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Abstract
The diabetic state confers an increased propensity to accelerated atherogenesis. Inflammation is
pivotal in atherosclerosis; in addition to the established risk factors, inflammation appears to play a
pivotal role in diabetes and its complications. Evidence for increased inflammation includes:
increased levels of plasma C-reactive protein, the prototypic marker of inflammation; increased levels
of plasminogen-activator inhibitor; increased monocyte superoxide and proinflammatory cytokine
release (IL-1, IL-6 and TNF-α); increased monocyte adhesion to endothelium; increased NF-κB
activity; and increased Toll-like receptor 2 and 4 expression and activity in diabetes. Thus, it appears
that both Type 1 and Type 2 diabetes are proinflammatory states and that these could contribute to
increased diabetic vasculopathies.
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Diabetes affects more than 194 million people worldwide and more than 16 million in the USA
[1,201]. The prevalence of diabetes is increasing, with the lifetime risk for Americans born in
2000 estimated at 38.5% for women and 32.8% for men [2].

Type 2 diabetes mellitus (T2DM) is the sixth leading cause of death in the USA [3]. Type 1
diabetes mellitus (T1DM) also confers an increased propensity to micro- and macro-vascular
complications. Diabetic complications include microvascular complications, such as
retinopathy, neuropathy and nephropathy, and macrovascular complications, including
cardiovascular, peripheral vascular disease and cerebrovascular diseases. Cardiovascular
disease risk is two- to four-times greater in individuals with T2DM relative to individuals
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without diabetes [4–9]. It is referred to as a cardiovascular risk equivalent since the risk of
dying from coronary heart disease for T2DM patients is comparable to that for individuals
without diabetes who have had a myocardial infarction (MI) [4–9]. Approximately two-thirds
of individuals with diabetes die from heart disease or stroke [4–10]. However, established risk
factors, such as dyslipidemia, hypertension and smoking, cannot explain this increased
prevalence of macrovascular disease in diabetes [4]. Thus, the diabetic state itself is an
independent risk factor for premature atherosclerosis [8].

Potential mechanisms that could mediate the premature atherosclerosis in diabetes are shown
in Box 1. Thus, there are various mediating mechanisms, such as dyslipidemia, an increased
procoagulant state, the metabolic syndrome, microalbuminuria, glycation of proteins leading
to advanced glycation end products (AGEs), oxidative stress and inflammation that could
culminate in the increased propensity to vascular complications in diabetes. In addition, it has
been suggested recently that traditional and insulin resistance-related metabolic risk markers
should be considered to better evaluate cardiovascular and T2DM risk [11]. In this article, we
will focus on evidence for increased inflammation in diabetes and some of the mediating
mechanisms.

Inflammation & atherosclerosis
Much evidence supports a pivotal role for inflammation in all phases of atherosclerosis, from
the initiation of the fatty streak to the culmination in acute coronary syndromes [12–14]. The
earliest event in atherogenesis appears to be endothelial cell dysfunction. Various noxious
insults including obesity, hypertension, diabetes, smoking and dyslipidemia, can result in
endothelial cell dysfunction, which manifests primarily as deficiency of nitric oxide and
prostacyclin and an increase in endothelin-1, angiotensin II, plasminogen activator inhibitor
(PAI)-1, cellular adhesion molecules and cytokines/chemokines. Following endothelial cell
dysfunction, mononuclear cells, such as monocytes and T lymphocytes, tether and roll along
the endothelium, initially loosely and thereafter adhere firmly to the endothelium and then
transmigrate into the subendothelial space. The rolling and tethering of leukocytes on the
endothelium is orchestrated by adhesion molecules such as selectins (E-selectin, P-selectin),
cell-adhesion molecules (ICAM-1 and VCAM-1) and integrins.

Chemotaxis and entry of monocytes into the subendothelial space is promoted by chemokines
such as monocyte chemoattractant protein (MCP)-1, IL-8 and fractalkine. Thereafter,
macrophage colony-stimulating factor promotes the differentiation of monocytes into
macrophages. Macrophages incorporate lipids from oxidized low-density lipoprotein via the
scavenger receptor pathway (CD36, scavenger receptor-A) becoming foam cells, the hallmark
of the early fatty streak lesion. Following the fatty streak lesion, smooth muscle cells migrate
into the intima, proliferate and form the fibrous cap. It is currently believed that lipid-laden
macrophages and smooth muscle cells, during the process of necrosis and apoptosis, release
matrix metalloproteinases and cathepsins, which cause a rent in the endothelium. Since the
macrophage is enriched in tissue factor, this is released from the macrophage and comes in to
contact with the clotting cascade, resulting in thrombus formation and acute coronary
syndromes (unstable angina and MI). Macrophages also interact with T cells and other cells
via activation of the CD40–CD40 ligand (CD40L) pathway, which contributes to plaque
vulnerability and destabilization. Various knockouts and transgenic experiments have
underscored the importance of the various cytokines, chemokines and adhesion molecules in
atherogenesis, emphasizing the pivotal role of inflammation in atherosclerosis [12–14].
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Inflammation & diabetes
C-reactive protein

Inflammation plays a crucial role in atherosclerosis and is involved in many of the metabolic
abnormalities associated with diabetes, the most important of them being insulin resistance.
The prototypic marker of inflammation is C-reactive protein (CRP). Numerous studies,
especially in normal individuals, have shown that CRP levels in the highest quantile predicts
cardiovascular events [14,15]. There is also evidence supporting the suggestion that CRP levels
are increased in diabetes. The earliest data underscoring the relationship between inflammation
and diabetes were the demonstration by Pickup's group that both serum IL-6 and high-
sensitivity (hs)CRP are elevated in diabetics [16]. Pickup et al. showed that T2DM subjects
with more then two features of the metabolic syndrome in fact had more inflammation
(increased serum CRP and serum IL-6 levels) compared with those with less than two features
of the metabolic syndrome and matched controls [16]. This was confirmed by the present
investigators in T2DM with and without macrovascular complications [17]. Ford et al. showed
in the Third National Health and Nutrition Examination Survey (NHANES-III) population that
individuals with diabetes or with impaired fasting glucose had increased levels of CRP
compared with those with a normal fasting glucose level [18]. Also, compared with this group,
participants with impaired fasting glucose, newly diagnosed diabetes and previously diagnosed
diabetes had 0.99 (0.72–1.37), 1.84 (1.25–2.71), and 1.59 (1.25–2.01) odds of having an
elevated CRP concentration after adjustment for age, sex, race or ethnicity, education and body
mass index (BMI). Tan et al. also showed that T2DM patients had higher CRP (p < 0.01) than
matched nondiabetic controls, and both endothelium-dependent and -independent vasodilation
were impaired (p < 0.01) in these subjects relative to CRP concentrations [19]. In the Hoorn
study, Yudkin's group demonstrated that in diabetics, levels of CRP and von Willebrand factor
(vWF) were a significant predictor of cardiovascular mortality, as well as all-cause mortality,
and that this risk was independent of the known conventional risk factors [20].

Several studies in different populations worldwide have consistently reported increased levels
of CRP in diabetes and in metabolic syndrome. Furthermore, it has been proposed that hsCRP
should be added as a clinical criterion for metabolic syndrome and that a hsCRP-modified
coronary heart disease (CHD) risk score should be created, as reviewed by us previously
[21]. Elevated CRP concentrations have not only been reported in diabetes, but also appear to
predict T2DM. One study by the Atherosclerosis Risk in Communities (ARIC) Investigators
showed that increased inflammatory markers, including white blood cell count, plasma
fibrinogen and sialic acid levels, were associated with the risk of developing T2DM [22]. The
Cardiovascular Health Study reported serum CRP concentrations were associated with the
development of diabetes in the elderly [23]. In the Women's Health Study, elevated
inflammatory markers, namely serum CRP and IL-6, were associated with the development of
T2DM in healthy middle-aged women [24]. A supportive observation was made in the West
of Scotland Coronary Prevention Study where CRP was shown to be an independent predictor
of risk for the development of T2DM in middle-aged men [25]. These were similar findings
to the MONICA Augsburg Cohort Study that reported low-grade inflammation being
associated with increased T2DM risk in middle-aged men [26]. In the USA, Pradhan et al.
investigated whether elevated plasma IL-6 and CRP levels were associated with the
development of T2DM in over 27,000 healthy women [27]. In the 4-year follow-up period,
188 women developed T2DM. For these women, baseline IL-6 and CRP were higher than in
controls. The relative risk of future T2DM in women, between the highest and lowest quartiles
of these inflammatory markers, was 15.7 for CRP. These data thus support a role for
inflammation in diabetogenesis. Furthermore, data collected from the Third National Health
and Nutrition Examination Survey suggested a possible role of inflammation in insulin
resistance and glucose intolerance. Over 2500 men and women were studied for associations
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between plasma CRP, fasting insulin, glucose and glycated hemoglobin (HbA1C). Elevated
CRP was associated with higher insulin and HbA1C levels in both sexes and with raised glucose
in women [28]. Further confirmation of this `inflammatory' hypothesis has come from the
Insulin Resistance Atherosclerosis Study (IRAS), where those individuals that converted to
T2DM had higher baseline levels of inflammatory proteins, including plasma fibrinogen, CRP
and PAI-1, than those that did not develop diabetes. The authors also concluded that chronic
inflammation is a risk factor for the development of T2DM [29].

With regards to T1DM, we and others have convincingly shown increased levels of hsCRP in
subjects with T1DM compared with age-, gender- and BMI-matched controls [30–33].

Schalkwijk et al. reported elevated levels of plasma CRP in T1DM patients without
macrovascular disease compared with controls [31]. Furthermore, Schalkwijk et al. showed
that CRP was higher in T1DM patients with microalbuminuria [31]. In the EURODIAB study,
Schram et al. showed that T1DM cases with complications had significantly greater CRP levels
than those without; however, they failed to compare subjects without T1DM [32]. In a Japanese
population, CRP levels have been shown to be significantly elevated in T1DM compared with
control and correlated with mean and maximum intima-media thickness [33].

Cytokines & chemokines
The monocyte–macrophage is crucially important and the most readily accessible cell in the
artery wall. The importance of studying monocyte function and atherogenesis in T2DM is
further underscored by the study of Moreno et al., which showed that coronary tissue from
diabetic subjects exhibits a larger content of lipid-rich atheroma and macrophage infiltration
than tissue from nondiabetic subjects [34]. Furthermore, Burke et al. also demonstrated that
lesions of T2DM subjects had larger mean necrotic cores and greater total and distal plaque
load than nondiabetic subjects [35]. Necrotic core size correlated positively with diabetic status,
independent of other risk factors. Intimal staining for macrophages, T cells and HLA-DR was
also significantly greater in diabetic subjects, respectively. The association of increased
macrophage infiltrate was independent of cholesterol levels and patient age. These studies
demonstrate that in sudden coronary death, inflammation and necrotic core size play a greater
role in the progression of atherosclerosis in diabetic subjects.

Reactive oxygen species (ROS), such as O2
−, have been shown to be increased in monocytes

and neutrophils of T2DM patients [36–42]. Studies from our laboratory show increased O2
−

levels in lipopolysaccharide-activated monocytes in T2DM patients with and without
macrovascular complications and in diabetic neutrophils [41,42]. Furthermore, in support of a
proinflammatory state in diabetes, we have convincingly shown that monocytic release of
IL-1β and IL-6 is increased in T2DM [42]. It is important to note that IL-1β also plays a key
role in the pathogenesis of T2DM. Recently, 70 patients were randomized to receive
subcutaneous injection of human recombinant IL-1 receptor antagonist once daily or placebo.
At 13 weeks, in the IL-1RA group there was significant decrease in HbA1C, increased β-cell
secretory function and a reduction in proinsulin-to-insulin ratio, an indicator of β-cell stress
[43].

Desfaits et al. have observed a significant increase in the levels of lipopolysaccharide-
stimulated TNF-α release from monocytes in T2DM [44]. An early event in atherogenesis is
the binding of monocytes to endothelial cells and their transmigration into the intima [45]. In
vitro, hyperglycemia increases binding of monocytes to human endothelial cells [46]. While
increased adhesion of monocytes to endothelial cells has been reported in T2DM [47,48], this
has been largely in patients with hypertriglyceridemia. We demonstrated convincingly that
even patients matched with controls with regards to the lipid levels had increased adhesion of
their monocytes to human aortic endothelial cells [42]. Soluble cell adhesion molecules are
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shed from activated cells, such as endothelial cells. Increasing evidence supports the role of
plasma levels of cell-adhesion molecules (ICAM, VCAM, E-selectin and P-selectin) as
molecular markers of atherosclerosis [49–51]. T2DM confers elevated levels of soluble
adhesion molecules, such as ICAM, VCAM and E-selectin [42,52–54], as shown by numerous
investigators. Furthermore, increased levels of ICAM and VCAM have been reported in the
atherosclerotic lesion of T2DM [55].

With regard to proinflammatory cytokines in T1DM, Kulseng et al. have reported increased
mononuclear cell TNF secretion in T1DM [56]. In the first comprehensive study of T1DM in
North America, we compared monocyte function and biomarkers of inflammation in T1DM
subjects without macrovascular disease with that in matched control subjects (n = 52 per group)
[40]. hsCRP, sICAM, soluble CD40L and nitrotyrosine levels were significantly elevated in
T1DM subjects compared with control subjects. Monocyte superoxide anion release was
significantly increased in the resting and activated state in T1DM compared with control
subjects. Monocyte IL-6 levels were significantly elevated in T1DM subjects compared with
control subjects in the resting state and after lipopolysaccharide activation. Monocyte IL-1β
levels were increased in the activated monocytes in T1DM compared with control subjects
[40]. In a subsequent study, we examined systemic and cellular biomarkers of inflammation
in T1DM patients with microvascular complications (T1DM-MV patients) and T1DM patients
without microvascular complications (T1DM patients) compared with matched control
subjects and determined the microcirculatory abnormalities in the T1DM and T1DM-MV
patients using computer-assisted intravital microscopy (CAIM). Severity index, as assessed
by CAIM, was significantly increased in the T1DM and T1DM-MV patients compared with
the control subjects [39]. There was a significant increase in CRP, nitrotyrosine, VCAM and
monocyte superoxide anion release, and IL-1 release in T1DM-MV compared with T1DM
patients. T1DM-MV patients had significantly increased CAIM severity index and
microalbumin-to-creatinine ratio compared with T1DM patients. Furthermore, pp38MAPK,
pp65 and pERK activity were significantly increased in monocytes from the T1DM and T1DM-
MV patients compared with those from the control subjects, and pp38MAPK and pp65 activity
was significantly increased in the T1DM-MV compared with the T1DM patients.

Nuclear factor-κB
Nuclear factor (NF)-κB plays a pivotal role in the regulation of several genes [57–59]. In
nonstimulated cells, NF-κB exists in a latent dimer form in the cytoplasm being bound to IκB,
an inhibitor protein. Several subunits of NF-κB (P50, P65, c-rel, P52, rel B) and IκB (α, β, γ,
δ, ε and Bcl3) are present. The main form of activated NF-κB is P50/P65. Upon stimulation,
IκB is phosphorylated, translocated to the nucleus and affects gene expression by binding to
κB elements in their promoters. Compelling evidence for increased inflammation in diabetes
can be found in the work from Hoffman et al., where they show that diabetic patients with high
HbA1C have increased NF-κB p65 activity [60]. In addition, they demonstrated a significant
correlation between NF-κB p65 and HbA1C and significant increase in NF-κB activity in
peripheral blood mononuclear cells of both T1DM and T2DM compared with controls. We
have shown that monocytes from T1DM subjects with and without microvascular
complications have significantly increased NF-κB activity compared with controls and that
there is a significant increase in T1DM with complications compared with T1DM without
complications [39]. This increase in NF-κB activity correlated with significant increases in
monocyte cytokine release, thus providing definitive evidence for increased inflammation in
T1DM.

Plasminogen activator inhibitor-1
Circulating levels of PAI-1 are a key regulator of fibrinolysis, and inhibit breakdown of fibrin
by inhibiting tissue plasminogen activator (tPA). There is substantial experimental and
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epidemiological evidence that PAI-1 contributes to the development of cardiovascular disease.
PAI-1 excess has been identified in youthful survivors of acute MI and plasma PAI-1 activity
is increased in MI survivors who develop recurrent MI [61]. A nested case–control study
identified a strong association between elevated PAI-1 antigen and activity with increased
independent risk of MI in middle-aged men and women [62]. Furthermore, transgenic mice
that overexpress a stable form of human PAI-1 develop spontaneous intravascular coronary
thrombosis and MI [63]. Several groups have reported increased PAI-1 localized to
atherosclerotic plaques and this is exaggerated in diabetics [64]. Furthermore, PAI-Tg has been
shown to accelerate the development of atherosclerosis in ApoE−/− mice [65], while PAI-
deficient mice crossed to an ApoE−/− background appear to be protected against the
development of atherosclerosis [66]. Furthermore, high concentrations of free fatty acids, very
low-density lipoprotein, triglycerides and CRP (which are all characteristic of diabetes),
augment PAI-1 expression. All these data point to the crucial role for PAI-1 in
atherothrombosis. Decreased fibrinolysis, primarily due to increased PAI-1 activity, has been
demonstrated in patients with coronary artery disease [67]. Elevated PAI-1 is considered a
strong risk factor for coronary artery disease and has been shown, in most reports to be elevated
in Type 2 diabetes [68]. In the IRAS study, levels of PAI-1 were the strongest independent
predictor of future diabetes and cardiovascular risk [69].

Toll-like receptors
Members of the Toll-like receptor (TLR) family play a critical role in the inflammatory
components of atherosclerosis. TLRs are a family of pattern-recognition receptors that are
important in the regulation of immune function and inflammation [70–75]. Their activation by
various ligands triggers a signaling cascade leading to cytokine production and initiation of an
adaptive immune response [70–75]. TLRs are upregulated in several inflammatory disorders.
However, there is a paucity of data on TLRs in diabetes, a cardiovascular risk equivalent.
Among the TLRs, TLR2 and TLR4 play an important role in atherosclerosis. TLR2 and 4 can
recognize components of the bacterial cell wall, such as lipopolysaccharide and peptidoglycans
and lipopeptides. The activation of these receptors on cells of the innate immune system leads
to the production of cytokines and chemokines, and the upregulation of cell surface molecules.
TLRs are expressed in multiple tissues; the predominant site of TLR expression is on cells of
the innate immune system, especially monocytes.

Toll-like receptor 2 and 4 expression is upregulated in atherosclerotic plaque macrophages and
in animal models of atherosclerosis [70–75]. TLR4 binds to the lipopolysaccharide (endotoxin)
of the outer membrane of Gram-negative bacteria. TLR2 recognizes and signals bacterial
lipoproteins, peptidoglycans and lipoteichoic acid from Gram-positive bacterial cell walls.
Knockout of TLR4 is associated with reduction in lesion size, lipid content and macrophage
infiltration in hypercholesterolemic apoE−/− mice [76]. In addition, TLR2/LDLR−/− and, in a
recent paper, TLR2/ApoE−/− mice are protected from the development of atherosclerosis
[77,78]. Furthermore, two groups have demonstrated that deficiency of myeloid differentiation
factor 88 (MyD88), one of the downstream TLR intracellular signaling molecules, results in
reduction in plaque size, lipid content, expression of proinflammatory genes, and systemic
expression of proinflammatory cytokines, such as IL-1 and TNF [70–78]. There is a paucity
of data examining the role of TLR2 and TLR4 in hyperglycemia/diabetes. TLR4 mRNA
expression is induced in adipose tissue of db/db mice [79]. Mohammad et al. showed increased
TLR4 expression in T1DM nonobese diabetic (NOD) mice and this correlated with increased
NF-κB activation in response to the TLR4 ligand, lipopolysaccharide, resulting in increased
proinflammatory cytokines [80]. In addition, Kim et al. demonstrated that TLR2−/− mice had
a reduced incidence of diabetes compared with wild-type NOD mice by approximately 50%
[81]. Song et al. reported increased TLR4 mRNA expression in differentiating adipose tissue
of db/db mice [79]. Wen et al. have shown viral mimic-induced development of diabetes in
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C57BL/6-rat insulin promoter-B7.1 mice that do not normally develop diabetes [82]. Further
mechanistic studies suggested that diabetes was induced via direct recognition of this virus-
like stimulus by pancreatic islets through TLR3 expression. Park et al. have shown significant
differences in TLR2 polymorphisms between T1DM and controls; however, they failed to
examine TLR2 expression [83]. Creely et al. demonstrated increased TLR2 but not TLR4
expression in adipocytes of T2DM; however, they failed to examine any correlations with
glycated hemoglobin or downstream readouts and their sample size was very small (n = 5)
[84]. This may have explained the failure to observe an increase in TLR4 expression, in spite
of an increased endotoxin level, the ligand for TLR4. We recently demonstrated for the first
time that TLR2 and TLR4 surface expression and mRNA were significantly increased in T1DM
monocytes compared with controls [85]. Downstream targets of TLR, NF-κB, MyD88, Toll/
interleukin receptor domain-containing adaptor-inducing IFN-β (Trif) and phosphate
interleukin receptor-associated kinase (IRAK), were significantly upregulated in T1DM.
Finally, release of IL-1β and TNF-α were significantly increased in monocytes from T1DM
compared with controls and correlated with TLR2 and TLR4 expression (p < 0.005). In
addition, TLR2 and TLR4 expression were significantly correlated to HbA1C,
carboxymethyllysine and NF-κB (p < 0.02). Furthermore, we reported a significant correlation
between TLR2 and TLR4 expression and glycemic control as well as AGE levels as denoted
by increased carboxymethyllysine (CML), NF-κB, IL-1β and TNF-α release (a readout of TLR
activation). Subsequently, we have also demonstrated increased levels of ligands for TLR2 and
TLR4 such as heat-shock protein 60, Homeobox group protein-1 (HMGB1) and endotoxin in
T1DM patients compared with matched controls, providing another line of evidence for TLR2
and TLR4 activity contributing to increased inflammation in T1DM [86]. Current studies in
the laboratory are focused on examining TLR2 and TLR4 expression in T2DM subjects
compared with matched controls.

CD40–CD40L
Increasing evidence shows that CD40–CD40L interaction plays a crucial role in the
pathogenesis of atherosclerosis [87–89]. Disruption of CD40 signaling in
hypercholesterolemic mice diminishes the formation and progression of atherosclerotic
plaques. Furthermore, interference with CD40 ligation promotes changes in plaque
composition associated in humans with less rupture-prone lesions, such as increased content
of smooth muscle cells and fibrillar collagen, as well as decreased lipid and macrophage
accumulation. CD40L can occur in soluble form in plasma (sCD40L). Patients with unstable
angina have elevated levels of sCD40L compared with those with stable angina or healthy
volunteers. Also, there exists a significant correlation between elevated levels of sCD40L and
future cardiovascular events in apparently healthy, middle-aged women. Recently, Varo et
al. demonstrated a significant (p < 0.001) association between plasma sCD40L and T1DM, as
well as T2DM, independent of total cholesterol, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, triglycerides, blood pressure, BMI, gender, CRP and soluble
ICAM-1 [90]. Furthermore, in a pilot study, administration of troglitazone (12 weeks, 600 mg/
day) to T2DM patients significantly diminished sCD40L plasma levels by 29% [91]. Lim et
al. also showed similar results; diabetics with microangiopathy had increased levels of plasma
sCD40L compared with those without microangiopathy and matched controls [92]. Jinchuan
et al. demonstrated that CHD patients with diabetes had increased levels of increase of CD40
and CD40L co-expression on platelets as well as sCD40L compared with controls (p < 0.01)
[93]. A positive correlation was found between serum AGE levels in patients with DM and
CD40–CD40L system.

Molecular mechanisms
With regard to molecular mechanisms we first explored the effects of hyperglycemia on
superoxide (O2

−) anion release in monocytes. Incubating monocytes with low glucose (5.5
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mmol/l) and high glucose (15 mmol/l), we showed that O2
− anion release was increased with

hyperglycemia and this was associated with increased protein kinase C (PKC) activity. Using
specific antisense oligonucleotides, we showed that O2

− anion release was driven by PKC-α
and that ROS and O2

− derived in the monocyte from NADPH oxidase and not from the
mitochondrial respiratory chain. Using antisense oligonucleotides to PKC-α obliterated the
increase ROS and O2

− anion release under hyperglycemic conditions in monocytes, while
antisense to PKC β-II had no effect [94].

We then examined the mechanism for increased monocytic IL-1β release under hyperglycemic
conditions. Data from inhibitor and siRNA experiments indicate that IL-1β release under
hyperglycemia is mediated by PKC-α, via phosphorylation of p38 MAPK and ERK1/2 leading
to NF-κB activation, resulting in increased mRNA and protein for IL-1β [95]. At the same
time, it appears that NADPH oxidase via p47phox activates NF-κB, resulting in increased
IL-1β secretion [95]. We also demonstrated that IL-6 release from monocytes under
hyperglycemia appears to be mediated via upregulation of PKC-α and -β, through p38 MAPK
and NF-κB, resulting in increased mRNA and protein for IL-6 [96]. Shanmugham et al. showed
that hyperglycemia also significantly induces MCP-1 expression [97]. Hyperglycemia-induced
MCP-1 mRNA expression and monocyte adhesion were blocked by specific inhibitors of
oxidant stress, PKC, ERK1/2 and p38 MAPKs. In addition, Srinivasan et al. have shown
increased IL-8 and increased monocyte adhesion under hyperglycemic conditions [98].
Glucose-stimulated monocyte adhesion is primarily regulated through phosphorylation of p38
with subsequent activation of AP-1, leading to IL-8 production. Inhibition of the p38 pathway
in diabetic db/db mice significantly reduced monocyte adhesion by 50%. Taken together, these
data indicate that chronic elevated glucose in diabetes activates the p38 MAPK pathway to
increase inflammatory IL-8 gene induction and monocyte/endothelial adhesion.

Recently, we have examined the molecular mechanisms for increased TLR2 and TLR4
expression under hyperglycemia. Knocking down both TLR2 and TLR4 in the cells resulted
in a 76% decrease in high-glucose-induced NF-κB activity, suggesting an additive effect.
Furthermore, PKC-α knockdown decreased TLR2 by 61%, whereas inhibition of PKC-δ
decreased TLR4 under high glucose by 63%. siRNA to p47Phox in THP-1 cells abrogated
high-glucose-induced TLR2 and TLR4 expression. Additional studies revealed that PKC-α,
PKC-δ and p47Phox knockdown significantly abrogated high-glucose-induced NF-κB
activation and inflammatory cytokine secretion. Collectively, these data suggest that high
glucose induces TLR2 and TLR4 expression via PKC-α and -δ, respectively, by stimulating
NADPH oxidase in human monocytes [99]. Furthermore, in order to understand the
mechanisms for increased circulating and monocytic IP-10 in T1DM, we tested the effect of
TLR2 and TLR4 siRNA on hyperglycemia-induced MCP-1 and IP-10 production, and
demonstrated that downregulation of TLR2 and TLR4 abrogates hyperglycemia-induced IP-10
release and MCP-1 via NF-κB inhibition [100].

Role of the adipose tissue
There is now considerable evidence that abdominal adiposity appears to be an important
contributor to the inflammatory state in diabetes [101–103]; however, this will not be discussed
in detail in this review. In 194 female twins, Greenfield et al. performed an analysis controlling
for genetic influences in monozygotic twins, and demonstrated that within-pair differences in
CRP were associated with within-pair differences in total and central body fat, triglycerides,
high-density lipoprotein and blood pressure [104]. These relationships are likely to contribute
significantly to the prospective associations between CRP and T2DM and coronary events.

Furthermore, the visceral adipose tissue has been shown to be positively related to CRP,
MCP-1, ICAM-1 and PAI-1 antigen [105]. These data suggest that adipose tissue distribution
remains an important determinant of systemic inflammation in T2DM.
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Conclusion
It is clear that diabetes is a proinflammatory state (Box 2). This is evidenced by increased levels
of hsCRP, TLR2, TLR4 and PAI-1, as well as soluble cell adhesion molecules, sCD40 and
proinflammatory cytokines. Future studies are needed to answer the question of whether the
diabetes begets inflammation or if a proinflammatory state precipitates the development of
diabetic vasculopathies. Potential therapeutic strategies that could be used to target
inflammation in diabetes include the statins, PPAR-γ agonists, metformin and insulin.

Expert commentary
The first studies related to inflammation and diabetes were mainly focused on studying patients
with T2DM and demonstrated that there are several cellular disturbances that contribute to the
proinflammatory state of diabetes. Recent studies have shown that in T1DM there are distinct
similarities to T2DM and T1DM is also a proinflammatory state. Recent evidence for that also
comes from in vivo data demonstrating increased TLR2 and TLR4 expression and activity in
diabetes.

Five-year view
Type 1 and Type 2 diabetes mellitus are associated with increased inflammation as manifest
by increased levels of hsCRP, monocyte proatherogenic activity, increased cytokines and
increased adipose tissue inflammation. All of these could result in increased micro- and macro-
vascular complications of diabetes. More importantly, there are several therapeutic strategies
that could be employed to target the increased inflammation in diabetes and forestall vascular
complications. Some of these therapeutic interventions include metformin, insulin, statins and
PPAR-γ agonists, which have been shown to be anti-inflammatory. Over the next 5 years, more
extensive and prospective clinical trials will be needed to answer the questions with regards to
the potential beneficial effects of these interventions in diabetes, with different end points
assessing different diabetic complications.

Box 1 Potential atherogenic mechanisms in diabetes

• Lipid and lipoprotein aberrations

• Procoagulant state

• Metabolic syndrome

• Microalbuminuria

• Glycation of proteins (advanced glycation end products)

• Oxidative stress

• Inflammation

Box 2 Evidence supporting increased inflammation in diabetes

• Increased levels of high-sensitivity C-reactive protein

• Increased levels of Toll-like receptor 2 and 4

• Increased levels of plasma and monocytic cytokines, IL-1, TNF, IL-6

• Increased levels of soluble cell-adhesion molecules

• Increased levels of plasminogen activator inhibitor-1
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• Increased CD40/soluble CD40 ligand

• Decreased levels of adiponectin

• Increased activity of protein kinase C, MAPK, NADPH oxidase, nuclear factor-
κB

Key issues

• Type 1 and Type 2 diabetes are associated with increased inflammation.

• Evidence for increased inflammation include increased levels of circulating
biomarkers of inflammation such as high-sensitivity C-reactive protein and
proinflammatory cytokines in diabetes.

• Diabetes is accompanied by increased cellular inflammation, as evidenced by
increased monocytic superoxide, cytokines and adhesion to endothelium.

• Diabetes is also a procoagulant state as evidenced by increased levels of
plasminogen activator inhibitor-1 and the CD40–CD40 ligand.

• Recent additional evidence for the proinflammatory state of diabetes is increased
levels of the Toll-like receptor (TLR)2 and TLR4, and increased downstream
signaling and adapter proteins in Type 1 diabetes.

• In addition, there is increased adipose tissue inflammation, increased macrophage
and T-cell recruitment in the adipose and decreased levels of adiponectin in Type
2 diabetes.
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