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This article reviews symptoms and signs of aberrant axon connectivity in humans, and
summarizes major human genetic disorders that result, or have been proposed to result,
from defective axon guidance. These include corpus callosum agenesis, L1 syndrome,
Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis,
Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1,
Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these
disorders can encode axon growth cone ligands and receptors, downstream signaling
molecules, and axon transport motors, as well as proteins without currently recognized
roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential
to rapidly expand this field, and it is feasible that axon guidance disorders will soon be
recognized as a new and significant category of human neurodevelopmental disorders.

The human brain is highly organized and
contains a myriad of axon tracts that follow

precise pathways and make predictable con-
nections. Model organism research has provided
tremendous advances in our understanding of
the principles and molecules governing axon
growth and guidance. Remarkably, however,
only a handful of human disorders resulting
from primary errors in these processes have been
identified.

Traditional tools of the physician have limited
sensitivity and specificity to detect human disor-
ders of axon guidance. In particular, congenital
synkinesis may be the only physical examination
finding that has been attributed to such disor-
ders. Synkinesis is the involuntary and patholog-
ical contraction of a muscle simultaneously with

contraction of the intended muscle, and is typi-
cally reported with hand/finger or eye/eyelid
movements and confirmed by electrophysiologi-
cal studies. Mirror movement synkinesis refers to
the contraction of homologous hand/finger
muscles bilaterally when one attempts to move
only one hand (Schott and Wyke 1981). In hu-
mans, 75%–90% of corticospinal tract (CST)
fibers normally decussate in the lower medulla.
Mirror movement synkinesis occurs in several
human disorders with pathological, neuroimag-
ing, and/or electrophysiological evidence of
reduced CST decussation, including Joubert,
Kallmann, and Klippel-Feil syndromes (Vullie-
moz et al. 2005; Cincotta and Ziemann 2008).
In some individuals with mirror movements,
electrophysiological data are also consistent with
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bilateral engagement of the motor corticies (Lein-
singer et al. 1997). Ocular synkinesis refers to
aberrant patterns of eye movement and accompa-
nies various congenital cranial dysinnervation
disorders (CCDDs) (Gutowski et al. 2003; Engle
2007), including CFEOM, Duane syndrome,
and Marcus Gunn jaw-winking phenomenon
(Fig. 1). Finger and ocular movements require
precise motor control, and errors in innervation
of these muscles may be more easily detected
than errors in the wiring of larger muscle groups.
If true, this suggests that the clinical exam could
fail to recognize many guidance errors in both
the peripheral and central nervous system.

The physician’s ability to detect disorders of
axon guidance has been augmented by classical
pathological, radiological, and electrophysiol-
ogical techniques. Diagnostic radiologic and
postmortem neuropathological studies detect over-
all changes in white matter volume and major

abnormalities of axon tracts demarcated from
the background such as the corpus callosum, an-
terior and posterior commissures, optic chiasm,
and cerebellar peduncles. Neuropathological
studies can also detect absence of axons that
normally cross the midline at many points in
the brain stem and spinal cord, which are more
difficult to visualize by standard magnetic res-
onance imaging (MRI). Electrophysiological
studies such as evoked potentials can reveal aber-
rant central connections of peripheral sensory
or motor nerves.

The genetic disorders with aberrant axon
connectivity presented in this article have been
defined primarily using traditional approaches
described above. Exciting advances in neuro-
imaging and genetics, however, are revolution-
izing the ability to define axon guidance disor-
ders, and it is likely that these syndromes are
only the first of an important new category

Figure 1. Ocular synkinesis. (A) Child with CFEOM1 and Marcus Gunn jaw-winking phenomenon harboring a
KIF21A mutation. His superior branch of the oculomotor nerve is hypoplastic/absent, resulting in bilateral
ptosis from lack of appropriate innervation of the levator palpebrae superioris (LPS) muscle, and a
downward position of each eye from absent innervation of the superior rectus muscle (left). Marcus Gunn
phenomenon (right) is seen as the synkinetic elevation of the left eyelid with a subtle change in jaw position
associated with a volitional increase in pterygoid muscle tension. This results from aberrant innervation of
the LPS by axons from the motor branch of the trigeminal nerve that also innervates the intended ipsilateral
pterygoid muscle. (B) Adult with Duane retraction syndrome harboring a CHN1 mutation. Central gaze
reveals mild exotropia (middle). On attempted right gaze (left) and left gaze (right), there is limited
horizontal excursion with globe retraction and secondary palpebral fissure narrowing of the adducting eye.
Globe retraction results from synkinesis of the medial and lateral recti muscles. (A) Modified with
permission from Yamada et al. 2005. Copyright # (2005) American Medial Association. All rights reserved.
(B) Modified from Demer et al. 2007. Copyright # (2007) Association for Research in Vision and
Ophthalmology. All rights reserved.
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of such human neurodevelopmental disorders.
Detailed fiber tract anatomy can now be visual-
ized using noninvasive tractography such as
diffusion tensor imaging (DTI) and diffusion
spectrum imaging (DSI). These techniques pro-
vide tract orientation by determining the ani-
sotropic properties of water diffusion, and can
be used to reconstruct the trajectories of fiber
systems in three-dimensional space (Tovar-Moll
et al. 2007; Wahl et al. 2009). Tractography
has successfully confirmed aberrant projections
in several of the disorders discussed below
(Fig. 2). At the same time, human genetics
now provides an unbiased approach to identify
the etiologies of disorders with aberrant axon
tracts. For some syndromes, animal and in vitro
studies have confirmed that the encoded protein

has a primary role in axon guidance. For others,
such studies reveal a primary role in neuronal
specification and/or migration rather than, or
in addition to, a role in axon guidance. Finally,
some neurodevelopmental disorders without
clinical, pathologic, or radiologic evidence of
aberrant axon tracts have been found to result
from mutations in genes that contribute to
axon guidance in animal models.

The major human genetic disorders that
result, or are proposed to result, from defective
axon guidance are ordered below from rostral
to caudal based on the location of the aberrant
axons tracts. These include genetic mutations
that alter axon growth cone ligands and recep-
tors, downstream signaling molecules, and
axon transport, as well as proteins without

Figure 2. Tractography studies in patients with partial agenesis of the corpus callosum (pACC). T1-weighted
anatomic images and DTI tractography of six subjects with pACC (top panels) and two representative
controls (bottom panel). Axial (left) and midline sagittal (middle) T1 sections are shown for each subject.
Callosal fragments are identified with yellow arrows, and heterotopic fibers visible on T1-weighted images
are denoted by red arrows. Midline sagittal DTI color maps are shown with segmented callosal fibers (right).
For subjects with pACC, connectivity ranged from anterior frontal connections (subject 3) to only posterior
frontal and occipitotemporal connections (subject 4). One individual (subject 5) displayed a discontinuous
set of homotopic callosal connections, with anterior frontal and occipitotemporal connectivity without any
posterior frontal or parietal connections. Control subjects (bottom panel) display normal callosal morphology and
tractography results. Tracts are segmented and colored according to their cortical projections: homotopic anterior
frontal, blue; homotopic posterior frontal, orange; homotopic parietal, pink; homotopic occipitotemporal, green;
heterotopic left anterior-right posterior, yellow; heterotopic right anterior-left posterior, red. (Reprinted, with
permission, from Wahl et al. 2009 [# AJNR].)
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currently recognized roles in axon guidance
(Fig. 3) (Table 1).

HUMAN GENETIC DISORDERS OF MIDLINE
CROSSING

Corpus Callosum Dysgenesis

Corpus callosum (CC) axons normally connect
homologous cortical regions in the left and

right hemispheres, and are topographically or-
ganized along the anteroposterior axis (Hofer
and Frahm 2006) (Fig. 2). CC dysgenesis accom-
panies a multitude of inherited disorders, and re-
sults in a clinical spectrum ranging from normal
to severe mental retardation. Both complete and
partial agenesis (CCA, pCCA) can likely occur
secondary to disruption in any one of the multi-
ple steps in callosal development, including pri-
mary defects in cell proliferation and migration,
axon growth and guidance, and midline glial de-
velopment (Kamnasaran 2005; Paul et al. 2007).
In patients with callosal dysgenesis, axons that
fail to cross the midline can form longitudinally
oriented bundles of Probst located medial to
the lateral ventricles (Probst 1901). Notably,
Probst bundles may serve as a relatively specific
marker of axon guidance defects, and bundle
topography may provide mechanistic insights.
Probst bundles are common in patients with
CCAwithout other midline, cortical, or posterior
fossa anomalies, and are infrequent in patients
with CCA and cortical malformations (Hetts
et al. 2006). In some individuals, the bundles
maintain a well-organized topography, suggest-
ing that the axons remained responsive to guid-
ance cues despite failure to cross the midline
(Utsunomiya et al. 2006; Tovar-Moll et al.
2007). Other individuals have highly variable cal-
losal connectivity, including heterotopic tracts
not seen in healthy controls (Fig. 2) (Tovar-Moll
et al. 2007; Wahl et al. 2009). It is likely that genet-
ic causes of isolated CCA will be elucidated as
imaging advances lead to more precise pheno-
typing.

L1 Syndrome

The L1 syndrome is a highly variable X-linked
neurological disorder resulting from mutations
in the L1CAM gene and originally recognized as
four distinct entities: X-linked hydrocephalus;
MASA (mental retardation, aphasia, shuffling
gait, adducted thumbs); X-linked complicated
spastic paraplegia type 1; and X-linked corpus
callosum agenesis. Based on their genetic homo-
geneity and phenotypic overlap, these disorders
are now considered a single disease entity. Boys
with L1 syndrome are mildly to severely affected

CHN1

PROKR2

PROK2

L1

KAL1

ROBO3

KIF21A

Figure 3. Schematic representation of gene products
implicated in human disorders of axon guidance.
KAL1 (anosmin) and PROK2 are shown as secreted
ligands. ROBO3, L1, and PROKR2 are shown as
transmembrane receptors on the growth cone.
CHN1 is depicted with 3 green domains (SH2, C1,
RacGAP), responding to an unknown activated
receptor and altering a microtubule, which is
depicted as a brown line. KIF21A dimers are
depicted walking down MTs. The OCA/OA and
JSRD gene products are not depicted. Note: these
gene products are not necessarily expressed in the
same neurons or function in the same pathways.
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with a combination of macrocephaly, mental
retardation, spastic paraparesis, and thumb
flexion deformities. Postmortem and neuro-
imaging studies may reveal agenesis of the cor-
pus callosum and corticospinal tracts in the
absence of cortical malformations (Chow et al.
1985; Halliday et al. 1986; Graf et al. 2000), sup-
porting a defect in axon guidance.

L1 is a transmembrane neural adhesion
molecule comprised of six immunoglobulin-
like and five fibronectin type III-like extracellu-
lar motifs and a short cytoplasmic tail. L1 acts as
a short-range axon guidance cue and is highly
expressed in developing axons and apical den-
drites of cortical neurons, and within migratory
axons of the corpus callosum and corticospinal
tract (Joosten and Gribnau 1989; Demyanenko
et al. 1999). L1 has multiple extracellular bind-
ing partners, including b1 integrins, NCAM,
TAG-1/axonin-1, contactin, neuropilin-1, and
L1 itself, through which it potentiates cell adhe-
sion, provides a mechanical link to the actin cy-
toskeleton, and serves as a coreceptor to assist in
intracellular signal transduction. For example,
L1 homophilic binding increases cell adhesion
and enhances neuronal migration and neurite
outgrowth, whereas binding to neuropilin-1
mediates Sema3A-induced growth cone col-
lapse and axon repulsion (Castellani et al. 2002;
Wiencken-Barger et al. 2004; Schmid and Man-
ess 2008). L1 also has multiple intracellular
binding partners; L1 links to the actin cytoske-
leton through interactions with ankryin or
FERM-domain-containing proteins, and the
interaction of L1 with AP2 (adaptor protein 2)
is required for sorting of L1 to the axonal growth
cone (Kamiguchi and Lemmon 1998; Kamigu-
chi et al. 1998). L1 is also phosphorylated to ac-
tivate second messenger cascades essential for
downstream signaling (Herron et al. 2009).

L1 syndrome results from missense, non-
sense, splice site, and frameshift mutations scat-
tered throughout the exons and intron-exon
boundaries of the L1CAM gene (Hortsch 1996;
De Angelis et al. 2002). The variability of the L1
syndrome phenotype may arise, in part, from
differences in how specific mutations disrupt
binding of specific partners. Individuals with
cytoplasmic mutations or truncations tend to

spare extracellular domain activities and have
milder phenotypes, whereas extracellular mis-
sense mutations and truncations generally
correlate with intermediate and severe phe-
notypes, respectively (Maness and Schachner
2007). Axon guidance defects occur with both
extra- and intracellular mutations (Yamasaki
et al. 1997; Buhusi et al. 2008). Affected males
within a single family can have mild and severe
phenotypes, however, highlighting the addi-
tional importance of modifying factors (Finckh
et al. 2000).

L1 knockout mice recapitulate many aspects
of L1 syndrome. These mice can show corpus
callosum dysgenesis with Probst bundles, and
aberrant retinocollicular, thalamocortical, and
corticothalamic projections (Dahme et al. 1997;
Cohen et al. 1998; Demyanenko and Maness
2003; Wiencken-Barger et al. 2004). Small un-
crossed CST may result from disrupted Sema3A
signaling (Castellani et al. 2000; Castellani et al.
2002). Consistent with the human phenotype-
genotype correlations, a knockin mouse harbor-
ing a human mutation in the L1 cytoplasmic tail
has disrupted ankyrin binding and a milder phe-
notype (Buhusi et al. 2008). Finally, the role of
L1CAM in neuronal migration and survival, syn-
aptogenesis, and long-term potentiation may
also contribute to the L1 syndrome phenotype
(Demyanenko et al. 1999; Dihne et al. 2003;
Maness and Schachner 2007; Schmid and
Maness 2008).

Joubert Syndrome and Related Disorders
(JSRD)

Joubert Syndrome (JS) is an autosomal rec-
essive and genetically heterogeneous trait
characterized by combinations of congenital
hypotonia, ataxia, abnormal respiratory pat-
terns, mental retardation, social disabilities
including autism, and synkinetic mirror move-
ments. JS can also cosegregate with retinopathy,
kidney disease, liver disease, polydactyly, obe-
sity, and/or situs inversus. This spectrum is
now called Joubert syndrome and related disor-
ders (JSRD) (Joubert et al. 1968; Gleeson et al.
2004; Zaki et al. 2008; Gerdes et al. 2009). Post-
mortem studies of individuals with genetically
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undefined JS have revealed severe cerebellar
vermian hypoplasia, dysplasia of the deep cere-
bellar and inferior olivary nuclei, elongation
of the caudal midbrain tegmentum, reduction
in pontine neurons, and hypoplasia of the
solitary, trigeminal, and dorsal column nuclei
and tracts. Reduced decussation of the superior
cerebellar peduncles (SCP), CST, and central
pontine tracts suggests defective axon gui-
dance. In some cases, the CST is split into
many small fascicles and the pyramids appeared
flat (Joubert et al. 1968; Friede and Boltshauser
1978; Maria et al. 1999; Quisling et al. 1999;
Yachnis and Rorke 1999). It is not known
whether these crossing defects result from a
defect in axon guidance or occur secondary to
a defect in cell fate or survival.

In the current era of MRI, the diagnosis of
JSRD is dependent on the presence of the
“molar tooth” sign, a tooth-like shape on axial
images at the level of the midbrain-hindbrain
junction that reflects cerebellar vermian hypo-
plasia, a deepened interpeduncular fossa, and
horizontally oriented and thickened SCP
(Chance et al. 1999; Maria et al. 1999; Millen
and Gleeson 2008). Multiple studies of genet-
ically undefined patients have reported the
failure of these mis-oriented SCP fibers to
decussate (Padgett et al. 2002; Lee et al. 2005;
Widjaja et al. 2006; Spampinato et al. 2008).
In one patient with presumed absence of CST
decussation, fMRI revealed aberrant bilateral
activation of the cerebellar and sensorimotor
cortex (Parisi et al. 2004b).

JSRD is genetically heterogeneous, and at
least nine loci and seven genes (AHI1, NPHP1,
CEP290, TMEM67, RPGRIP1L, ARL13B, and
CC2D2A) have been identified to date (Dixon-
Salazar et al. 2004; Ferland et al. 2004; Parisi
et al. 2004a; Sayer et al. 2006; Arts et al. 2007;
Baala et al. 2007; Delous et al. 2007; Cantagrel
et al. 2008; Gorden et al. 2008; Noor et al.
2008). Failure of the SCP and CST to decussate
has been documented in patients harboring
mutations in AHI1, CEP290, and at least two
additional JS genes (Poretti et al. 2007).

JS and JSRD are now classified as ciliopathies
because the mutated genes encode signal trans-
duction and scaffolding proteins implicated in

the function of the primary cilium or its anchor-
ing structure, the basal body (Badano et al. 2006;
Gerdes et al. 2009). Several of the proteins interact
(Gorden et al. 2008), suggesting that they may
all be part of a signaling complex (Millen and
Gleeson 2008). Although a role for cilia in axon
guidance has not been elucidated, cilia are
similar to growth cones in that they sense envi-
ronmental cues and mediate signals through
receptor-dependent pathways such as sonic hed-
gehog, noncanonical Wnt, and platelet-derived
growth factor receptor (Fliegauf et al. 2007;
Gerdes et al. 2009). Future studies will deter-
mine whether there is a primary axon guidance
defect in JSRD and, if so, if this is mediated
through ciliary-dependent or potentially
ciliary-independent roles of the JSRD genes
in neuro-development.

Horizontal Gaze Palsy with Progressive
Scoliosis (HGPPS)

HGPPS is a clinically and genetically homogene-
ous disorder in which hindbrain axons fail to
cross the midline. Affected individuals are born
with restricted horizontal gaze and and develop
scoliosis within the first decade of life. HGPPS
is an autosomal recessive trait and results from
mutations in the ROBO3 gene (Jen et al.
2004). ROBO3 encodes a transmembrane recep-
tor analogous to mouse Rig1/Robo3, with five
Ig-like and three fibronectin-like extracellular
motifs and three cytoplasmic signaling motifs.
Indistinguishable phenotypes result from
ROBO3 nonsense, frame-shift, splice-site, or
missense mutations spread across the gene, sup-
porting a complete loss of ROBO3 function.
Although the disease gene was identified in
affected members of consanguineous families
harboring homozygous ROBO3 mutations,
HGPPS is also present in individuals from non-
consanguineous families harboring compound
heterozygous mutations (Chan et al. 2006).

Electrophysiological and neuroimaging stu-
dies in HGPPS support absence of decussating
axons in the pons and medulla. Somatosensory
and motor-evoked-potential tests reveal ipsilat-
eral (Jen et al. 2004; Haller et al. 2008) or pre-
dominantly ipsilateral (Amoiridis et al. 2006)
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rather than normal contralateral responses,
reflecting uncrossed ascending dorsal column-
medial lemniscal sensory pathways and de-
scending corticospinal motor pathways. MRI
reveals ventral flattening and hypoplasia of the
hindbrain, and a butterfly-shaped medulla
with a midline cleft (Jen et al. 2004). DTI con-
firms ipsilateral CST and sensory tracts (Haller
et al. 2008), as well as failure of the SCP to
decussate, absence of the major crossing fibers
in the pons, and small cerebellar peduncles
(Sicotte et al. 2006). Functional MRI reveals
ipsilateral rather than the normal contralateral
activation in the primary motor cortex follow-
ing motor tasks (Haller et al. 2008). The cortex,
corpus callosum, and exiting cranial nerves ap-
pear structurally normal (Jen et al. 2004; Bosley
et al. 2005; Sicotte et al. 2006; Haller et al. 2008).

Robo3 is a divergent member of the Robo
family of axon guidance molecules, and studies
of the Robo32/2 (Rig-12/2) mouse established
that Robo3 is essential for midline crossing of
hindbrain and spinal cord commissural (Saba-
tier et al. 2004) and precerebellar axons (Marillat
et al. 2004). Robo3 is also necessary for midline
crossing of precerebellar neurons (Marillat et al.
2004), and defects in neuronal migration may
also contribute to the HGPPS phenotype.
Robo3 alternative splicing produces two func-
tionally antagonistic isoforms with distinct
carboxy termini (Chen et al. 2008). Robo3.1
inhibits the responsiveness of commissural
axons to Slit repellents and is present on com-
missural axons before and during midline
crossing, whereas Robo3.2 is Slit-responsive
and appears on the growth cone postcrossing
to block re-crossing (Chen et al. 2008). HGPPS
mutations reported to date alter nucleotides
common to both isoforms.

Although the mechanism by which loss of
ROBO3 leads to the HGPPS phenotype is not
defined, the gaze palsy may result from errors
in axon connectivity into and out of the abdu-
cens nucleus. The normal contralateral inputs
onto the abducens nucleus from the pontine
paramedian reticular formation and vestibular
nuclei are predicted to be ipsilateral in HGPPS,
and this would likely alter the firing patterns
of motor and internuclear neurons. Axons of

the abducens internuclear neurons would also
fail to cross the midline via the medial longitu-
dinal fasciculus to synapse on medial rectus
motor neurons in the contralateral oculomotor
nucleus, further perturbing horizontal gaze.
Although the etiology of scoliosis is also spe-
culative, HGPPS provides the first genetic evi-
dence of a neurogenic cause for this disability.
Finally, individuals with HGPPS perform nor-
mally on neuropsychological testing and have
normal fine motor control without mirror
movements (Amoiridis et al. 2006), suggesting
that the pathologically ipsilateral corticospinal
axons find their appropriate target, albeit on
the wrong side.

HUMAN GENETIC DISORDERS OF CRANIAL
NERVE GUIDANCE

Kallmann Syndrome

Individuals with Kallmann syndrome (KS) have
congenital anosmia (lack of sense of smell) and
hypogonadotropic hypogonadism (HH). In
HH, the hypothalamus fails to release gonado-
tropin-releasing hormone (GnRH) that nor-
mally stimulates the pituitary gland to release
sex hormones. Often, the lack of smell goes un-
noticed and individuals with KS are not diag-
nosed until they fail to undergo secondary
sexual development during their teenage years.
It is proposed that errors in growth and guid-
ance of olfactory axons can result in KS.

Both olfactory sensory neurons and GnRH
neurons are born in the olfactory placode of
the developing nose. Olfactory sensory axons
then extend their growth cones through the
cribriform plate into the central nervous system
where they synapse with second-order mitral
neurons within the olfactory bulb glomeruli.
Mitral axons then extend in the olfactory tract
to the piriform cortex. GnRH neurons migrate
across the cribriform plate into the olfactory
bulb anlage along a path that colocalizes with
olfactory sensory axons (Schwanzel-Fukuda
and Pfaff 1989; Wray et al. 1989), then migrate
on to the hypothalamus, where they extend
their axons to the median eminence, enabling
neurosecretion into the hypophyseal portal
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circulation (Schwanzel-Fukuda and Pfaff 1989;
Wray et al. 1989; Kim et al. 2008).

The only KS neuropathology report is of a
19-week male fetus with a family history of
X-linked KS (Schwanzel-Fukuda et al. 1989).
Although his olfactory axons passed through
the cribriform plate, they ended prematurely in
a tangle within the meninges, failing to make
contact with the brain. Olfactory bulbs and
tracts were absent, consistent with the observa-
tion that olfactory bulb development requires
innervation from olfactory sensory neurons
(Graziadei and Monti Graziadei 1986). GnRH
expressing cells were not in their appropriate
position in the hypothalamus, but instead were
found in the nose, along the path of the olfactory
axons, and within the tangle of axons in the
meninges. Thus, at least the X-linked form of
KS may result from defective olfactory axon
guidance, with secondary failure in GnRH neu-
ronal migration and olfactory bulb formation.

KS is genetically heterogeneous and can be
inherited as an X-linked, autosomal dominant,
and possibly autosomal recessive trait. Because
affected individuals are often infertile without
therapy, pedigrees tend to be small and two-
thirds of cases are sporadic. Despite these
challenges, six KS genes have been reported,
accounting for approximately 30% of cases.
These KS genes encode transmembrane recep-
tors and ligands that may be important for
growth cone guidance. Some KS proteins also
interact with one other and with heparan sulfate
proteoglycans to amplify downstream signaling
pathways (Hu et al. 2003; LeCouter et al. 2003;
Gonzalez-Martinez et al. 2004). Consistent
with this, KS can be oligogenic, resulting from
combinations of mutations in more than one
KS gene (Dode et al. 2006; Pitteloud et al.
2007a; Canto et al. 2009).

X-linked KS is caused by loss-of-function
mutations in KAL1 (Franco et al. 1991; Legouis
et al. 1991), which is expressed in developing
olfactory placode and olfactory bulb (Gonzalez-
Martinez et al. 2004). Two-thirds of males har-
boring KAL1 mutations also have mirror move-
ments and enlarged, aberrant ipsilateral CSTs
(Quinton et al. 1996; Mayston et al. 1997; Krams
et al. 1999; Quinton et al. 2001), supporting

a role of KAL1 in guidance of CST as well as
olfactory axons. KAL1 encodes the secreted
glycoprotein anosmin-1 (Hardelin et al. 1999),
which has cell adhesion, neurite outgrowth,
and axon guidance and branch-promoting
activities in vitro (Rugarli et al. 1996; Soussi-
Yanicostas et al. 1996; Soussi-Yanicostas et al.
1998; Hardelin et al. 1999; Robertson et al.
2001; Soussi-Yanicostas et al. 2002; Gonzalez-
Martinez et al. 2004). Direct studies of the role
of KAL1 in axon guidance have been limited
by the absence of Kal1 in the mouse genome.

KAL3 and KAL4 encode prokineticin-2 re-
ceptor and its ligand, PROKR2 and PROK2,
respectively (Dode et al. 2006). PROK2 is ex-
pressed in the developing olfactory bulb (Ng
et al. 2005), whereas the G-protein coupled recep-
tor PROKR2 is expressed along the path of the
olfactory axons and migrating GnRH neurons.
PROKR22/2 and PROK22/2 mice have stalled
olfactory sensory axons that fail to enter the
CNS, arrested GnRH neuron migration, olfactory
bulb hypoplasia, and reproductive system atro-
phy (Ng et al. 2005; Matsumoto et al. 2006; Pitte-
loud et al. 2007b). It is not yet known whether
olfactory sensory neurons express PROKR2 on
their growth cones and are attracted toward
PROK2 in the olfactory bulb anlage (Pitteloud
et al. 2007b).

KAL6 and KAL2 encode fibroblast growth
factor receptor 1 and its ligand, FGFR1 and
FGF8, respectively (Dode et al. 2003; Falardeau
et al. 2008). Following conditional removal of
Fgfr1 from mouse telencephalon and olfactory
epithelium, the olfactory bulb fails to develop,
but olfactory sensory axons successfully enter
the forebrain (Hebert et al. 2003). Thus, these
genetic forms of KS may not result from errors
in olfactory sensory axon development. Nota-
bly, however, FGFR1 signaling promotes GnRH
neurite outgrowth and may be necessary for
GnRHaxonsto target the median eminence(Gill
et al. 2004; Tsai et al. 2005; Gill and Tsai 2006).

Albinism

Individuals with oculocutaneous albinism
(OCA) have absent melanin pigment in their
eyes, hair, and skin, whereas males with ocular
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albinism (OA) lack eye pigment only. Individu-
als with either OCA or OA have increased con-
tralateral and reduced ipsilateral projecting
axons at the optic chiasm as well as hypopig-
mentation of the retinal pigment epithelium
and iris, foveal hypoplasia, loss of binocular
vision, reduced visual acuity, and nystagmus.

Melanin is synthesized within intracellular
melanosomes, and in the eye is present in optic
cup derived retinal pigment epithelial (RPE)
cells and neural crest derived melanocytes of
the iris. X-linked OA results from mutations
in OA1, which encodes a G protein-coupled
receptor on the melanosome membrane. Auto-
somal recessive OCA genes include TYR, en-
coding the enzyme tyrosinase that catalyzes
rate-limiting steps in the melanin biosynthetic
pathway; OCA2, encoding a protein regulating
melanosome pH; TYRI1, encoding a tyrosinase-
related catalase; and MATP, encoding a trans-
porter mediating melanin synthesis.

During development, retinal ganglion cell
(RGC) axons extend toward the optic disc, turn
posterior, and exit the eye as the optic nerve
(cranial nerve II). Within the middle cranial
fossa, the left and right optic nerves join to
form the optic chiasm where approximately
40% of the axons cross the midline. Both ipsilat-
eral and contralateral axons then continue pos-
terior to terminate in the lateral geniculate
nucleus of the thalamus. There is little direct
evidence in albinism for a primary defect in
the guidance of axons at the chiasm (Colello
and Jeffery 1991; Marcus et al. 1996; Jeffery
and Erskine 2005), and instead there may be a
defect in cell fate.

The retina contains two populations of
sharply demarcated RGC; those positioned in
the temporal retina extend axons that project
ipsilateral, whereas those positioned nasally
extend axons that decussate at the chiasm. In
mature albino mammals, this line of demarca-
tion is shifted toward the temporal periphery,
corresponding to a decrease in ipsilateral pro-
jecting RGC axons (Guillery et al. 1995; Petros
et al. 2008). In mouse, RPE melanin formation
begins at E11 just before the onset of neuroblast
division and proceeds in a graded fashion, and
the amount of melanin in the RPE correlates

with the percent of ipsilateral axons at the optic
chiasm (Guillery et al. 1995; Ray et al. 2007; Pet-
ros et al. 2008). This has led to the hypothesis
that pigment formation provides positional
information to RGC neurons, committing them
to ipsilateral or contralateral projecting axons
(Ray et al. 2007). Albino mice have disorganized
RGC neurons with perturbed proliferation and
a reduced number of cells expressing Zic2, the
zinc finger transcription factor that directs the
uncrossed retinal projection (Rachel et al.
2002; Herrera et al. 2003; Williams et al. 2003;
Tibber et al. 2006; Garcia-Frigola et al. 2008;
Petros et al. 2008). Thus, although the precise
role of melanin in RGC and chiasm develop-
ment remains to be determined, the reduction
in ipsilateral-projecting axons in albinism may
result from a developmental shift in RGC spec-
ification and fate, rather than a primary defect
in axon guidance.

Congenital Fibrosis of the Extraocular
Muscles Type I

Congenital fibrosis of the extraocular muscles
type 1 (CFEOM1) is a complex strabismus syn-
drome categorized as one of the congenital cra-
nial dysinnervation disorders (CCDD) (Guto-
wski et al. 2003; Engle 2007). Affected indi-
viduals are born with bilateral blepharoptosis
(drooping eyelids) and strabismus, and absence
of fusion and binocular vision. The eyes look
down at rest and cannot be elevated, whereas
horizontal movement can range from absent
to full. Affected individuals often have ocular
synkinesis, including synergistic convergence,
synergistic divergence, and Marcus Gunn jaw-
winking phenomenon (Fig. 1A).

Postmortem examination of an individual
with CFEOM1 harboring the common KIF21A
mutation (see below) revealed absence of the
superior division of the oculomotor nerve and
marked hypoplasia of the muscles this division
innervates, the levator palpebrae superioris and
superior rectus, that elevate the eyelid and eye,
respectively. The oculomotor inferior division
and abducens nerves were also small (Engle
et al. 1997). Although the autopsy technique
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did not permit identification of aberrant inner-
vation, subsequent MR imaging confirmed the
autopsy findings and noted misinnervation of
the lateral rectus muscle by an oculomotor
nerve branch (Demer et al. 2005). Despite this
strong clinical and radiological data supporting
aberrant innervation in CFEOM1, however, it is
not yet known if the primary defect is that of
axon growth and guidance, pruning, or motor
neuron survival.

CFEOM1 is inherited as an autosomal dom-
inant trait and results from heterozygous muta-
tions in KIF21A, which encodes a kinesin motor
(Yamada et al. 2003). The pattern of KIF21A
mutations suggests that CFEOM1 results from
an alteration in, rather than haploinsufficiency
of, KIF21A function. Eighty mutation-positive
patients of multiple ethnicities reported to date
harbor only 11 unique missense mutations,
which are often de novo, and 75% harbor
2860C.T (R954W). These mutations alter
only seven of the 1675 amino acids in KIF21A,
of which five are located in the third coiled-coil
domain of the KIF21A stalk and two in the
motor domain (Yamada et al. 2003; Ali et al.
2004; Tiab et al. 2004; Lin et al. 2005; Shimizu
et al. 2005; Yamada et al. 2005; Zhang et al.
2006; Chan et al. 2007; Lu et al. 2008; Flaherty
et al. 2009; Rudolph et al. 2009).

Kif21a encodes an anterograde kinesin mo-
tor that is broadly expressed in rodent neuronal
cell bodies, axons, and dendrites (Marszalek
et al. 1999), and may interact with Big1 and
Kank1 in vitro (Shen et al. 2008; Kakinuma
and Kiyama 2009). Additional studies of wild-
type and mutant KIF21A are necessary to deter-
mine the role of axon guidance in the etiology of
CFEOM1.

Duane Retraction Syndrome

Duane retraction syndrome (DRS) is a CCDD
affecting 1:1000 individuals. Affected individu-
als have restricted horizontal gaze greatest with
attempted abduction (movement away from
the midline), and ocular synkinesis resulting
in globe retraction with attempted adduction
(movement toward the midline) (Fig. 1B). Post-
mortem examinations of individuals with DRS

found absence of abducens motor neurons and
nerve, and aberrant innervation of the lateral
rectus muscle by axons of the oculomotor nerve
(Hotchkiss et al. 1980; Miller et al. 1982). Thus,
when an affected individual attempts to adduct
their eye, both the intended medial rectus and
the pathologically innervated lateral rectus
muscles contract, resulting in retraction of the
eyeball into the orbit (Duane 1905). Cocontrac-
tion of the two muscles can be recorded by elec-
tromyography (Gunderson and Zeavin 1956;
Huber 1984).

Genetic studies of rare families segregating
autosomal dominant DRS led to the identifica-
tion of CHN1 as a DRS gene (Miyake et al.
2008). Individuals harboring CHN1 mutations
have a higher incidence of vertical movement
abnormalities and bilateral eye involvement
when compared to individuals with nonfamilial
DRS (Chung et al. 2000; Demer et al. 2007).
Consistent with this, MRI of individuals har-
boring CHN1 mutations can reveal hypoplasia
of the oculomotor nerve and oculomotor-
innervated muscles in addition to the expected
abducens nerve hypoplasia and aberrant lateral
rectus innervation (Demer et al. 2007). Togeth-
er, these findings suggest that human CHN1
mutations alter the development of abducens
and, to a lesser extent, oculomotor axons.

DRS CHN1 mutations identified to date
are missense, and result in amino acid substitu-
tions that alter a2-chimaerin, a Rac guano-
sine triphosphatase-activating signaling protein
containing a RacGAP domain, a C1 domain
that binds to diacylglycerol, and an amino-
terminal SH2 domain (Hall et al. 1993; Hall et al.
2001). a2-chimaerin is expressed widely in
developing neurons of rodent (Hall et al.
1993; Hall et al. 2001) and human (Miyake
et al. 2008). It serves as an effector for axon
guidance, and mice with loss of a2-chimaerin
have elevated RacGTP levels, disrupted eph-
rin/EphA4 signaling, and pathological midline
re-crossing of corticospinal tract axons within
the spinal cord (Brown et al. 2004; Beg et al.
2007; Iwasato et al. 2007; Shi et al. 2007;
Wegmeyer et al. 2007). In contrast, human
DRS CHN1 mutations are gain-of-function, re-
sulting in hyperactive a2-chimaerin and lower
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RacGTP levels through several mechanisms in-
cluding enhanced a2-chimaerin translation to
the membrane (Miyake et al. 2008). Moreover,
in ovo overexpression of mutant a2-chimaerin
results in stalling, aberrant branching, and de-
fasciculation of the oculomotor nerve (Miyake
et al. 2008). The axon guidance molecules up-
stream and signaling pathway downstream of
a2-chimaerin in the developing abducens and
oculomotor axons are not yet known. Under-
standing why corticospinal and ocular axons
are vulnerable to down- and up-regulation of
this widely expressed signaling molecule may
provide new insights into the regulation of
axon guidance.

Pontine Tegmental Cap Dysplasia

Pontine tegmental cap dysplasia (PTCD) is a
cerebellar, brain stem, and cranial nerve malfor-
mation syndrome (Maeoka et al. 1997; Oua-
nounou et al. 2005; Barth et al. 2007; Jissendi-
Tchofo et al. 2009). The 12 affected children
described to date have mild to severe develop-
mental delay, ataxia, and a combination of
restricted horizontal eye movements, ocular
apraxia, facial weakness, deafness, and swallow-
ing and feeding impairments. Neuroimaging
reveals pontine hypoplasia with ventral flatten-
ing and dorsal protrusion of tissue into the
fourth ventricle (“tegmental cap”). Cerebellar
vermian hypoplasia and elongated and laterally
misplaced SCP result in a modified molar-tooth
sign. The middle and inferior cerebellar
peduncles and cranial nerves VII and VIII are
small. DTI reveals failure of the SCP, MCP,
and axons of the pontine nuclei to decussate,
and defines the tegmental cap as an ectopic dor-
sal transverse fiber bundle (Barth et al. 2007;
Jissendi-Tchofo et al. 2009). Thus, PTCD repre-
sents an intriguing new human axon guidance
phenotype that shares features with Joubert,
HGPPS, and the CCDD syndromes. The
reported children have neither a positive family
history nor consanguineous parents, so it
remains to be proved that PTCD is genetic. It
is plausible, however, that it results from de
novo dominant mutations or recessive muta-
tions in an unidentified gene.

CONCLUDING REMARKS

Only a handful of human disorders have been
purported to result from defects in axon guid-
ance and, in most cases, much work remains
to understand their molecular etiologies. It
seems eminent, however, that advances in neu-
roimaging and electrophysiology will provide
the necessary tools to accurately recognize new
patterns of aberrant axon connectivity and
permit ascertainment of phenotypically homo-
geneous patient cohorts for genetic study. Con-
tinued advances in genetic linkage analysis,
association studies, and next-generation se-
quencing will then lead to identification of ge-
netic variants among these cohorts that cause,
or increase susceptibility to, defects in axon
guidance. Additional clinical symptoms and
signs resulting from defects in axon guidance
may also become apparent. For example, it is in-
triguing to speculate whether synesthesia, in
which a stimulus in one sensory modality trig-
gers an automatic and consistent response in
another modality, is a central nervous system
parallel of synkinesis (Mattingley 2009).

The combination of these rapidly advancing
fields may lead to the definition of more subtle
guidance defects and the determination of their
potential contribution to human disease, in-
cluding neurodevelopmental and psychiatric
disorders. Hints of advances to come include a
recent genetic study of synesthesia (Asher et al.
2009), as well as the association of variants of
AHI1 with autism and schizophrenia (Amann-
Zalcenstein et al. 2006; Ingason et al. 2007;
Alvarez Retuerto et al. 2008), of ROBO3 with
autism (Anitha et al. 2008), of ROBO1 with
dyslexia (Hannula-Jouppi et al. 2005), and of
L1 with schizophrenia and major depression
(Kurumaji et al. 2001; Laifenfeld et al. 2005).
Finally, one can speculate on the contribution
of variable axon guidance and connectivity to
the normal spectrum of human cognition and
behavior, and to the brain’s default network
(Buckner et al. 2008).
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