is
discussed. We demonstrate our method with examples of DNA conformations in which topological
properties such as writhe, twist, and linking number are calculated from the results of the proposed
method. Given these minimum energy conformations, we describe how to perform the normal mode
analysis. The results presented here build both on recent experimental work in which DNA
mechanical properties have been measured, and theoretical work in which the mechanics of non-
chiral elastic rods has been studied.
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1 Introduction
This paper presents Lie-group-theoretic descriptions of semiflexible chiral polymers. The
subject presented in this paper represents the confluence of three research areas: (1) mechanics-
based models of end-constrained elastic thin rods; (2) the theory of Lie groups and Lie algebras,
(especially as it has been applied in geometric control theory); (3) experimentally motivated
stiffness models used in modern statistical mechanics of semi-flexible polymers. In the
subsections of this section a brief review of relevant literature is presented, and notation and
terminology from the theory of Lie groups are reviewed. In subsequent sections we develop
the following: a general model of chiral elastic filaments; a variational calculus formulation
for deriving the filament shape under end constraints; a numerical procedure for solving these
equations; normal mode analysis of a continuous rod model for semiflexible chiral polymers
given minimum energy conformations. These techniques are demonstrated with numerical
results.
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1.1 Literature Review
A number of recent studies on chiral and uncoupled end-constrained elastic rod models of DNA
with circular cross-section have been presented (1;2;3;4). These models use classical elasticity
theory of continuum filaments with or without self-contact constraints to model the stable
conformations of DNA in plasmids, in chromosomes, and during transcription. That work is
related to studies on DNA topology (5;6;7;8;9;10;11;12) in the sense that the topological
constraint of no self-interpenetration is enforced. In some works, Euler angles are used in
parametrizing equations of the Kirchhoff thin elastic rod theory to obtain minimum energy
conformations of DNA and determine its stability (13;14;15). Also, the worm-like chain model
has been used to model the equilibrium behavior of DNA (16). More recent works involve the
modeling of DNA as an anisotropic inextensible rod and also include the effect of electrostatic
repulsion for describing the DNA loops bound to Lac repressor, etc. (17;18). Another recent
work includes sequence-dependent elastic properties of DNA (19). All of these aforementioned
works are based on Kirchhoff’s thin elastic rod theory (20). This theory, as originally
formulated, deals with non-chiral elastic rods with circular cross-section. Another example is
the special Cosserat theory of rods (21), which can be viewed as an extension of Kirchhoff’s
theory in that it includes extensible and shearable rods. Several researchers in elasticity have
employed this rod theory to describe the static and dynamic characteristics of rods. For
example, Simo and Vu-Quoc formulated a finite element method using rod theory (22).
Dichmann et al. employed a Hamiltonian formulation using the special Cosserat theory of rods
for the purpose of describing DNA (23). Coleman et al. reviewed dynamical equations in the
theories of Kirchhoff and Clebsch (24). Steigmann and Faulkner derived the equations of
classical rod theory using parameter-dependent variational approach (25). Recently, Gonzalez
and Maddocks devised a method to extract sequence-dependent parameters for a rigid base-
pair DNA model from molecular dynamics simulation (26). In their paper, they used a force
moment balance equation from Kirchhoff’s rod theory to extract stiffness and inertia
parameters. Another recent work includes the application of Kirchhoff rod theory to marine
cable loop formation and DNA loop formation (27). In contrast to these uncoupled chiral
models of DNA based on the elasticity of thin rod with isotropic or anisotropic cross-sectional
properties, a number of stiffness models used in the statistical mechanics of semi-flexible
polymers have been presented over the years (28;29;30;31;32). These models address the
chirality, anisotropic elasticity, and coupling between stiffnesses in semi-flexible polymers
like DNA, though end-constrained minimum energy conformations for such models have not
been obtained previously. Other models based on DNA structure (29;33;34;35;36;37;38) and
experimental measurements in which DNA is manipulated (39;40;41;42) have also contributed
to the development of anisotropic and coupled stiffness models of chiral macromolecules.
Recently, Wiggins et al. developed a theory based on nonlinear elasticity, called kinkable
wormlike chain model, for describing spontaneous kinking of polymers including DNA (43).
Also there have been many studies on the extensible properties of DNA (8;44;45;46;47;48;
49) including twist-stretch coupling factor.

Normal mode analysis has been a major tool for the study of large motions of biopolymers
(see, e.g. (50;51) and references therein). It has been mainly applied for the description of large
motions of macromolecules such as proteins. It has also been shown that normal mode analysis
can be used to determine statistical mechanical properties of DNA supercoiling such as free
energy, enthalpy, entropy, and so on (52). In this work, DNA was modeled as an inextensible
elastic rod with circular- shaped configuration. On the other hand, there have been another
approaches to normal mode analysis of DNA. First, people have considered a DNA chain as
a set of rigid plates each of which represents the base pair consisting of DNA (53;54;55). In
this sort of study, there are six parameters to describe the motion of DNA: tilt, roll, twist, rise,
shift, and slide. The first three are related to the orientation, and the latter three are to the relative
rigid-body translation of each rigid base-pair plate. Secondly, one can consider full atoms in
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the chain and solvent such as in (56). This work is an example of how normal mode analysis
can help to understand biological processes such as DNA-protein recognition.

In this paper, we propose a Lie-group-theoretic method to determine the minimum energy
conformations of general elastic model of semiflexible polymers with appropriate end
constraints, and describe how to perform normal mode analysis given the conformations
determined by the proposed method. More specifically in this study, the theory of rotation and
rigid-body motion groups is used. The main differences between previous works and our
approach are: (1) unlike previous works on DNA modeling which are based on rod theory (i.e.,
rods with uncoupled/diagonal stiffness tensor in a local frame of reference with one axis tangent
to the filament in the shearless case), our approach applies to the chiral, anisotropic and coupled
case. That is, we consider the most general small-strain model either inextensible or extensible,
which is also the most accurate reflection of recent experimental measurements; (2) Previous
modeling works either use the balance equations for momentum and angular momentum from
continuum mechanics and/or weak forms of these equations such as FEM/Galerkin methods.
In contrast we use a Lie-group-based variational approach based on the Euler-Poincaré
equation, which is different from previous works. With this approach, the number of resulting
differential equations becomes smaller, which is easy to deal with. In subsequent sections of
this paper a model of elastic filaments that incorporates these stiffness properties is presented
in which the theory of rotation and motion groups is used. For this reason, the following
subsection reviews mathematical notation and terminology that is necessary to understand the
formulation of this paper. Ideas from the theory of Lie groups have been applied in recent years
in the fields of mechanics (57;58) and robotics/systems theory (59;60;61;62;63). The material
in the following subsection is motivated by these previous works on applications of Lie theory,
and is presented in a way so as to be directly applicable to the mechanics of end-constrained
chiral and coupled rods.

1.2 Notation and Terminology
The terminology necessary to understand the formulation in subsequent sections is now
reviewed. The focus here is Lie-group-theoretic notation for describing spatial rigid-body
motions. For more detailed explanation, see (62;64).

Translations (and positions) are described as vectors in three-dimensional Euclidean space: a
∈ ℝ3. Translational motions have the property of being commutative, a1 + a2 = a2 + a1. This
is not a property that is generally shared by spatial rotations or full rigid-body motions. The
general and rigorous definition of Lie groups can be found in many books on group theory. In
this paper, we are especially interested in Lie groups which correspond to rotation and rigid-
body motion in three-dimensional space, i.e., SO(3) and SE(3), respectively.

Orientations and rotational motions in three-dimensional space are described as elements of
the rotation group, or “special orthogonal” group, SO(3). This is the set of 3 × 3 real matrices
that satisfy the conditions AT A =  and det(A) = +1, where  denotes an identity matrix. The
group law is matrix multiplication. Rotations (or orientations) are often parameterized using
ZXZ Euler angles:

where ROT[ei, φ] denotes the rotation matrix describing counterclockwise rotation by φ about
the natural basis vector ei which has elements (ei)j = δij. Each of these basic rotations can be
written as the matrix exponential
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where

Any 3 × 3 skew symmetric matrix can be written as a linear combination of these three basic
matrices.

There is a close relationship between 3 × 3 skew symmetric matrices and the vector cross
product. Namely, given a vector ω = [ω1, ω2, ω3]T ∈ ℝ3, then

In this context we use the notation

(1)

If one defines the following inner product on the vector space formed by all 3 × 3 skew-
symmetric matrices,

(2)

where tr(·) denotes the trace of a matrix, then it is clear that (Ei,Ej) = δij and

Similarly, one can define the matrix commutator as

(3)

Whereas large rotations are elements of SO(3), small rotations can be associated with the set
of 3 × 3 skew symmetric matrices. When endowed with the above inner product and
commutator, this set of matrices is called so(3). Exponentiating any element of so(3) produces
an element of SO(3), and every element of SO(3) can be viewed as the exponential of an element
of so(3). Another important relationship between SO(3) and so(3) is that given A(t) ∈ SO(3)

and , the matrix products AT Ȧ and ȦAT are both elements of so(3). (AT Ȧ)∨ and
(ȦAT)∨ have the meaning of angular velocity as seen in the body-fixed and space-fixed frames
of reference, respectively. We will exclusively use the body-fixed perspective, in which
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(4)

One observes that

The above commutator relations are written all together as

(5)

where  are called the structure constants of the Lie algebra so(3). Note that most of the
structure constants are equal to zero, with all the others equal to ±1. Since [Ei, Ej] = −[Ej, Ei]

it must be the case that .

The Euclidean motion group (or “special Euclidean” group), SE(3), is the semidirect product
of ℝ3 with the special orthogonal group, SO(3). Physically, it represents the rigid-body motion,
or the rotation and the translation, in three-dimensional space. Knowing that rotation can be
expressed with an element of SO(3), and translation with an element of ℝ3, we denote elements
of SE(3) as g = (a, A) ∈ SE(3) where A ∈ SO(3) and a ∈ ℝ3. The group law is written as g1 ◦
g2 = (a1 + A1a2,A1A2), and g−1 = (−ATa, AT). Any element of SE(3) can be written as the product
of a pure translation and pure rotation as (a, A) = (a, ) ◦ (0, A).

One may represent any element of SE(3) as a 4 × 4 homogeneous transformation matrix of the
form:

Given a rigid-body motion g(t), the quantity

(6)

is a spatial velocity as seen in the body-fixed frame. It is also an element of the Lie algebra se
(3) associated with SE(3). This velocity can be described with the six-dimensional vector

(7)

The vector ξ contains both the angular and translational velocity of the motion g(t) as seen in
the body-fixed frame of reference. As similarly done for SO(3), this g−1ġ can be expressed as
a linear combination of the basis elements of se(3)
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(8)

where Ẽi denotes the basis element of se(3) defined as

As similarly done with the case of SO(3), linear combination and exponentiation of these
matrices produces elements of SE(3). The products of exponentials of elementary motions can
be used to generate any rigid-body motion, much like the Euler angles do for pure rotation.

Finally, one can define the adjoint operator, for a given g = (a, A) ∈ SE(3), as

where â corresponds to the skew-symmetric matrix associated with a, i.e. (â)∨ = a. This adjoint
operator changes the view of a 6D rigid-body velocity or an element of se(3) from the body
frame to the spatial frame of reference.

2 Elastic Energy of Chiral Rods
In this section we discuss an energy functional which, when subject to certain constraints,
defines the minimum energy conformations of chiral elastic rods.

2.1 Inextensible Rods
A number of authors have derived potential energies of bending and/or twisting of a stiff
inextensible chain that are of the form

where L is the length of the macromolecule and

(9)

Here B = BT ∈ ℝ3 × 3 is a positive semi-definite stiffness matrix, b ∈ ℝ3, and β′ ∈ ℝ. ω is the
“angular velocity”(with arclength s replacing time) of a frame of reference (a(s), A(s)) which
is affixed to the duplex-axis curve of the macromolecule at each value of arclength s. If there
are no end-constraints, the minimal energy conformation is defined by ω(s) = B−1b, which
defines a helix (including straight lines and circles as degenerate cases).
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As well-known examples of equation (9) from the polymer science literature, consider:

The Kratky-Porod Model (29)

The Yamakawa Model (32)

The Marko-Siggia DNA Model (38;40)

The Yamakawa and Kratky-Porod models can be viewed as special cases of classical rod
theory, with the Kratky-Porod model being degenerate in the sense that it has no twist stiffness
and no chirality. The most general model is, therefore, the Marko-Siggia model which includes
anisotropy, chirality and twist-bend coupling. For this reason, we employ the Marko-Siggia
model for the purpose of simulation, although our method described below can be applied to
any of these three models.

Under the constraint that the molecule is inextensible, and all the frames of reference are
attached to the backbone with their local z-axis pointing in the direction of the next frame, one
observes

(10)

2.2 Extensible Rods
Experimental evidence suggests that DNA is an extensible chain (44) and there is coupling
between torsional and extensional stiffnesses (45). The most general continuum elastic filament
model that can capture this scenario is one in which equation (9) is replaced with

(11)

where ξ = [ωT, υT]T is defined in equation (7). The minimum energy conformation of such a
chain without end constraints or self-contact is defined by ξ(s) = K−1k. As a defining equality
for k one observes strictly from geometry that
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for DNA, where n is the number of revolutions per unit length of the double-helix. This defines
a straight (as opposed to helical) backbone curve with a superimposed twist. A different
definition for k can easily be substituted for helical wormlike chains.

The matrix K can be modelled in a number of ways, all of which will be of the form

where B is the stiffness matrix discussed previously.

If one assumes that in addition to the couplings in the Marko-Siggia DNA model discussed in
the previous section there is only twist-extension coupling then

(where τ is the twist-extension coupling stiffness parameter), and

where s1 and s2 describe the stiffness due to transverse shearing of the filament and d is the
extensional (longitudinal) stiffness. Of course, if there is reason to include additional coupling
parameters in either C or D this can be done easily.

Other than the increase in dimension of the stiffness matrix, and the use of SE(3) terminology
rather than SO(3), a notable difference in the extensible case is that there is no need for an
integral constraint equation analogous to equation (10).

3 Determination of Minimum Energy Conformations
In this section, we describe how to determine the minimum energy conformations of
semiflexible chiral polymers with appropriate end constraints. More specifically, we apply
variational calculus on Lie groups to obtain Euler-Poincaré equation. In appendix A is shown
derivation of the equation in detail. This section writes equation (46) explicitly for the energy
in equation (9) and (11), and describes a technique for solving these equations for given
boundary conditions and other constraints.

3.1 Inextensible Rods
Considering the case of equation (9) with the kinematic constraint of inextensibility (10), one
writes equation (46) with f = U for i = 1, 2, 3 together as the vector equation

(12)

Kim and Chirikjian Page 8

Mol Simul. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where a dot represents differentiation with respect to arclength s, λ ∈ ℝ3 is the vector of
Lagrange multipliers necessary to enforce the vector constraint in equation (10), and the right-
hand-side of equation (12) results from the fact that

Equation (12) is solved iteratively subject to the initial conditions ω(0) = μ which are varied
together with the Lagrange multipliers until a(L) and A(L) attain the desired values. A(s) is
computed from ω(s) in equation (12) by integrating the matrix differential equation

and a(L) is then obtained from equation (10).

Let η = [μT, λT]T ∈ ℝ6 be the vector of all the undetermined coefficients. Denote the distal
frame of reference of the rod for a given value of η as g(η, L). Denote the desired position and
orientation of the distal frame of reference as gd. Let η0 be an initial guess for the value of η
and g0 = g(η0, L). Theoretically, One can drive the updates of η as follows. First define gp(t)
to be a rigid-body trajectory (or path) such that gp(0) = g(η0, L) and gp(1) = gd. See figure 1
for a pictorial explanation. Then by forcing η to update such that the reference frame of the
distal end stays on the path, the velocity condition

must hold in order for gp(t) = g(η(t), L).

We can write the velocity condition in the form

(13)

where

is a 6 × 6 matrix called the right Jacobian for SE(3) associated with the parameters η (64).

Equation (13) is a differential equation that defines η(t). This equation can be solved by
inverting JR at each time step and integrating numerically. This can be achieved only if we
know the position and orientation of the distal end as an explicit function of η(t). However,
since we do not know that function, direct numerical integration of equation (13) always
contains numerical error, which leads to the failure of reaching the desired value because the
error becomes larger as time increases. To circumvent this problem, we devise the following
numerical algorithm.
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First define an artificial rigid-body trajectory, gp(t) which satisfy the conditions gp(0) = g0 and
gp(1) = gd. Here gp(t) is defined as

where g(t′) = (a(t′), A(t′)) is the distal frame at time t′, and t′ = t, but when it comes to
differentiation with respect to the artificial time parameter t, t′ is treated as a constant. Also
gd = (ad, Ad) represents the desired position and orientation. The function gp(t) generates a left-
invariant geodesic in SE(3) which is formed from the current distal frame to the desired one,
and pushes the distal end to the desired pose of the distal frame of reference.

At the kth step, we apply the velocity condition

(14)

to calculate the increment of η. In the above equation, Ad(g−1gp), including the one in the
equation below, changes the view of a velocity or an element of se(3) so that it can be viewed
from the current frame of reference (65). Since this relation only contains velocity tracking
term, we need the position correction term defined as

(15)

Then we obtain η at the (k + 1)th step as

(16)

In practice, the partial derivatives in the definition of JR are computed approximately as

for a small number ε such as ε = 10−10. Together with ε and Δt which are small enough, the
feedback information of the current distal end frame included in the above scheme guarantees
the convergence to the desired frame of reference.

3.2 Extensible Rods
From equation (46) and (11) one can obtain the following equation for the extensible case:

(17)

where ∧ is the product of infinitesimal rigid-body motions defined by
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This wedge operator is related to the “ad” operator as

(18)

where , i = 1, 2 and the matrix of “ad” operator is defined as (66)

Equation (17) is solved subject to the initial conditions ξ(0) = η ∈ ℝ6. This, together with the
kinematic condition

is integrated for 0 ≤ s ≤ L to define g(ξ, L). From this point everything follows in exactly the
same way as for the inextensible case.

It is worth noting that since in this case there is no integral constraint, there are no Lagrange
multipliers on the right-hand-side of equation (17), but there are six rather than three initial
conditions. This also means that s is no longer the arclength of the filament. Rather, s denotes
what the arclength of the filament would be in its referential (undeformed conformation), but
when the chain bends, twists, and extends, s deviates from being arclength.

4 Normal Mode Analysis
After one obtains the minimum energy conformations, one can perform normal mode analysis
given those minimum energy conformations. Normal mode analysis has been widely used as
a tool for describing thermal fluctuations. Thermodynamic and statistical mechanical
properties related to thermal fluctuations can be expressed using normal modes and
corresponding natural frequencies obtained by normal mode analysis (52;53). In this section
we formulate the method of normal mode analysis using the concept of Lie groups. Here we
present normal mode analysis using the extensible rod model. The reason to employ the
extensible rod model is that, first it is easy to implement than the inextensible-rod model due
to the fact that there is no kinematic constraints in the extensible rod model, and secondly it
can describe local deformations including extension during the fluctuation, as in normal mode
analysis treating each base pair as a rigid plate. We note that we can obtain the same minimum
energy conformations using both inextensible and extensible rod.

Let gE(s) ∈ SE(3) denote an minimum energy conformation obtained by the aforementioned
approach. Let also gP (s, t) ∈ SE(3) represent conformations which are vibrating or fluctuating
around the minimum energy conformation. Here s denotes the referential arclength. If we
assume small fluctuation, then gP (s, t) = gE(s) (  + Σ(s, t)). Here
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is an element of se(3) representing small deviations or displacements from the minimum energy
conformation. It can be related to a 6 × 1 vector σ = [ωT, υT]T where ω = [ω1, ω2, ω3]T and υ
= [υ1, υ2, υ3]T, with (Σ)∨ = σ. Now let us assume

(19)

where {Φj(s)} is a set of geometrically compatible functions which have the properties of
completeness and orthogonality, and also satisfy the boundary conditions Φj(0) = Φj(L) = 0,
where L denotes the total length of a polymer. In this work, we choose

This approach is very similar to Rayleigh-Ritz approximation method (67).

The kinetic energy of a polymer has two parts. One is linear velocity part, and the other is

rotational velocity part. The former is defined as  if we assume the uniform
mass density. Note that ρ0 = ρS where S is the cross-sectional area of a rod and ρ is a uniform

mass density. The latter part can be expressed, using moment of inertia I, as . In
practice, in the thin elastic rod cases, we can only consider torsional term, which has the form

of , where Izz denotes the area moment of cross section and for a circular cross-

sectional rod case, . Here r denotes the radius of a circular cross section. Hence the total
kinetic energy can be expressed as

(20)

Note that . Then

(21)
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Letting , the kinetic energy can be expressed
in matrix form as

(22)

where M is a block-diagonal matrix, expressed as M = diag(Mj), whose diagonal element Mj
is defines as

(23)

Here we use the notation .

Now let us consider the potential energy term. Note that we cannot consider Σ(s, t) as a small
deformation which is denoted as ω in the definition of the potential energy. The small
deformation or the “body-fixed velocity” ξP is defined as

(24)

From this point of view, if we compute the small deformation or the “angular velocity” of a
chain, then together with gP = gE(  + Σ), it becomes

(25)

or in vector form as

(26)

up to the first order. Here  denote the deformations
or the “body-fixed velocity” of the minimum energy conformation. That is to say, the perturbed
deformation is defined as δ = ξP − ξE = ad(ξE)σ + σ′, which leads to the following potential
energy

(27)

Let

.
Then the potential energy is expressed as the following quadratic form
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(28)

Here the stiffness matrix is defines as

(29)

where

(30)

 is defined as

(31)

where  denotes an 6 × 6 identity matrix. Note that, in (11), if we define ξa = ξ − K−1k, then the

potential energy has only quadratic term as , which eliminates kt in the above
equation.

Now we rearrange the parameters and the matrices. If we define

 instead of θ, then we need to rearrange Kt. This
can be done simply by changing the corresponding rows and columns in Kt and kt. Now let
Kt and kt denote the stiffness matrix and the forcing vector of which rows and columns are
changed appropriately. Then the Lagrangian ℒ = T − V becomes

(32)

Lagrangian equation gives the equation of motion as

(33)

The main issue now is to solve the eigenproblem

(34)

This can be divided into two matrix equations as
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(35)

and

(36)

The second one defines the angular (or bending) deformation. Substituting the lower equation
into the upper one gives

(37)

Solving this eigenvalue problem gives the normal modes of interest.

5 Numerical Results
In this section, we present numerical examples to apply our method. Specifically, we generate
conformations of DNA in which one segment binds to the cylindrical histone protein and the
other is a free segment. We use the basic physical data from the work of Swigon, et al. (2).
First we demonstrate how to determine the minimum energy conformations, and then select
one exemplary case to demonstrate normal mode analysis. As for the minimum energy
conformations, since parameters regarding inextensible rod model are available, we present
the results from the inextensible rod modeling, though we can do the same with the extensible
rod model.

The schematic picture is depicted in figure 2. As for the physical model of DNA, we employ
the Marko-Siggia DNA model. The physical parameters used in this example are shown in
table 1. In the first example, we set b0 = 0. The fact that b0 = 0 means that we treat DNA as an
isotropic elastic filament. In order to determine the minimum energy conformation of a free
section, we need to know: (1) the number of base pairs in the entire DNA section, which we
call N, (2) the number of wraps, w, of DNA around the cylindrical histone molecule, (3) the
end constraints, which can be obtained from the information of the the DNA section which
binds to the histone. Basically if we have exact data for the bound part, for example those from
the Protein Data bank (PDB), then the end constraints may easily be determined. Since precise
experimentally determined end constraints appear to be unavailable at the current time, we
need to assume the appropriate end constraints for the demonstration of our method. We
therefore treat the backbone curve of the bound segment as a helix, which means that we can
obtain the conformation of that backbone curve simply from the geometric parameters such as
pitch, and diameter of the cylinder, which are shown in figure 2. Here, we use the pitch value
of 2.7 nm, and a diameter of 8.6 nm (2). As for the twist density of the bound section, it is
experimentally shown that the helical repeat length(HRL) of the bound section has three
different values (68). Two outer segments have 10.0 bp/turn as a HRL, and the middle one has
a HRL of 10.4 ~ 10.7 bp/turn. For this reason, it seems that Swigon, et al made an assumption
that the length of a middle segment corresponds to w = 1.45, and when w = 1.70 the remaining
parts form the two outer segments (2). We employ their aforementioned assumption in our
paper to determine the length of each segment of the bound section. Moreover, in each of the
segments, the twist density can be expressed as
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where, hb = 10.40 bp/turn for the middle segment (2), and hb = 10.0 bp/turn for two outer
segments (68). Given the appropriate end constraints and the above parameters, we can
determine the minimum energy conformations of the DNA by the proposed method. After that,
we can calculate the topological values such as the writhe Wr, twist Tw, and the linking number
Lk of the entire DNA segment. Elastic energy also can be calculated. Let x(s) be the coordinates
of the DNA backbone curve. Then the writhe is defined by the Gaussian integral as (64)

The twist is defined similarly as

Then the linking number is calculated as

Another important issue before the discussion of the resulting minimum energy conformations
is how to obtain multiple solutions. As one can imagine, there can be a great number of
conformations which meet the given end constraints. Amongst various possible methods for
obtaining these conformations, we utilize the following method. First we assume eight different
initial guesses. Our goal is to obtain the minimum energy conformations of which the twist
density is close to the intrinsic twist density of DNA, called ω0. This leads to the assumption
that the initial angular velocity should be [0, 0, ω0]T. As for the Lagrange multiplier, we assume
the eight different values such as [0.1, 0, 0]T, [0, 0.1, 0]T, [0.1, 0.1, 0]T, [−0.1, 0, 0]T, [0,−0.1,
0]T, [−0.1,−0.1, 0]T, [0.1,−0.1, 0]T, [−0.1, 0.1, 0]T. Since the physical meaning of Lagrange
multiplier is the force acting on the distal end to keep the geometric constraint, the above
assumption gives the initial conformations which has the intrinsic twist density along the
backbone curve and are slightly bent to eight different directions. Some initial guesses can
return the same resulting conformations and others can return highly twisted conformations
which we exclude from our paper. We have verified that the above method can generate the
minimum energy conformations that we want. We show the values of those topological
parameters and the elastic energy of the free section based on our calculation in table 2 and
each conformation of DNA is depicted in figure 3 as a light curve. These results coincide well
with those of Swigon, et al. (2). One can see that there is no self-contact in those conformations.

As for the next numerical example, let us consider the case when b0 is not zero. One can find
the twist-bend coupling factor b0 to have the value such that b0 = 2.4c0 (40). In this case the
DNA is treated as an elastic rod with anisotropic and coupled stiffnesses. In such a case, unlike
the isotropic rod case, the twist density along the backbone curve is not constant any more.
Hence one should include this anisotropy in the determination of the free section conformation.
We employ the same end constraints as described in the above isotropic cases. Then we apply
our method to describe the conformations of the free section with nonzero b0. As a result, we
have generated a set of ten different conformations, including eight different ones which have
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the same linking numbers as in the isotropic cases. We have shown the calculated physical
parameters in table 3. In figure 3 we show the conformations in both the cases when b0 = 0 or
2.4c0 are superimposed for eight overlapping situations. Since we include the effect of
anisotropy, one can imagine that the resulting minimum energy conformations should be
different from those for an isotropic case, which can be verified in figure 3, except the cases
when the number of base pairs is 341 and the number of wraps is 1.70 for which isotropic and
anisotropic conformations are very similar. Looking at others, one can see that the orientation
of each loop is much different from the isotropic case. Hence these may explain the effect of
anisotropy, which cause the difference of the resulting loop conformations between the
isotropic and the anisotropic case when those loops share the same end constraints. In any case,
our results together with isotropic and anisotropic cases explain the experiments that linking
number 32 and 31 are dominant when the number of base pairs is 341, and 33 is dominant
when the number of base pairs is 359 as the work of Swigon, et al did (2;69).

Recent experimental data has been published on conformations of DNA-Histone complexes
(70). In that work experiments for 11 different DNA’s were studied with lengths from 351 base
pairs to 366 base pairs and wrapping numbers of either 1.40 or 1.75. The results from two
relaxation experiments show that the linking number for all 11 is dominant in the range from
32 to 34. As another application of our method, we present the corresponding computational
results. All assumptions, such as the HRL of the bound part and geometrical parameters, are
the same as in the previous example. One difference between these simulations and the previous
ones is that the numbers of wraps are now w = 1.40 and 1.75 rather than the old values of w =
1.45 and 1.70. We use these numbers because they are consistent with the most recent
experimental data (70). The resulting conformations are depicted in figure 4, in which we show
the superimposed conformations for the cases when b0 = 0 and 2.4c0 in eight different situations
selected from the entire results, of which the calculated parameters such as linking number and
elastic energy of the loop are shown in table 4 for the isotropic case and in table 5 for the
anisotropic case. Our results show that from the minimum-energy viewpoint, in both the
isotropic and anisoptropic/coupled cases, the linking numbers of 32 and 33 are dominant when
the number of base pair is around 350 ~ 360 and that of 33 and 34 are dominant over 360,
which is the same as the experimental results. However, as can be seen, the corresponding
minimum energy conformations predicted in the isotropic case and those in the anisotropic/
coupled case can be quite different.

Now we demonstrate how to perform normal mode analysis with one exemplary case: the case
of N = 341, w = 1.45, Lk = 32 in the first numerical example. In order to perform normal mode
analysis explained in Section 4, we need physical parameters related to the extensibility, as
well as those used in inextensible rod model. As for the stretching stiffness and stretch-twist
coupling factor, there is still some variability though one can see that those are roughly in good
agreements. For the purpose of simulation, in this paper, we adopt the values published in
(46) or (47) such that the extension stiffness d = 1100 [pN] and the stretch-twist coupling factor
τ = 22kBT. However, there have been no studies on determining the values of shear stiffnesses
of DNA molecules. For this reason, since we model DNA as a thin elastic rod with circular
cross section, we assume that the rod has 0.3 as Poisson’s ratio though this assumption is not

true. Then we obtain , where ν denotes assumed Poisson’s ratio. We use the
same values in the previous examples for the bending stiffness, torsional stiffness, and bending-
twist coupling factor as in table 1. Another parameters necessary for this simulation is
geometrical information on the circular rod. As is well known, the radius of circular cross
section of DNA is 1 nm. From this, we can compute the circular cross-sectional area S = πr2

and the area moment of inertia . The last important parameter is mass density of a DNA
chain. We employ data shown in (52). More specifically, total weights of all the atoms in the
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cylindrical section whose volume is πr2δs, where the spacing between adjacent base pairs δs =
0.34 [nm], is 1.0960 × 10−24 [kg]. This enables us to compute uniform mass density of a DNA
rod.

There is one practical issue for normal mode analysis of a DNA chain molecule. Even if we
approximate a DNA molecule with a elastic rod, there should be a practical limit on the normal
modes. That is to say, the smallest wavelength, equivalently the wavelength of the highest
normal mode, should not be smaller than double the spacing between adjacent base pairs, 2 ×
δs. Let nlim denotes the maximum limit of n. From our formulation, we can get 4n normal
modes. Since we assume sine functions, the relation for determining nlim should be

where L denotes the total length of DNA in a free section.

Since we only have minimum energy conformations by means of inextensible rod modeling,
what we have is information on the angular velocity ωE(s) along a curve. In order to apply
normal mode analysis to this inextensible rod model, we assume that ,
because the tangent vector along a curve should be [0, 0, 1]T due to the inextensibility. Note
that we could generate very similar minimum energy conformations with extensible rod
modeling. However, the fact is that ξE from the extensible rod model does not match exactly
with  from the inextensible rod model. Also when it comes to normal mode
analysis, the knowledge of stiffness parameters may affect the determination of each mode.
All these together may lead to different mode shapes and frequencies. We believe that after
possessing accurate stiffness parameters regarding extensibility, we can evaluate normal modes
more accurately. For now, we utilize minimum energy conformations from inextensible rod
modeling. Another advantage of using the extensible rod model is that it can incorporate the
sequence-dependent elastic properties by treating these stiffnesses as functions of arclength to
analyze the deformation such as rise, slide, and shift as done in (53;54;55).

In figure 5 and 6 we show some of exaggerated normal modes in the case of isotropic and
anisotropic rod modeling, respectively. Generally one can see the expected normal modes that
can be inferred from non-chiral elastic rod cases, such as bending modes. However, those two
cases show some differences in each normal mode shapes. First, looking at the lowest modes,
the isotropic rod case has more global motions than the anisotropic rod case. A few lowest
modes in the isotropic rod case are similar to swinging of a loop, whereas that in the anisotropic
rod case is not. Secondly, the normal modes of an anisotropic rod exhibit more coupling
between bending and twisting modes. Comparing two figures, one can see that the seventh
mode of an isotropic rod is similar to the first mode of an anisotropic rod, which means that
the anisotropic rod is dynamically stiffer than the isotropic rod. These are possibly due to the
effect of twist-bending coupling. From this, we can infer that twist-bending coupling has an
influence on the dynamical properties which shows the possibility of its existence. A better
knowledge of stiffness parameters may help to reveal more accurate dynamical phenomena of
chiral polymer structures.

It is worth noting that we can make use of normal mode analysis as a criterion of whether the
minimum energy conformation is truly energy-minimal one. Specifically, if some of
eigenvalues are complex, then one can say that the corresponding minimum energy
conformation is not a truly stable or energy-minimized one.
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6 Conclusions
A method for obtaining the minimal energy conformations of semi-flexible polymers with end
constraints has been presented in this paper. This method is general enough to include any
stiffness and chirality parameters in the context of elastic filament models either inextensible
or extensible/shearable. A variational calculus formulation is used in conjunction with concepts
from the the theory of Lie groups and Lie algebras. Differential equations that describe the
shapes of end-constrained polymers are derived. These equations evolve on the group of
rotations and rigid-body motions. A general solution technique has also been presented,
including a new “inverse kinematics” procedure for enforcing end constraints. With the
minimum energy conformations determined by the aforementioned method, we have described
how to perform normal mode analysis. The extensible rod model has been used for normal
mode analysis. We have verified our method with appropriate numerical examples by
reproducing results of others for the case of isotropic bending stiffness and no twist-bending
coupling. We have also demonstrated that our method can be applied to the anisotropic model
with finite twist-bending coupling. By comparing the results of anisotropic case with those of
isotropic cases, we have shown that the anisotropic DNA stiffness model with twist-bending
coupling may generate conformations which are different from the isotropic case. With our
method, we also verified the other experimental results published. If one wants to find the
equilibrium or average conformation over the entire of all possible conformations, then one
could apply the methods in this paper to multiple solutions of the Euler-Poincaré equation,
perform normal mode analysis on each, and weight results by an appropriate Boltzmann factor.
We have also performed normal mode analysis with a specific example. We have shown that
in case of treating DNA as an anisotropic chiral rod, bending modes mostly tend to be coupled
with torsional modes given end constraints possibly due to the influence of twist-bending
coupling. By comparing the resulting normal modes of two different cases, we have suggested
that first the anisotropy of DNA structure makes its structure dynamically stiff, and there might
exist twist-bending coupling in DNA structure, which has not been able to be detected
experimentally. Future work includes the determination of stiffness parameters related to the
extensibility, and performing normal mode analysis with minimum energy conformations
describe as an extensible rod, incorporating sequence-dependent properties into the extensible
rod model, etc.
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A Variational Calculus on Lie Groups
The Calculus of Variations is a method that is commonly used in classical mechanics to find
paths which extremize functionals subject to boundary and other conditions. In the current
context the functional of interest is equation (9) for inextensible rods and equation (11) for
extensible rods. If one parameterizes rotations using Euler angles, then both of these energy
functions become functions of Euler angles and their rates, and classical variational calculus
can be used to obtain the necessary conditions for minimum energy conformations (without
accounting for contact) (71). However, the Euler angles (as well as every other three-parameter
description of orientation) artificially introduce singularities in the problem. For this reason
we use a coordinate-free group-theoretic modification of variational calculus. This formulation
is particularly natural in the current context because the conformation of an inextensible elastic
rod bears a one-to-one correspondence with a path in the rotation group SO(3), and that of an
extensible elastic rod with a path in the rigid-body motion group SE(3).

The elastic energy in equation (9) is an example of a more general functional of the form
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(38)

where g(t) is an element of a matrix Lie group G (see (64) for definition). In particular, we
assume g ∈ ℝN × N and it has n generators (i.e., it is an element of an n-dimensional group
represented as an N × N matrix). The identity element is the N × N identity matrix, , and any
small motion around the identity can be expressed as

(39)

where |γi| << 1 and Ei is a unit basis element of the Lie algebra , which is also represented as

an N × N matrix. For small deviations from the identity, . Furthermore,
exponentiation of any linear combination of Lie algebra basis elements results in an element
of the Lie group G, and equation (39) can be viewed as the truncated version of this exponential
for small values of γi.

Given a functional of the form equation (38), and constraint equations of the form

(40)

one can use the structure of the Lie group G and Lie algebra  to find a natural analogue of
the Euler-Lagrange equations. Only in this context, the concept of addition (which was used
heavily in the previous subsection) is replaced by the group law and certain operations in the
Lie algebra. In particular, the analogue of xi → xi + αiεi for i = 1, …, n in the classical variational
calculus is

where exp(·) is the matrix exponential and g1 ∘ g2 is simply matrix multiplication(which will
be written as g1g2 henceforth). The product rule of elementary Calculus then dictates that

Substituting these into the functional (38) and incorporating the constraint (40) using Lagrange
multipliers, the goal becomes the minimization of

(41)

In analogy with classical variational calculus, we compute

Kim and Chirikjian Page 20

Mol Simul. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(42)

and

(43)

for i = 1, …, n and j = 1, …, m. Equation (43) is nothing more than equation (40).

By defining f′ = f + Σk λkhk, one finds that the integration by parts and using the localization
argument on equation (42) produces the following ordinary differential equations:

(44)

where for any function F ∈ C∞(G)

(45)

is the ‘right’ derivative of F with respect to the ith Lie algebra basis element. [·, ·] is the Lie
bracket (which in this case is the matrix commutator [A, B] = AB − BA). ∇X is a directional
derivative in the Lie algebra in the direction X ∈ . And (·, ·) is the inner product for the Lie
algebra  such that (Ei, Ej) = δij.

By observing that for any Lie group (not only SO(3) or SE(3)) we can define ξ = (g−1ġ)∨, then

and

Equation (44) can then be written in terms of the functions f and hk as
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(46)

This is a modified version of the Euler-Poincaré equation (57; 58; 72; 73; 74).
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Figure 1.
Schematic diagram explaining the concept of rigid-body trajectory. gp(0) is the position and
orientation of the distal end in the conformation resulting from the initial guess, and gp(1)
should be the desired one of the distal end, i.e., gp(1) = gd. At time tk, gp(t) forms the geodesic
from the current frame, g(tk), to gd.
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Figure 2.
Schematic diagram of DNA in the example. Free section and the section which binds to the
cylindrical histone are shown. In this geometry, we use a value of pitch of 2.7 nm and a value
of diameter of 8.6 nm.
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Figure 3.
The superimposed conformations for different b0’s. We show duplex-axis curve and double
helix around the duplex-axis curve together in this figure. The light line corresponds to the
case when b0 = 0, and the heavy black line to the case when b0 = 2.4c0. Below, N is the number
of base pairs in the DNA, w is the number of wraps of DNA around the cylindrical histone,
and Lk is the linking number of the DNA. (a) N = 341, w = 1.45, Lk = 31. (b) N = 341, w = 1.45,
Lk = 32. (c) N = 341, w = 1.70, Lk = 31. (d) N = 341, w = 1.70, Lk = 32. (e) N = 359, w = 1.45,
Lk = 33. (f) N = 359, w = 1.45, Lk = 34. (g) N = 359, w = 1.70, Lk = 33. (h) N = 359, w = 1.70,
Lk = 32. Except (c) and (d), the loop region, i.e., the free section of the DNA for each
conformation when b0 = 2.4c0 does vary compared with the case when b0 = 0.
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Figure 4.
The superimposed conformations for different b0’s for the new experimental data. We show
duplex-axis curve and double helix around the duplex-axis curve together in this figure. The
light line corresponds to the case when b0 = 0, and the black line to the case when b0 = 2.4c0.
The symbols have the same meaning as in previous figures. (a) N = 353, w = 1.40, Lk = 33. (b)
N = 354, w = 1.75, Lk = 33. (c) N = 356, w = 1.40, Lk = 33. (d) N = 358, w = 1.75, Lk = 33. (e)
N = 361, w = 1.40, Lk = 34. (f) N = 362, w = 1.75, Lk = 34. (g) N = 363, w = 1.40, Lk = 34. (h)
N = 366, w = 1.75, Lk = 34. Except (c), the loop region, i.e., the free section of the DNA for
each conformation when b0 = 2.4c0 does vary compared with the case when b0 = 0.
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Figure 5.
Some of exaggerated normal mode shapes when DNA is treated as an isotropic rod. (a) The
first mode shape. (b) The second mode shape. (c) The third mode shape. (d) The fourth mode
shape. (e) The seventh mode shape. (f) The fifteenth mode shape. The light line corresponds
to the minimum energy conformation and the black line to each mode shape. We show only
duplex-axis curve here.
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Figure 6.
Some of exaggerated normal mode shapes when DNA is treated as an anisotropic rod. (a) The
first mode shape. (b) The second mode shape. (c) The third mode shape. (d) The fourth mode
shape. (e) The seventh mode shape. (f) The fifteenth mode shape. The light line corresponds
to the minimum energy conformation and the black line to each mode shape. We show only
duplex-axis curve here.
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Table 1

The physical parameters for the Marko-Siggia model. Here, a0 is related to the bending stiffness of DNA, b0 is
the bending-twisting coupling factor, c0 is related to the torsional stiffness, and ω0 is the intrinsic twist density
of a straight DNA. b0 = 0 means that we treat DNA as an isotropic rod.

a0 [pN · nm2] b0 [pN · nm2] c0 [pN · nm2] ω0 [nm−1]

205.72 0 or 2.4c0 1.4a0 1.85
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Table 2

Calculated physical values when b0 = 0. In this table, N represents the number of base pairs in the DNA, w is the
number of times DNA wraps around the cylindrical histone, Lk is the linking number of the entire DNA, and E
is the elastic energy of the free section.

N [bp] w Lk Wr E [kcal/mol]

341 1.45 31 −1.1631 6.7813

341 1.45 32 −0.8127 6.5656

341 1.70 31 −1.5440 6.5349

341 1.70 32 −0.7031 10.9133

359 1.45 33 −1.0524 4.9821

359 1.45 34 −0.6050 8.1118

359 1.70 33 −1.4462 6.5069

359 1.70 32 −1.9324 9.1095
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Table 3

Calculated physical values for b0 = 2.4c0. In this table, all the symbols have the same meaning as in the previous
table.

N [bp] w Lk Wr E [kcal/mol]

341 1.45 31 −1.0037 5.1342

341 1.45 32 −0.9519 5.2822

341 1.70 31 −1.5268 6.5340

341 1.70 32 −0.5968 10.9784

359 1.45 33 −0.9881 4.6762

359 1.45 34 −0.9330 5.3949

359 1.70 33 −1.5257 6.1629

359 1.70 32 −1.5796 6.4107

341 1.45 33 −0.1302 10.9081

359 1.70 34 −1.4618 8.1228
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Table 4

Calculated physical values for b0 = 0 for the new configuration. In this table, all the symbols have the same
meaning as in the previous table. We only show eight different configurations.

N [bp] w Lk Wr E [kcal/mol]

353 1.40 33 −0.8729 5.2214

354 1.75 33 −1.2559 10.4960

356 1.40 33 −0.9422 4.4306

358 1.75 33 −1.4987 7.2721

361 1.40 34 −0.7874 6.5229

362 1.75 34 −0.6601 11.5992

363 1.40 34 −0.8549 5.2834

366 1.75 34 −1.3865 8.8330
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Table 5

Calculated physical values for b0 = 2.4c0 for the new configuration. In this table, all the symbols have the same
meaning as in the previous table. Only eight different configurations are shown.

N [bp] w Lk Wr E [kcal/mol]

353 1.40 33 −0.9381 4.6305

354 1.75 33 −1.5655 7.0435

356 1.40 33 −0.9466 4.4347

358 1.75 33 −1.5829 6.3217

361 1.40 34 −0.9289 4.7634

362 1.75 34 −1.5601 7.3264

363 1.40 34 −0.9348 4.5247

366 1.75 34 −1.5775 6.4216
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