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Switching Retinogeniculate Axon Laterality Leads to Normal
Targeting but Abnormal Eye-Specific Segregation That Is
Activity Dependent

Alexandra Rebsam,'?> Timothy J. Petros,'> and Carol A. Mason'23
Departments of 'Pathology and Cell Biology, 2Neuroscience, and *0Ophthalmology, College of Physicians and Surgeons, Columbia University, New York,
New York 10032

Partial decussation of sensory pathways allows neural inputs from both sides of the body to project to the same target region where these
signals will be integrated. Here, to better understand mechanisms of eye-specific targeting, we studied how retinal ganglion cell (RGC)
axons terminate in their thalamic target, the dorsal lateral geniculate nucleus (ALGN), when crossing at the optic chiasm midline is
altered. In models with gain- and loss-of-function of EphB1, the receptor that directs the ipsilateral projection at the optic chiasm,
misrouted RGCs target the appropriate retinotopic zone in the opposite dLGN. However, in EphBI ~'~ mice, the misrouted axons do not
intermingle with normally projecting RGC axons and segregate instead into a distinct patch. We also revisited the role of retinal activity
on eye-specific targeting by blocking correlated waves of activity with epibatidine into both eyes. We show that, in wild-type mice, retinal
waves are necessary during the first postnatal week for both proper distribution and eye-specific segregation of ipsilateral axons in the
mature dLGN. Moreover, in EphBI ~'~ mice, refinement of ipsilateral axons is perturbed in control conditions and is further impaired
after epibatidine treatment. Finally, retinal waves are required for the formation of the segregated patch of misrouted axons in EphB1 ~'~
mice. These findings implicate molecular determinants for targeting of eye-specific zones that are independent of midline guidance cues

and that function in concert with correlated retinal activity to sculpt retinogeniculate projections.

Introduction

Many brain regions receive diverse inputs that must be precisely
organized to properly integrate and transmit neural information.
Some relay regions receive inputs from both sides of the body
through partial decussation of axonal projections at the midline.
The precise ratio of ipsilateral and contralateral inputs is crucial
for appropriate targeting and sensory or motor function (Victor
etal., 2000; Kullander et al., 2003; Jen et al., 2004; Kaas, 2005; Beg
et al., 2007; Iwasato et al., 2007; Wegmeyer et al., 2007).

In the visual system, the partial decussation of retinal gan-
glion cell (RGC) axons at the optic chiasm midline ensures
that targets on each side of the brain receive inputs from both
eyes to implement binocular vision. In the mouse, retinal axons
map topographically onto their thalamic target, the dorsal
lateral geniculate nucleus (dLGN), guided by EphA and
ephrin-A gradients in the retina and the dLGN (Feldheim et al.,
1998; Pfeiffenberger et al., 2005). Retinal axons from both eyes
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segregate from an initially overlapping innervation pattern into
distinct territories (Godement et al., 1984; Jaubert-Miazza et al.,
2005). The molecular factors that mediate eye-specific innerva-
tion are not well understood (Leamey et al., 2007), but it is widely
accepted that molecular directives in concert with retinal activity
influence the final pattern of eye-specific innervation within tha-
lamic targets (Chalupa, 2007; Huberman et al., 2008a).

RGCs that project ipsilaterally originate in the ventrotemporal
(VT) retina and express the transcription factor Zic2, which in
turn regulates expression of the guidance receptor EphBl1
(Herrera et al., 2003; Williams et al., 2003; Garcia-Frigola et al.,
2008; Lee etal., 2008). EphB1-expressing VT retinal growth cones
are repulsed by ephrin-B2-expressing glia at the optic chiasm
midline, thereby establishing the ipsilateral projection (Williams
et al., 2003). RGCs that project contralaterally express the tran-
scription factor Islet2 (Pak et al., 2004) and the adhesion mole-
cule NrCAM [N, (neuron—glia) related cell adhesion molecule
CAM-] (Williams et al., 2006).

We investigated whether decussation errors at the optic chi-
asm affect topographic targeting in the dLGN, by altering one of
the molecular determinants for laterality. We examined models
in which EphB1 expression is modified: gain-of-function of
EphB1 via in utero retinal electroporation increases the number
of ipsilaterally projecting fibers (Petros et al., 2009), whereas loss
of EphB1 in EphBI ~'~ mice results in a decreased ipsilateral
projection (Williams et al., 2003) with more VT RGCs projecting
contralaterally. We asked the following: (1) Do misrouted RGC
axons terminate in retinotopically appropriate zone in the oppo-
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site dLGN? (2) Do misrouted RGC axons terminate in zones that
are distinct from those of normally routed axons? (3) How does
retinal activity affect eye-specific innervation when ipsilateral
and contralateral inputs are imbalanced?

We find that aberrations in decussation do not impair RGC
targeting in the dLGN. However, misrouted axons abnormally
segregate from their normal counterparts. In addition, the refine-
ment of the normal ipsilateral projection is impaired in
EphBI '~ mice, and retinal activity is crucial for the proper dis-
tribution and segregation of both normal and misrouted axons.
These experiments provide insight into how the ratio of ipsilat-
eral and contralateral axons, in concert with retinal activity, affect
eye-specific retinogeniculate targeting.

Materials and Methods

Animals. Wild-type C57BL/6] mice and EphB1 ~'~ mice maintained on
C57BL/6] background (Williams et al., 2003) were maintained in a
timed-pregnancy breeding colony at Columbia University. C57BL/6]
mice were used for all retinal in utero electroporations. Embryonic day 0
(E0) was defined as midnight of the night before a plug was found, and
postnatal day 0 (PO) is the day of birth. All animal procedures followed
the regulatory guidelines of the Columbia University Institutional Ani-
mal Care and Use Committee.

Anterograde labeling of retinogeniculate projections. P7, P13, and P30
mice were anesthetized with ketamine—xylazine (100 and 10 mg/kg, re-
spectively, in 0.9% saline). The skin was cut open at the eyelid junction.
Eyes were injected with a glass micropipette intravitreally with 1-5 ul
0f 0.2% cholera toxin subunit B (CTB) conjugated to Alexa Fluor 594,
488, or 647 (Invitrogen) diluted in 1% DMSO. In some P13 pups,
small volumes of liquid Dil (0.4% in 4% dimethylformamide and
10% sucrose) or CTB-Alexa Fluor 594 (0.1% in 0.5% DMSO, 10%
sucrose solution) were injected into the VT retina using a Picospritzer
II. After 1-2 d, mice were anesthetized and perfused transcardially
with 4% paraformaldehyde in 0.1 M phosphate buffer before dissec-
tion of brain and retinas. Brains were postfixed overnight, embedded
in 3% agarose, and sectioned with a vibratome (100 wm). Sections
were processed for immunohistochemistry or directly mounted in
Gelmount.

In utero retinal electroporation. The procedure for in utero retinal elec-
troporation has been previously described (Garcia-Frigola et al., 2007;
Petros et al., 2009). Briefly, a DNA solution (0.8 ug/ul pCAG-GFP plas-
mid plus or minus 2-5 ug/ul pCAG-HA-EphB1 plasmids plus 0.03% fast
green) was injected using a pulled glass micropipette into one eye of each
E14.5 embryo, and then electroporated with five 40 V pulses. Dams were
allowed to give birth naturally. At P7, retinogeniculate projections were
anterogradely labeled and processed as described above. Fixed retinas
were assessed for green fluorescent protein (GFP) labeling under a fluo-
rescent dissecting microscope (Zeiss) before retina and brain section
immunostaining. Cases with very little GFP staining in the retina or with
GFP staining in VT retina were not used for analysis.

Epibatidine injection. Postnatal mice were anesthetized on ice. The skin
was cut open at the eyelid junction to access the eye. A total of 0.5-1 ul of
1 mM epibatidine in 0.9% saline was injected intravitreally in both eyes
through the same injection site every 24 h from P3 to P6. Pups were
returned to their mother after recovery from anesthesia.

Immunostaining. Ten percent normal donkey serum in 0.3% Triton
was used as blocking solution. GFP was detected using a rabbit anti-GFP
antibody (1/1000; Invitrogen) and a donkey anti-rabbit Alexa 488 sec-
ondary antibody (1/400; Invitrogen). For the retinas, HA-EphB1 was
detected using a rat anti-HA antibody (1/500; Roche) and a donkey
anti-rat Cy3 (1/500) or Cy5 (1/250) secondary antibody (Jackson Immu-
noResearch). Retinas were flat-mounted and brain sections mounted in
Gelmount.

Microscopy. Imaging retinal whole mounts and brain sections was
done with Axiovision or OpenLab software through Axiophot Camera
and a Zeiss Axioplan 2 microscope (for EphB1 ~/~ and wild-type mice)
or with a Zeiss LSM 510 confocal microscope (for electroporated mice).
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Z stacks were taken and projected into two-dimensional image using the
LSM software projection tool.

Analysis of the number, distribution, and segregation of ipsilateral fibers.
Quantification of eye-specific segregation in Figures 3 and 5 was per-
formed on 10X images obtained with Zeiss Axioplan fluorescence mi-
croscope from three consecutive coronal sections through the region of
the dLGN containing the greatest extent of the ipsilateral projection.
Quantification of eye-specific segregation was performed also on 20X
images obtained with Zeiss LSM 510 confocal microscope [laser power,
80%; gain, 370 (red channel) and 400 (green channel); offset, —0.08 (red
channel) and —0.21 (green channel)], on one section per case (the mid-
dle section in the three sections used for the quantification at 10X mag-
nification) (supplemental Fig. S3, available at www.jneurosci.org as
supplemental material). For both magnifications, we have used variable
thresholds for the contralateral projection and a fixed threshold for the
ipsilateral projection. As Alexa Fluor 594-labeled contralateral/Alexa
Fluor 488-labeled ipsilateral projections had a better signal-to-noise ra-
tio, we conducted our analyses on these images. Using MetaMorph soft-
ware (Molecular Devices), the boundary of the dLGN was outlined,
excluding the intrageniculate leaflet, the ventral lateral geniculate nu-
cleus, and the optic tract (supplemental Fig. S2d, available at www.
jneurosci.org as supplemental material) in 10X images and using the
entire image at 20X magnification. The intensity threshold for the ipsi-
lateral projection was chosen when the signal-to-background ratio was at
least 1.2 (see Fig. 4; supplemental Fig. S2¢, available at www.jneurosci.org
as supplemental material), especially at the border of the ipsilateral patch,
or around the scattered ipsilateral fibers. In general, this value was be-
tween 50 and 80 for 10X magnification and 35 and 45 for 20X magnifi-
cation images (grayscale span from 0 to 255). The overlap between
ipsilateral and contralateral projections (pixel overlap) was measured at
every 10th threshold value for the contralateral image to obtain the func-
tion of overlap between ipsilateral and contralateral projections (see Figs.
3b, 5¢,d), as previously described (Muir-Robinson et al., 2002; Torborg
and Feller, 2004). The proportion of dLGN occupied by ipsilateral axons
was measured as a ratio of ipsilateral pixels to the total number of pixels
in the dLGN region. The extent of eye-specific projections within the
dLGN along the dorsoventral (DV) and mediolateral (ML) axes of the
dLGN was measured by tracing a line along the DV or ML axis of
the dLGN, tilted compared with the real DV and ML axes of the section
(supplemental Fig. S2a, available at www.jneurosci.org as supplemental
material). The extent of the ipsilateral projection was measured by trac-
ing a line between the two points delineating the maximal extent of the
ipsilateral signal along the chosen axis (supplemental Fig. S2a,g,h, avail-
able at www.jneurosci.org as supplemental material). The extent of the
ipsilateral projection along the dLGN axis is calculated by dividing the
length of the ipsilateral projection by the dLGN length and is expressed as
a percentage of dLGN length. Statistical analyses were performed using a
Student’s t test. As no significant differences were found between C57BL/
6], EphBI /= and EphBI /% (ANOVA test), the results of these geno-
types were pooled and designated as wild-type mice.

Results

After ectopic expression of EphB1, retinal axons from non-VT
retina are misrouted ipsilaterally but still target the
contralateral input-recipient region of the dLGN

We recently reported that when GFP and HA-EphBI1 are coelec-
troporated into non-VT RGCs at E14.5, the proportion of ipsi-
lateral GFP+ fibers is increased by sevenfold (from 3 to 22%)
compared with electroporation of GFP alone (Petros et al., 2009).
Here, we use a similar gain-of-function approach to assess how
RGC:s that ectopically express EphB1 and aberrantly project ipsi-
laterally, are distributed within the dLGN. At P8, GFP+ RGC
axons were clearly visible in the central retina (Fig. 1a), optic
chiasm (Fig. 1b), and dLGN (Fig. 1d—g). Anterograde labeling of
the entire retinal projection from each eye at P8 (Fig. 1¢) con-
firmed that the segregation of eye-specific fibers remains intact
after electroporation: ipsilateral axons form a core in the dorso-
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Figure 1.  Retinogeniculate targeting at P8 after in utero retinal electroporation of EphB1
constructs at E14.5. a, Retinal flat mount indicating GFP expressing RGCs in central retina. b,
GFP+ RGCfibers at the optic chiasm. Retinal axons from each eye are in blue and red (see ¢) and
GFP+ axons appear white. ¢, Scheme depicting the whole-eye labeling with CTB-Alexa Fluor
dyes and GFP labeling along the retinogeniculate pathway. In GFP control electroporations,
most GFP+ fibers project to the contralateral dLGN (d), with few (if any) GFP+ fibers project-
ing ipsilaterally (e). After GFP+ HA-EphB1 electroporations (f, g), thereis an increase in GFP +
fibersin theipsilateral dLGN. Both contralateral (f) and ipsilateral (g) GFP + fibers project to the
appropriate retinotopic region in the contralateral-recipient region (g). D, Dorsal; V, ventral; M,
medial; L, lateral.

medial region of the dLGN and are surrounded by contralateral
axons (Fig. 1d-g).

In GFP-only electroporated cases (n = 9), most fibers project
contralaterally to the outer shell of the dLGN (Fig. 1d). Very few
or no GFP+ fibers were found in the ipsilateral optic tract and
dLGN at P8 (Fig. le). Although most GFP+ fibers remain con-
tralateral (Fig. 1f) after GFP+ EphBl1 electroporations (n = 13),
an increased ipsilateral GFP+ projection is apparent (Fig. 1g).
These results are in agreement with those by Petros et al. (2009)
and confirm that EphB1 is able to reroute some non-VT RGCs
ipsilaterally.

Inboth control and EphB1 electroporated cases, GFP+ retinal
fibers that maintain a contralateral trajectory project into and
arborize within the contralateral axon-recipient region of the
dLGN (Fig. 1d,f). Notably, GFP+ fibers that are misrouted ipsi-
laterally after electroporation of EphB1, project to the contralat-
eral axon-recipient region of the dLGN and not to the ipsilateral
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Figure 2.  Retinogeniculate projections at P31 in wild-type and £phB7 ~/~ mice. Coronal
sections through the dLGN after whole-eye tracing in one eye and either whole eye (a, b) or VT
retina (d, e) anterograde tracing from the other eye. a, d, In wild-type mice, the ipsilateral
projection (green) forms a patch in the dorsocentral dLGN surrounded by contralateral termi-
nations (red). Late-born VT RGCs project contralaterally to the dorsal tip of the dLGN (d, e,
asterisk). b, e, In EphB1 '~ mice, an ectopic patch (arrow) arising from the contralateral eye is
adjacent to, but segregated from, the reduced ipsilateral patch. VT RGCs project contralaterally
to two distinct sites (e): the dorsal tip of the dLGN, corresponding to the “normal” VT contralat-
eral projection (asterisk), and the ectopic patch (arrow). ¢, f, Schemes depict dLGN termination
regions after the anterograde tracing paradigms in wild-type and £ph87 '~ mice. D, Dorsal; V,
ventral; M, medial; L, lateral.

axon-recipient region (Fig. 1g). Thus, ectopic EphB1-expressing
RGCs in non-VT retina are misrouted ipsilaterally and target the
region corresponding to their origin in the retina, independent of
their decussation pattern at the optic chiasm midline.

In EphB1~'~ mice, VT RGC axons are misrouted contralat-
erally and form a distinct patch in the ipsilateral axon-recipient
zone of the dLGN.

To further study the relationship of guidance decisions at the
chiasm midline and eye-specific targeting in the dLGN, we exam-
ined RGC projections to the dLGN in EphBI ~'~ mice that have a
severely reduced ipsilateral projection (Williams et al., 2003). As
EphB1 is not expressed in the dLGN during the period of inner-
vation and segregation (supplemental Fig. S1, available at www.
jneurosci.org as supplemental material), the loss of EphBl
function is not likely to induce changes in the dLGN itself.

Using whole-eye labeling, we compared RGC targeting in the
wild-type and EphBI1 '~ dLGN (Fig. 2a—c). In P31 wild-type
mice (n = 10), the ipsilateral projection from the VT retina forms
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a distinct patch in the dorsocentral dLGN and is surrounded by
the contralateral projection (Fig. 2a), in agreement with previous
reports (Godement et al., 1984; Jaubert-Miazza et al., 2005). In
EphBI1 ™'~ mice (n = 8), the reduced projection from the ipsilat-
eral eye is correctly positioned within the dorsocentral dLGN but
is smaller than wild type (Fig. 2b).

Strikingly, in the dLGN of P31 EphBI ~/~ mice, a segregated
patch of contralateral retinal axons is positioned adjacent to the
normal ipsilateral input recipient region (note the intensity of
fibers within and the reduced density of fibers around this patch)
(Fig. 2b). To test whether this segregated patch in the EphBI '~
mice arises from contralaterally misrouted VT RGCs, we labeled
one entire retina with CTB-Alexa Fluor 488 and the VT retina of
the opposite eye with Dil (or CTB-Alexa Fluor 594) at P13 (Fig.
2f). In wild-type mice, VT RGCs project ipsilaterally to the dor-
socentral dLGN and contralaterally to the dorsal tip of the ILGN
(Fig. 2d) (Reese and Cowey, 1987; Pfeiffenberger et al., 2006). In
EphBI '~ mice, VT RGCs display an additional projection to the
dLGN (Fig. 2e), corresponding to the ectopic patch seen after
whole-eye labeling (Fig. 2b). Thus, this projection pattern con-
firms that the ectopic patch in EphB1 ~'~ dLGN arises from VT
RGCs that are misdirected to the contralateral side and retain
their topography, but segregate from other retinal projections
(Figs. 2f, 6). In conclusion, gain- and loss-of-function experi-
ments with EphB1 demonstrate that altering guidance decisions
at the midline does not affect targeting of RGC axons but that
contralaterally misrouted axon terminations form a distinct
patch that does not mingle with the normal projections.

Refinement of ipsilateral retinal axons to the dLGN is
impaired in EphBI ~/~ mice

In wild-type mice, eye-specific territories are completely segre-
gated by P31 (Fig. 2a) (Jaubert-Miazza et al., 2005). We specifi-
cally examined whether the reduction in ipsilateral inputs
observed in EphBI ~'~ mice influences the distribution and seg-
regation of the remaining ipsilateral inputs (Fig. 3). In EphBI1 ~/~
mice, the proportion of ipsilateral fibers in the dLGN is reduced
by 84% compared with wild-type mice (wild type, 17.6%, and
EphB1-KO, 2.9% of dLGN territory is occupied by ipsilateral
fibers; p = 8.5E-12). Furthermore, the extent of the ipsilateral
projection is significantly reduced along the DV and ML axes
(Fig. 3a).

EphB1~'~ mice also display defects in eye-specific segrega-
tion, as there is significant overlap between ipsilateral and con-
tralateral fibers compared with wild type at P31 (Fig. 3b). Thus,
both eye-specific distribution and segregation are perturbed in
EphBI1 '~ mice.

Alterations in retinal activity further disrupts RGC fiber
distribution and segregation in the dLGN

Neural activity in the retina is important for eye-specific segrega-
tion (Chalupa, 2007; Huberman et al., 2008a). As spontaneous
waves of retinal activity rely on cholinergic transmission through
the first postnatal week, ocular injections of the nicotinic acetyl-
choline receptor agonist epibatidine decorrelates RGC activity
and eliminates retinal waves (Penn et al., 1998; Sun et al., 2008b).
During the second postnatal week, retinal waves continue but are
cholinergic-independent and glutamatergic-dependent (Bansal
et al., 2000; Wong et al., 2000; Zhou and Zhao, 2000).

Given the changes observed in EphBI ~'~ mice in the propor-
tion, distribution, and segregation of, in particular, the ipsilateral
RGC axons, we examined whether retinal activity is required dur-
ing the first postnatal week for (1) the segregation of the normal
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Figure 3. Distribution and segregation of ipsilateral retinal projections in wild-type and
EphB1 '~ mice. a, Extension of the ipsilateral projection expressed as a percentage of length
along the DV and ML axes of the dLGN. Ipsilateral fibers cover less territory along the DV and ML
dLGN axesin EphB7 ~'~ mice compared with wild-type mice. b, Segregation plot. Percentage
of pixels containing only ipsilateral signal (no contralateral signal) as a function of contralateral
threshold (ipsilateral threshold is fixed). In FphB7 ~/~ mice, ipsilateral fibers are less segre-
gated from contralateral fibers (more overlap) than in wild-type mice. Error bars indicate SEM
values. *p << 0.05, **p < 0.01, ***p < 0.001.

ipsilateral and contralateral components, and (2) the segregation
of misrouted VT contralateral axons in EphB1 '~ mice.

We examined these features at P31, after binocular epibati-
dine treatment from P3 to P6. Previous reports have focused on
the short-term effects of epibatidine treatment at P9, without
assessing the long-term effects on retinogeniculate projection af-
ter glutamatergic-dependent retinal waves have ended (Rossi et
al., 2001; Pfeiffenberger et al., 2005). We report that blocking
retinal waves during the first postnatal week has lasting effects on
the distribution and segregation of ipsilateral axons in both wild-
type and EphBI ~'~ mice.

After epibatidine treatment of wild-type mice (n = 7), ip-
silateral fibers were distributed over a larger territory along the
DV and ML axes compared with saline-treated wild-type mice
(n = 5) (Figs. 4a,b, 5b). Because the proportion of dLGN
occupied by ipsilateral fibers is not significantly increased
(Fig. 5a), the expanded distribution of ipsilateral fibers reflects
the scattering of ipsilateral arbors observed after epibatidine
treatment (supplemental Fig. S2, available at www.jneurosci.
org as supplemental material; Fig. 7). In addition, ipsilateral
fibers are less segregated from contralateral fibers after epiba-
tidine treatment (Figs. 4b, 5¢,d).

In contrast, in EphBI = mice (Fig. 4¢,d), epibatidine treatment
(n = 11) reduces the percentage of dLGN territory occupied by
ipsilateral fibers compared with saline-treated EphBI '~ mice
(n = 5) (Figs. 4¢,d, 5a). However, there is a concomitant increase
in the extent of ipsilateral fibers along the DV and ML axes of the
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Retinogeniculate projections at P31 after binocular epibatidine treatment from P3 to P6. In wild-type (a, b) and £phB1 '~ (¢, d) mice, ipsilateral fibers are more scattered within the

dLGN, cover an extended region of the dLGN, and overlap more with contralateral fibers after epibatidine treatment. In addition, aggregation of the abnormal contralateral patch adjacent to the
ipsilateral patch and the optic tract is abolished after epibatidine treatment in £phB1 '~ mice (c, arrow; compare with d). D, Dorsal; V, ventral; M, medial; L, lateral.

dLGN (Fig. 5b), suggesting that blocking retinal waves results in a
reduced number of ipsilateral terminals that are scattered over a
larger region of the dLGN in EphB1 ~/~ mice (Fig. 4d). In addi-
tion, epibatidine treatment of EphBI1 ~'~ mice further impairs the
segregation of ipsilateral fibers compared with saline-treated
EphBI '~ mice (Fig. 5¢,d). Importantly, in EphB1 ~/~ mice, bin-
ocular epibatidine treatment prevents the formation of the ec-
topic contralateral patch formed by fibers from VT retina that are
misrouted contralaterally (Fig. 4¢,d).

In conclusion, normal retinal activity is required for the
proper segregation and distribution of ipsilateral fibers within
arestricted area of the dLGN. In contrast, retinal waves do not
seem to be crucial for determining the proportion of ipsilat-
eral terminals in wild-type mice. Finally, retinal activity is
required for the segregation of the ectopic contralateral patch
in EphBI1 ™'~ mice.

Discussion

Here, we describe how abnormal decussation patterns impact
targeting in the mouse dLGN. In gain- and loss-of-function mod-
els of the guidance receptor EphB1, misrouted VT RGC axons
project to the correct topographic location in the opposite dLGN,
in a mirror image of the normal pattern (Fig. 6). However, in
EphB1~'" mice, the misrouted axons segregate from the normal
contralateral and ipsilateral cohorts. Furthermore, distribution
and segregation of ipsilateral axons are altered in EphBI1 ~'~ mice.
We also show that binocular blockade of retinal activity perturbs
ipsilateral fiber distribution and segregation in a similar manner

in wild-type and EphBI ~/~ mice. Finally, the segregation of the
misrouted fibers in EphB1 ~’~ mice is dependent on normal ret-
inal activity.

These experiments implicate the existence of molecular deter-
minants for ipsilateral projection targeting independent of those
used for axon guidance at the optic chiasm, and provide insight
into how the interactions of ipsilateral and contralateral axons, in
concert with retinal activity, yield eye-specific retinogeniculate
targeting.

Eye-specific targeting of retinal axons does not depend on
laterality decisions at the midline

Our results show that misrouted RGC axons innervate the appro-
priate target according to their retinotopic origin (VT vs non-VT
retina) even though axons project to the other side of the midline,
in agreement with other studies on midline guidance perturba-
tions. In robo and comm fly mutants (Wolf and Chiba, 2000),
astray and belladonna zebrafish mutants (Karlstrom et al., 1996;
Fricke et al., 2001), the Siamese cat (Guillery, 1969; Kliot and
Shatz, 1985), and achiasmatic sheepdogs (Williams et al., 1994),
axons project to the retinotopically appropriate targets despite
errors in midline guidance. However, it is unclear how altered
projections integrate into the normal circuitry, and how the mu-
tated gene relates to midline and targeting defects in these mod-
els. Here, we demonstrate that, despite normal targeting, the
misrouted fibers do not intermingle with the normal projections
and form a patch clearly segregated from the normal ipsilateral
and contralateral projections.
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Molecular determinants of a 25
eye-specific targeting

Our results demonstrate that, when RGC
axon laterality is perturbed, VT RGCs still
target the appropriate dLGN regions. This
finding supports the notion that RGCs
and dLGN cells express molecular cues for
eye-specific targeting that are distinct
from EphBl. Whereas lamina-specific
cues have been identified in the retina
(Yamagata and Sanes, 2008) and in the
optic tectum (Yamagata and Sanes, 2005),
molecules that are differentially expressed
in eye-specific layers in the dLGN have
not been identified (Kawasaki et al.,
2004). EphA and ephrin-A gradients in C 100
the retina and dLGN mediate topographic

mapping of retinogeniculate projections 90
(Feldheim et al., 1998; Huberman et al.,,
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2005; Pfeiffenberger et al., 2005, 2006) £ 80
and could participate in eye-specific tar- g
geting. However, our results and those of g 70
Pfeiffenberger et al. (2006) indicate that 8 g0
RGCs from the same retinotopic origin &

(e.g., VT retina) target quite different 8 50
dLGN subregions depending on whether s

they project to the ipsilateral (central 5 40
dLGN) or contralateral side (dorsal tip of _%

the dLGN). One possibility is that the VT ° 30
RGCs that project ipsilaterally or con- g 20
tralaterally locally express different levels §

of EphAs and ephrin-As even though they 3 10
are intermingled. Alternatively, if expres-

sion is similar in all VT RGCs, molecular 0
labels in addition to EphA—ephrin-A gra- 0

dients must mediate the differential tar-
geting of VI RGCs and/or these two
populations of VT RGCs respond differ-
ently to these gradients (for human, see
Lambot et al., 2005).

Several genes have been implicated in
specification of RGCs but do not appear to
directly mediate eye-specific targeting (Pak
etal., 2004; Quina et al., 2005; Huberman et
al., 2008b, 2009; Kim et al., 2008; Badea et
al., 2009). One interesting candidate for the
formation of eye-specific projections is Ten_M3, expressed in gradi-
ents within the retinaand dLGN (Leamey et al., 2007). In knock-outs
of Ten_M3, the distribution of ipsilateral fibers is perturbed in the
dLGN and binocular vision is defective, but how Ten_M3 mediates
eye-specific innervation is unknown.

Figure 5.

Disruption of the eye-specific retinogeniculate axon
distribution and segregation in EphB1 ~'~ mice

Our results indicate that, even under conditions of normal activity,
segregation of ipsilateral fibers in the EphBI ~/~ mice is perturbed
and correlates with the reduction in the number of ipsilaterally pro-
jecting VT RGCs (Dréger and Olsen, 1980; Williams et al., 2003).
One explanation of this finding is that the reduction of ipsilateral
fibers impairs activity-based competition and leads to altered segre-
gation, with contralateral fibers remaining in the ipsilateral territory
when ipsilateral RGC axons are in the minority. Similar effects were
found after an imbalance in the activity of eye-specific inputs after
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Comparison of ipsilateral projections in wild-type and £phB7 ~/~ mice after epibatidine treatment. a, Binocular
epibatidine treatment reduced the percentage of dLGN occupied by ipsilateral fibers in £phB7 ~/~ mice but had no effect on
wild-type mice. b, The ipsilateral projection extends more along the DV and ML axes of the dLGN after epibatidine treatment in
both wild-type and £phB7 '~ mice. ¢, Segregation plot. Percentage of pixels containing only ipsilateral signal (no contralateral
signal), as a function of the contralateral threshold (ipsilateral threshold is fixed). The stars correspond to statistical significance
between epibatidine and saline-treated animals. d, Columnal representation of the values in ¢, for the contralateral threshold set
at 70. Segregation of ipsilateral axons in saline treated FphB7 ~/~ mice is significantly impaired compared with wild-type mice,
similar to the differences seen in nontreated animals. Segregation of ipsilateral fibers is further perturbed in the dLGN of both
wild-typeand FphB7 ~/~ mice after epibatidine treatment. Error bars indicate SEM values. *p < 0.05, **p < 0.01, ***p << 0.001.

monocular injection of epibatidine (Penn et al., 1998) or elevation of
cAMP levels (Stellwagen and Shatz, 2002). These results strengthen
the idea that competition between different axonal populations
sculpts final targeting and axon arbor extension (Guillery, 1988). It is
also possible that, because EphBs and ephrin-Bs are important for
synaptogenesis, directional branch extension, and arborization
(Hindges et al.,2002; McLaughlin et al., 2003; Kayser et al., 2008; Lim
etal., 2008), the impaired eye-specific segregation in EphBI ~/~ mice
arises from defects in the refinement process such as in pruning of
exuberant branches, directional arborization, or weakened synapses.

Misrouted RGC axons segregate into patches: a molecular
and/or activity-dependent process?

The most striking result of this study is the formation in
EphBI '~ mice of an ectopic patch by VT axons that aberrantly
cross the midline. This patch of misrouted axons is positioned
next to the zone receiving the ipsilateral projection and is remi-



Rebsam et al. ® Altered Decussation, Retinal Activity, and Eye-Specific Targeting J. Neurosci., November 25,2009 - 29(47):14855-14863 « 14861

D Wild-type D

p EphB1 electroporated D EphB1-KO

Zic2 -, EphB1 -

Zic2 -, EphB1 -
Zic2 +, EphB1 +,

Figure 6.  The retinogeniculate pathway in mouse models with impaired decussation at the optic chiasm. In wild-type mice, nasal RGCs (Zic2—/EphB1—; blue) project contralaterally to the
lateral part of the dLGN. VT RGCs (Zic2+/EphB1-+; green) project ipsilaterally to the dorsomedial part of the dLGN and later-born VT RGCs (Zic2— /EphB1—; red) project contralaterally to the dorsal
tip of the dLGN. Ectopic EphB1 expression [Zic2—/EphB1+]in non-VT RGCs leads to the misrouting of some RGC fibers ipsilaterally (blue dashed line), which still target the contralateral-recipient
region of the dLGN. In £phB7 ~/~ mice, some VT RGCs (Zic2-+/EphB1—) project contralaterally to the dorsomedial part of the dLGN (green dashed line), in a mirror image of the normal ipsilateral

projection. D, Dorsal; V, ventral; T, temporal; N, nasal.
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Figure 7.  Schematic representation of eye-specific projection patterns to the dLGN. Retinogeniculate projections from the

contralateral eye (red) and ipsilateral eye (green) in different mouse and ferret models. The extent of impairment in eye-specific
segregation is represented as a grating of green and yellow, in proportion to the observed overlap.

niscent of the segregation of retinal axons when an extra eye is
transplanted into a tadpole (Constantine-Paton and Law, 1978).
In a Hebbian model of synaptic reinforcement and weakening
(Butts et al., 2007), misrouted VT retinal axons in EphBI '~
mice would segregate from other projections when their activity
is uncorrelated, if they have a different origin, or project from the
other eye, as is the case here. Indeed, the normal contralateral
fibers surrounding misrouted axons do not arise from the VT
region of the retina, reducing the chance of correlated activity
between these two sets of inputs. Another possibility is that the
ipsilateral and contralateral VT RGCs could express different sur-
face molecules that would facilitate their fasciculation and termi-
nal aggregation and prevent the mingling with different retinal
fiber types. The expression of these adhesion molecules could be
regulated by activity (Itoh et al., 1995; Hanson and Landmesser,
2004) and explain why the patch disappears after blockade of
retinal correlated activity during the first postnatal week.

Segregation of ipsilateral axons in the mature dLGN requires
correlated activity in the retina

We analyzed the role of retinal activity on eye-specific refinement
in both wild-type and EphBI ~'~ mice and found that binocular
blockade of retinal waves during the first postnatal week perturbs
ipsilateral fiber distribution (ipsilateral fibers are more scattered
and extend over a larger area within the dLGN) and segregation
(greater overlap of ipsilateral and contralateral fibers) in the
dLGN. These features are more severely disrupted in EphBI ~/~
mice (Fig. 7), because the refinement is perturbed in this mutant
even without epibatidine treatment.

We describe for the first time the long-
term effects of binocular epibatidine treat-
ment during the first postnatal week on eye-
specific refinement in mouse dLGN. Our
results contradict previous reports on the
long-term changes in the ipsilateral projec-
tion in ferrets treated with epibatidine
(Huberman et al., 2002) and in mice that
lack the 82 subunit of the nicotinic acetyl-
choline receptor (beta2 '~ mice) and
thus cholinergic-dependent retinal waves
of activity (Bansal et al., 2000). In these
studies, ipsilateral fibers were seen to oc-
cupy a greater percentage of the dLGN but
display normal eye-specific segregation
(Rossi et al., 2001; Huberman et al., 2002;
Muir-Robinson et al., 2002) (Fig. 7). For
beta2 '~ mice, the most likely explanation is that pharmacolog-
ical treatment with epibatidine is not equivalent to the genetic
removal of the 32 receptor subunit. Indeed, a recent report ques-
tions the reported absence of retinal waves in beta2 ~'~ mice (Sun
etal.,, 2008a), whereas there is a consensus on the effect of epiba-
tidine treatment on retinal waves (Cang et al., 2005; Sun et al.,
2008b). The different effects of epibatidine treatment on retino-
geniculate projections in mice and ferrets may simply reflect
species-specific effects as LGN structure is laminated in ferrets
and thus more complex.

The exact features of retinal activity necessary for eye-specific
segregation are under debate (Chalupa, 2009; Feller, 2009), and
further studies on mouse models with more specific perturba-
tions in retinal activity should resolve this issue.

How does activity function to direct RGC innervation of

the dLGN?

Our experiments highlight the interplay between molecular deter-
minants and activity during targeting (Sanes and Yamagata, 2009).
Several activity-regulated molecules (intriguingly related to the im-
mune system), such as MHCI, C1q, and pentraxins, are required for
the refinement of eye-specific projections (Huh et al., 2000; Bjartmar
et al., 2006; Stevens et al., 2007). Retinal activity could affect the
response of RGCs by changing gene expression or localization of
such molecules to yield proper retinogeniculate fiber distribution
and segregation (Nicol et al., 2007). Thus, molecular specification
and retinal activity likely work in concert to perfect the organization
of RGC projections in their target.
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