
Introduction
Language is a quintessential human trait that, for the 
most part, proceeds along a recognized trajectory with 
minimal explicit instruction [1]. In some cases, however, 
language acquisition is not so straightforward and 
language ability is delayed or permanently impaired. 
Sometimes these impairments form part of a recognized 
medical condition (such as learning deficit, autism or 
deafness), but often no obvious cause can be identified. 
In such cases, the language deficit is usually classified as 
specific language impairment (SLI) [2]. As such, SLI is 
usually diagnosed through exclusionary criteria rather 

than on the basis of any specific clinical test. SLI affects 
between 5% and 8% of English-speaking (primarily UK 
and US) pre-school children, and is a lifelong disability 
with an increased risk of behavioral disorders, social 
problems and literacy deficits [3-5]. The disorder shows 
significant overlap with associated developmental condi
tions, such as attention deficit hyperactivity disorder 
(ADHD), speech sound disorder (SSD), dyslexia and 
autism [6].

Over the past decade, researchers have begun to 
identify genetic factors that may have roles in the etiology 
of language disorders. It is hoped that the study of these 
genes will facilitate a better understanding of the cause of 
language impairments, leading to the development of 
improved diagnostic and treatment strategies for affected 
individuals. In turn, knowledge regarding the cause of 
such impairments may further our understanding of the 
biological pathways that underpin normal language 
acquisition [7].

Here, we focus on specific genes that have been identi
fied to have a role in language impairment. Genetic 
linkage and association studies of SLI and related learn
ing disorders are reviewed elsewhere [8-10].

FOXP2
Until recently, the only gene that had been directly 
implicated in the etiology of speech and language dis
orders was the FOXP2 gene on chromosome 7q (OMIM 
605317). In 2001, a study by Lai and colleagues [11] 
implicated mutation of FOXP2 in a monogenic form of 
speech and language disorder found in a three-generation 
pedigree (the KE family) and in an unrelated individual 
with a chromosome translocation. In both cases, the 
disorder was characterized by verbal (or articulatory) 
dyspraxia, that is, difficulties controlling the movement 
and sequencing of orofacial muscles, causing deficits in 
the production of fluent speech. In-depth studies of the 
KE family showed that, in these individuals, speech 
production problems are accompanied by a complex 
array of linguistic deficits that include varying degrees of 
expressive and written language problems and, in some 
members, nonverbal cognitive impairments [12]. Subse
quent screening studies have shown that although FOXP2 
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mutations are unlikely to be involved in the etiology of 
typical forms of SLI [13,14], heterozygous disruptions of 
this gene (point mutations or chromosomal rearrange
ments) invariably lead to syndromes that include aspects 
of verbal dyspraxia [15-21].

The FOXP2 gene encodes a transcription factor that 
regulates the expression of other genes. Downstream 
target screening studies have highlighted a variety of 
genes that may be regulated by FOXP2 and indicate that 
the effect of FOXP2 can vary greatly between tissues and 
developmental time points [22-24]. FOXP2 may thus be 
involved in a variety of biological pathways and cascades 
that may ultimately influence language development. 
Pathway analyses of the identified targets indicate an 
enrichment of genes involved in the functioning, 
development and patterning of the central nervous 
system. In analyses of human neuronal cell models, 
Vernes et al. [23] estimated that FOXP2 may bind directly 
to approximately 300 to 400 gene promoters in the 
human genome. Although statistically significant over
laps were seen between the individual studies of FOXP2 
targets, there were also notable differences in the sets of 
downstream genes that were identified. This finding 
demonstrates the complexity of these regulatory path
ways and the inherent difficulties of precisely defining 
them in the laboratory.

FOXP2 in the brain
The expression of FOXP2 is not limited to the brain but is 
also seen in several other organs, primarily those derived 
from the foregut endoderm, such as the lungs and 
esophagus [25]. In the human brain, FOXP2 is expressed 
in a range of regions, including sensory and limbic nuclei, 
the cerebral cortex and several motor structures, particu
larly the striatum and cerebellum [26,27]. Within these 
anatomical areas, FOXP2 expression is often limited to 
selected subdivisions or neuron types (for example, deep 
layers of the cortex, medium spiny neurons in the 
striatum and Purkinje cells in the cerebellum).

Mice that are bred to carry disruptions of both copies 
of Foxp2 survive only a few weeks. They are small for 
their age and have widespread developmental delays, 
severe motor abnormalities and impaired cerebellar 
growth [28-32]. Given that total absence of functional 
Foxp2 results in lethality, in-depth behavioral investi
gations have focused on heterozygous mouse models, 
which carry a single working copy of Foxp2. Note that 
this matches the heterozygous state of humans with 
FOXP2 mutations; no humans carrying homozygous 
mutations have ever been identified. In general, it is 
found that these animals have normal motor skills and no 
obvious gross abnormalities. However, in-depth beha
vioral and morphological profiling has uncovered subtle 
deficits. Interestingly, two groups have reported that 

heterozygous pups produce fewer innate ultrasonic 
vocalizations than wild-type animals [28,30]. Other 
groups have questioned the reliability of this finding, 
instead describing deficits in motor skill learning [31], 
abnormal synaptic plasticity in striatal and cerebellar 
neural circuits [31] and differences in auditory brainstem 
responses [32] in heterozygous pups. In song-birds, it has 
been reported that reducing the expression of FoxP2 in 
an area of the brain necessary for vocal learning can 
interfere with the song learning process [33]. For an in-
depth discussion of these animal studies, see [34].

Brain imaging studies of KE family members have also 
revealed structural and functional abnormalities in the 
cerebellum and striatum [12,35,36]. Affected individuals 
were found to have reduced gray matter densities in the 
caudate nucleus, the cerebellum, the inferior frontal 
gyrus and the lower primary motor cortex [12,35]. 
During the performance of language-related tasks, in 
contrast to the expected left-lateralized pattern of 
activation, affected members of the KE family showed 
bilateral, diffuse activation with little or no activity in the 
left inferior frontal cortex (which includes Broca’s area, 
involved in speech production) and reduced activation in 
other speech-related cortical and sub-cortical brain 
regions. In addition, brain areas not usually activated 
during linguistic tasks, including the posterior parietal, 
occipital and postcentral regions, were found to be over-
activated in affected individuals [36].

Evolution of FOXP2
Because of the proposed function of FOXP2 in speech 
and language development, this gene has been widely 
investigated from an evolutionary perspective. Versions 
of FOXP2 are found in many organisms and show striking 
similarities in terms of sequence and expression patterns 
across vertebrate species [26,27,33,37-39]. Aside from a 
difference in polyglutamine tract length, there are only 
three coding changes between the mouse and human 
versions of the FOXP2 gene, making it one of the most 
highly conserved genes found in comparisons of human-
rodent genomes [38,39]. Interestingly, analyses of primates 
demonstrated that two of these three changes occurred 
in the human lineage after splitting from the chimpanzee 
and found additional signs that FOXP2 may have 
undergone accelerated evolution in humans [38,39]. 
Population modeling estimated that the gene was subject 
to positive selection approximately 200,000 years ago, a 
period that coincides with, or is subsequent to, the 
emergence of modern humans [38,39]. Note, however, 
that the errors attached to these estimates are large. 
Moreover, subsequent sequencing of paleontological 
samples has identified the human-specific coding 
changes of FOXP2 in Neanderthal tissues, which suggests 
a more ancient origin, given that Neanderthals split from 
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humans at least 400,000 years ago [40]. Thus, the 
interpretation of these data is still under debate [41].

Two studies have investigated the functional differences 
between the human version of FOXP2 and that found in 
the chimpanzee. Enard et al. [42] reported that when 
human-specific coding changes were engineered in mice 
(partially ‘humanizing’ them at the locus), this resulted in 
an altered structure of innate pup vocalizations, decreased 
levels of exploration, decreased levels of dopamine in the 
brain and an increased dendrite length and synaptic 
plasticity in the striatum. These findings are intriguing, 
given that mice carrying disrupted versions of Foxp2 
(described above) showed contrasting alterations in 
similar developmental areas. Konopka et al. [24] investi
gated potential differences in the functionality of the 
human and chimpanzee versions of FOXP2 [24]. They 
identified 116 genes that were differentially expressed 
between neuronal cell lines engineered to express either 
the human or the chimpanzee protein. They postulated 
that the identified set of genes may represent a biological 
network that could have a role in the evolution of human 
language, noting that the identified targets included 
genes involved in cerebellar motor function, craniofacial 
formation, cartilage and connective tissue formation [24].

In conclusion, although the exact contributions of 
FOXP2 to the development of speech and language 
remain unclear, the consensus from expression studies, 
neuro-imaging data and animal models is that this gene is 
of particular importance in the central nervous system, 
such that its dysfunction disturbs the development and 
function of the motor cortex, striatum and cerebellum. 
Investigations of the properties of FOXP2 and its 
downstream targets are beginning to identify networks of 
genes that could be crucial players in neural circuits that 
facilitate language acquisition.

CNTNAP2
The CNTNAP2 gene on chromosome 7q (OMIM 604569) 
was the first gene to be associated with genetically 
complex forms of SLI. This association was achieved 
through a candidate gene approach that arose from 
downstream target screening studies of FOXP2 [43]. 
Vernes et al. [43] discovered that FOXP2 directly binds a 
regulatory region of the CNTNAP2 gene. CASPR2, the 
protein encoded by CNTNAP2, is a member of the 
neurexin family, a family that is particularly interesting 
from a functional point of view as members are known to 
interact with neuroligins to adhere presynaptic neuronal 
membranes to postsynaptic ones. In the case of CASPR2, 
the protein mediates interactions between neurons and 
glia during nervous system development and is also 
involved in localization of potassium channels within 
differentiating axons [44,45]. Furthermore, both neurexins 
and neuroligins have been strongly implicated in autistic 

disorder, a neurodevelopmental condition that shows 
strong overlap with SLI [46-52].

The regulation of CNTNAP2 by FOXP2 was verified 
both in neuronal cell lines and in vivo (in human fetal 
cortical slices). In both of these experiments, the level of 
FOXP2 was found to be inversely correlated with that of 
CASPR2 [43]. An association analysis of 38 single nucleo
tide polymorphisms (SNPs) across CNTNAP2 was 
performed in 184 families ascertained by the SLI 
Consortium (SLIC). These families were identified by 
various different groups from across the UK but all 
contained a proband who, currently or in the past, had 
expressive and/or receptive language abilities more than 
2 standard deviations (SD) below that expected for their 
age [53]. In accordance with SLI diagnostic guidelines, 
individuals with autistic features, signs of mental retarda
tion or co-occurring medical conditions were excluded 
from this cohort. Three quantitative measures of 
language were considered in this group; composite scores 
of expressive and receptive language ability were derived 
from the Clinical Evaluation of Language Fundamentals 
battery (CELF-R) [54]. In addition, a measure of non-
word repetition [55] was collected for all probands and 
siblings. This test involves the repetition of nonsensical 
words of increasing length and complexity and the results 
from it have been shown to be highly heritable and a 
consistent marker of the presence of language impair
ment. Non-word repetition is considered to be a measure 
of phonological short-term memory, leading to the 
proposal that short-term memory deficits may underlie 
some aspects of language impairment (reviewed in [56]). 
Nine single SNPs in CNTNAP2 showed association 
primarily with the non-word repetition phenotype but 
also with expressive and receptive language measures. 
The most strongly associated SNP was rs17236239 
(P  =  5.0  ×  10-5), a variant that falls within an intronic 
sequence near the middle of the gene. This same region 
has also been implicated in a quantitative language-
related trait (age at first word) in autism [57]. The exact 
mechanism by which the identified SNPs alter CNTNAP2 
function has yet to be elucidated, but the integration of 
evidence from these various routes of investigation 
makes CNTNAP2 a compelling candidate for language 
disorders.

The CNTNAP2 gene has recently been implicated in 
multiple neurodevelopmental disorders, including Gilles 
de la Tourette syndrome [58], schizophrenia [59], epilepsy 
[59,60], autism [57,61-65], ADHD [66] and mental 
retardation [45] (Table  1). This diverse range of studies 
provides evidence for the disruption of CNTNAP2 by 
copy number variants (CNVs), gross chromosomal 
rearrangements and mutations as well as association with 
common variants. It remains unclear how one gene can 
contribute to such an array of neurological conditions, 
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although it should be noted that the implicated disorders 
are not completely disparate and can be expected to 
involve some shared neuropathology. Nonetheless, it is 
obvious that CNTNAP2 must have vital roles in neuronal 
development and that perturbations of the function of 
this gene significantly increase the chances of some form 
of neurological dysfunction. It is likely that the differences 
in outcome are decided by a complex function that 
includes the nature of the mutation and both the genetic 
and environmental background of the affected individual. 
For example, it is feasible to consider that gene deletions 
may have different effects from point mutations, and that 
the consequence of a point mutation will vary according 
to its location in the protein or its effect on gene 
expression. Equally, one can see how different combina
tions of point mutations or common variants across gene 
networks may have divergent outcomes that depend on 
the exact genes involved.

It is likely that a gene such as CNTNAP2 functions in 
overlapping and intersecting neurodevelopmental path
ways and thus even a seemingly subtle disruption of its 
function may affect a variety of processes. The eventual 
outcome at the organ or organism level may in turn be 
modulated by the ability of downstream genes and 
proteins to compensate for these variations. We can 
therefore view CNTNAP2 as a neuronal buffer; subtle 
disruptions of this gene alone may be insufficient to cause 

disorder but may place a critical load on neurological 
systems, which manifest in different ways depending on 
the nature of additional load factors. Once a critical 
threshold of load is exceeded, it is likely that neurological 
imbalance will ensue.

ATP2C2 and CMIP
The calcium-transporting ATPase 2C2 (ATP2C2) and 
c‑MAF inducing protein (CMIP) genes, both on chromo
some 16q, were identified as SLI candidates by a 
positional cloning approach, which involved a genome-
wide linkage study followed by a targeted high-density 
association investigation [53,67-70]. These phased 
investigations were performed using the SLIC sample, as 
described above [53]. Genome-wide linkage analyses in 
these families revealed a strong and consistent linkage 
signal on chromosome 16q with a measure of non-word 
repetition [53,67-69]. Association analyses of chromo
some 16q indicated significant association with two 
clusters of SNPs, one between exons 2 and 5 of the CMIP 
gene (most significant P  =  5.5  ×  10-7) and another 
3  megabases distal between exons 7 and 12 of ATP2C2 
(most significant P = 2.0 × 10-5) [69]. Individuals carrying 
risk alleles at both these loci had an average non-word 
repetition score more than 1 SD below those carrying 
homozygous non-risk alleles. Association between 
ATP2C2 and performance on the non-word repetition 

Table 1. Investigations implicating CNTNAP2 in neurological disorders

Study	 Trait	 Gene disruption

Vernes et al. 2008 [43]	 SLI	 None - association with common variants; candidate gene association study

Zweier et al. 2009 [45]	 Mental retardation with seizures 	 Homozygous deletion in a single sib pair; point mutation in a single proband
	 (resembling Pitt-Hopkins syndrome)

Alarcón et al. 2008 [57]	 Autism; quantitative measure of 	 None - association with common variants; positional mapping of chromosome 7
	 ‘age at first word’	 linkage region

Verkerk et al. 2003 [58]	 Gilles de la Tourette syndrome with 	 Complex chromosome rearrangement in a single family
	 obsessive compulsive disorder and  
	 mental retardation

Friedman et al. 2008 [59]	 Epilepsy and schizophrenia 	 Deletion in three unrelated individuals
	 (one patient had autistic features and  
	 mental retardation)

Strauss et al. 2006 [60] 	 Cortical dysplasia, focal epilepsy, 	 Point mutation; homozygosity mapping in isolated population
	 relative macrocephaly and  
	 diminished deep-tendon reflexes

Arking et al. 2008 [61]	 Autism	 None - association with common variants; genome-wide association

Bakkaloglu et al. 2008 [62]	 Autism	 Inversion - single patient; coding changes - mutation screen in patient cohort

Rossi et al. 2008 [63]	 Autism and primary amenorrhea	 Deletion - single patient

Poot et al. 2009 [65]	 Autism	 Complex chromosome rearrangement in a single individual

Elia et al. 2009 [66]	 ADHD	 Copy number variant - hemizygous deletion in a single proband

Terracciano et al. 2008 [80]	 Openness to experience - the 	 None - association with common variants; genome-wide association of personality
	 tendency to be imaginative, creative, 	 dimensions 
	 unconventional, emotionally and  
	 artistically sensitive; agreeableness
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task was subsequently replicated in a language-impaired 
sample selected from a population cohort (most signifi
cant P  =  0.006) [69]. In this replication sample, some 
association was also observed with CMIP but in an 
opposite direction to that seen in the discovery cohort 
(most significant P  =  0.02) [69]. Although this does not 
preclude the presence of a genuine association, as it may 
be caused by differences in linkage disequilibrium 
patterns, it does highlight the need for careful inter
pretation of this result as well as for further replication in 
additional cohorts.

Both ATP2C2 and CMIP show expression in the brain 
and, although little is known about their role in this 
tissue, hypothetical links can be made between their 
putative functions and language and memory-related 
processes. The CMIP protein forms part of the cellular 
scaffold linking the plasma membrane to the cytoskeleton 
[71], and cytoskeletal remodeling represents a critical 
step in neuronal migration and synaptic formation 
processes. In addition, CMIP has been shown to interact 
with filamin A and nuclear factor κB, both of which have 
important neurological functions [72,73]. ATP2C2 is 
responsible for the removal of calcium and manganese 
from the cytosol into the Golgi body [74]. Calcium is an 
important ion in the regulation of many neuronal 
processes, including working memory, synaptic plasticity 
and neuronal motility [75], and manganese dysregulation 
has been linked to neurological disorders [76]. Interest
ingly, in a recent meta-analysis of genetic data for ADHD, 
which shows significant co-morbidity with SLI, chromo
some 16q was highlighted as the most consistently linked 
region for this disorder [77]. Concurrent genome-wide 
association studies described significant association with 
a variant in ATP2C2 [78], reinforcing the fact that, as 
discussed above, the correlation between genetic suscep
tibility and surface phenotype is far from straightforward.

As with CNTNAP2, the specific causal variants and the 
underlying mechanisms by which ATP2C2 and CMIP 
might contribute to language impairment have yet to be 
elucidated. The characterization of these factors will not 
only provide definitive evidence for the involvement of 
these genes but may also lead to the identification of 
further neurological pathways that contribute to language 
acquisition. Given the proposed reliance of non-word 
repetition performance on short-term memory ability, 
one can postulate that the investigation of ATP2C2 and 
CMIP may provide a biological link between memory-
related pathways and language acquisition. The fact that 
neither ATP2C2 nor CMIP have been identified as 
downstream targets of FOXP2 suggests that the eventual 
combination of information from converging routes of 
investigation will enable the characterization of over
lapping and interacting neurological systems that serve 
the acquisition of language.

Conclusions
The past few years have seen exciting progress in the 
genetics of language impairment. The increased know
ledge of the FOXP2-dependent molecular networks has 
enabled the identification of brain regions and pathways 
that this gene may influence. Although FOXP2 mutations 
seem to contribute to only a relatively small number of 
language disorder cases, it seems likely that variations in 
the genes it controls, such as CNTNAP2, may be 
implicated in common forms of language impairment. 
Thus, as our understanding of downstream targets grows, 
so will our list of potential candidate genes for SLI. The 
association of CNTNAP2 variations with an array of 
developmental disorders indicates that alternative 
deficits may arise from the dysfunction of a neurological 
network, demonstrating the complexity of brain 
development processes.

Although the expression of FOXP2 seems to be 
particularly important for neurological mechanisms rele
vant to motor skills, we predict that ATP2C2 and CMIP 
are likely to be involved in memory-related circuits. Thus, 
although language is unique to humans, we should not 
necessarily expect the pathways underlying it to be 
exclusive to humans. Processes such as memory and 
motor skills have key roles in language development, but 
they are certainly not specific to, and may not be com
pletely essential for, language acquisition. Rather, we 
expect that a variety of pre-existing and diverse neuro
logical pathways have been adapted to promote the 
development of human language [79]. Characterization of 
these pathways and the way they overlap and interact will 
be an enormous task but one that is becoming increasingly 
feasible thanks to advances in genetic techniques. Given 
the expected complexity of such pathways, it seems 
unlikely that the identification of genetic susceptibility 
factors will ever lead to the discovery of a ‘cure’ for SLI. 
Nonetheless, this is a worthwhile endeavor, as a better 
understanding of the causes of SLI will allow the 
development of better diagnostic systems and therapies for 
affected individuals. Furthermore, it is clear that the 
achievement of the ultimate goal - the elucidation of a 
genetic network underpinning language processes - will 
have an impact on our understanding not only of language 
impairment and acquisition, but also of human 
development, brain function and the neuropathology of 
associated developmental disorders.
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