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Both food-storing behaviour and the hippocampus change annually in food-storing birds. Food
storing increases substantially in autumn and winter in chickadees and tits, jays and nutcrackers
and nuthatches. The total size of the chickadee hippocampus increases in autumn and winter as
does the rate of hippocampal neurogenesis. The hippocampus is necessary for accurate cache retrie-
val in food-storing birds and is much larger in food-storing birds than in non-storing passerines. It
therefore seems probable that seasonal change in caching and seasonal change in the hippocampus
are causally related. The peak in recruitment of new neurons into the hippocampus occurs before
birds have completed food storing and cache retrieval for the year and may therefore be associated
with spacing caches, encoding the spatial locations of caches, or creating a neuronal architecture
involved in the recollection of cache sites. The factors controlling hippocampal plasticity in
food-storing birds are not well understood. Photoperiodic manipulations that produce change
in food-storing behaviour have no effect on either hippocampal size or neuronal recruitment.
Available evidence suggests that changes in hippocampal size and neurogenesis may be a consequence
of the behavioural and cognitive involvement of the hippocampus in storing and retrieving food.
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1. INTRODUCTION
Food storing is seasonal in most birds that exhibit the
behaviour, with the greatest amount of storing occur-
ring in autumn and winter and the least in spring
and summer. Food-storing passerines, specifically
chickadees and tits, jays and nutcrackers and
nuthatches, are non-migratory north temperate zone
residents with broad diets. For these birds, food stor-
ing occurs at a time of year when invertebrate food is
scarce and most plants have completed seed pro-
duction. Both the abundance and predictability of
food have been shown to influence birds’ decision to
cache food (Pravosudov 1985; McNamara et al.
1990; Lucas & Walter 1991; Hurly 1992; Lucas et al.
1993; Lucas 1994; Pravosudov & Grubb 1997).
Food storing functions to reduce both the within-day
variation in food availability and the longer term vari-
ation in food availability that occurs across the autumn,
winter and early spring.

For some food-storing birds, caching is a very short-
term proposition. Chickadees and tits recover much of
the food they store within a few days (Cowie et al.
1981; Stevens & Krebs 1986), while leaving some for
much longer periods of 40 days or more (Brodin &
Ekman 1994). For Clark’s nutcrackers (Nucifraga
columbiana), storing occurs in autumn when pine
seed is abundant. Birds create caches and then move
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to lower elevations for the winter. Nutcrackers do
not retrieve and use this supply of cached food until
they return to high elevations and begin breeding early
in spring, before other sources of food are available
(Tomback 1978).

Chickadees, tits and corvids recover their stored
food by remembering where they have hidden their
caches. For review see Shettleworth (2003), Sherry &
Hoshooley (2007) and Balda et al. (1997). The hippo-
campus plays a crucial role in memory for the spatial
locations of caches. Lesions of the hippocampus
reduce the accuracy of cache retrieval to chance
levels, without reducing the tendency to make caches
or to search for them (Sherry & Vaccarino 1989).
Hippocampal lesions in food-storing birds disrupt per-
formance on other spatial tasks, too, without impairing
the ability to form simple associations (Sherry &
Vaccarino 1989; Hampton & Shettleworth 1996).
The hippocampuses of food-storing and non-storing
birds differ in a number of ways. Food-storing birds
have larger hippocampuses than non-storing species
(Krebs et al. 1989; Sherry et al. 1989) and show
higher rates of neurogenesis than non-storing species
(Hoshooley & Sherry 2007).

Along with seasonal changes in food-storing behav-
iour, there also occur seasonal changes in the brains of
food-storing birds. The hippocampus undergoes
change in size and neurogenesis that is correlated
with the seasonal pattern in food-storing. Because
the retrieval of food caches is hippocampus-dependent
and because the hippocampus differs between food-
storing and non-storing birds, the co-occurrence of
This journal is q 2010 The Royal Society
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seasonal change in the hippocampus and seasonal
change in food storing raises a variety of questions
about the evolutionary and developmental relations
between behaviour and the brain of food-storing
birds. We will review what is known about seasonal
change in the hippocampus of food-storing birds, par-
ticularly the chickadees and tits, and discuss some
general considerations about the function and control
of seasonal plasticity in the brains of these birds.

There has been a major revision of avian brain
nomenclature in recent years that reflects a new under-
standing of the organization of the avian brain and
homology between the brains of birds and mammals
(Reiner et al. 2004; Avian Brain Nomenclature
Consortium 2005). Some of the brain regions we
mention were renamed in this revision. The current
revised name of these areas will be used with the
former name given in parentheses at the first
occurrence.
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Figure 1. (a) Hippocampus volume and (b) telencephalon

volume in black-capped chickadees collected at four times
during the year. Sample sizes are: October n ¼ 6, January
n ¼ 5, April n ¼ 6, July n ¼ 7. There are no significant differ-
ences between months in hippocampal size or size of the

hippocampus relative to the telencephalon. Asterisk indicates
a significant difference between months (post hoc test p ,

0.05). Error bars ¼ 1 s.e.m. Adapted from Hoshooley et al.
(2007).
2. SEASONAL CHANGE IN FOOD-STORING
BEHAVIOUR
Food storing is clearly seasonal in chickadees and tits.
Storing occurs at high levels in autumn and winter and
low levels in spring and summer, but a more detailed
examination of this pattern reveals variability in both
the timing and duration of seasonal food storing
(Pravosudov 2006). One of the earliest reports of sea-
sonal food storing by chickadees described an October
peak in birds storing food in Ithaca, NY (Odum 1942).
This widely cited study, however, provides only a few
lines of text which mention anecdotally that storing
began in mid-October and continued into November.
Other studies report a seasonal peak in food storing in
the autumn, in both captive birds (Ludescher 1980)
and in the wild (Haftorn 1956; Nakamura & Wako
1988). A comprehensive examination of available
data on seasonality of food storing by chickadees and
tits shows that while food storing does tend to reach
maxima in autumn and early winter, the seasonal
peak can span several months (Pravosudov 2006).
Furthermore, some studies show a second spring
peak in storing activity. It seems probable that for
individual birds, food storing varies with year-to-year
variation in food availability and predictability,
energy expenditure, as well as social factors such as
winter flock demography and dominance structure.
While the data reviewed by Pravosudov (2006) show
that there are indeed seasonal maxima in storing,
these peaks are not always fixed in the calendar and
can be quite broad, in contrast to other well-known
changes in the behaviour of song birds such as the
more precisely timed onset of song production and
the initiation of reproductive behaviour and nesting
(Tramontin & Brenowitz 2000).
3. SEASONAL CHANGE IN HIPPOCAMPAL SIZE
Seasonal change in the size of the hippocampus in food-
storing birds was first described by Smulders et al.
(1995). Black-capped chickadees (Poecile atricapillus)
in Ithaca, NY showed a peak in relative hippocampal
size in October, at the same time of year that
Phil. Trans. R. Soc. B (2010)
food storing was reported to be greatest in this popu-
lation of chickadees. No seasonal change was found in
two visual areas measured as control regions, the nucleus
rotundus and the entopallial nucleus (ectostriatum).

There is variability, however, in the seasonal timing
of this size change in the hippocampus. In a study of
black-capped chickadees collected in southern Ontario
we found birds had a larger hippocampus from
February to April than from October to November
(Hoshooley & Sherry 2007). In another study of
birds from the same population we found no seasonal
difference in hippocampal size in birds collected in
October, January, April and July (Hoshooley et al.
2007; see figure 1). The balance of evidence seems
to indicate that in some years there is no seasonal
change in total hippocampal size, while for those
years in which seasonal change in hippocampal size
has been reported, the greatest hippocampal size can
occur in autumn (Smulders et al. 1995) or in late
winter and early spring (Hoshooley & Sherry 2007).
We will return to possible reasons for this variability
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below, after describing what is known about seasonal
variation in hippocampal neurogenesis.
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Figure 2. (a) Total number of BrdU-labelled hippocampal
(Hp) cells and (b) mean density of BrdU-labelled hippocam-

pal cells in black-capped chickadees collected at four times
of year. BrdU was administered on the day following capture
and birds were sacrificed 6 days later. Sample sizes as for
figure 1. Month of capture significantly affects both the

total number of labelled cells and the density of labelled
cells (F3,17 . 5.1, p , 0.01). Asterisks indicate significant
differences between months (post hoc tests p , 0.05).
Error bars ¼ 1 s.e.m. Adapted from Hoshooley et al. (2007).
4. SEASONAL CHANGE IN HIPPOCAMPAL
NEUROGENESIS
Seasonal change in hippocampal neurogenesis was first
described by Barnea & Nottebohm (1994) in a popu-
lation of chickadees in eastern New York state. Birds
were given injections of tritiated thymidine, [3H]thy-
midine, which is incorporated into the nucleus of
mitotic cells, and were then released back into the
wild. Birds given [3H]thymidine in October had
more labelled hippocampal cells when captured six
weeks later than birds injected in August or Febru-
ary/March. There was no seasonal difference in the
incorporation of new cells into the hyperpallium api-
cale (hyperstriatum accessorium), a structure lateral
and adjacent to the hippocampus, indicating that the
pattern in neurogenesis observed in the hippocampus
did not occur throughout the hyperpallium. There
was no significant difference in the total number of
neurons in the hippocampus at the times of year
sampled, indicating that hippocampal neurogenesis
did not result in an increase in the total number of hip-
pocampal neurons but must be, instead, part of a
process of neuron replacement.

Barnea & Nottebohm (1994) also labelled dividing
cells in captive chickadees in both October and May.
Captive birds, like birds released into the wild,
showed more new neurons in the hippocampus in
October than in May, but in both groups, the
number of labelled cells was about half that of birds
spending the interval between [3H]thymidine injection
and sacrifice in the wild. We will return to this captivity
effect, below.

In a study of the annual cycle of food storing and
hippocampal plasticity in birds collected in southern
Ontario, we found that while chickadees brought
into captivity in October were more likely to store
food than birds captured at other times of year, the
greatest number of new neurons appeared in the hip-
pocampus in January and April with very low levels
of hippocampal neurogenesis in October and July
(Hoshooley et al. 2007; see figure 2). In a further
study of birds taken from the same population of
chickadees, relatively high levels of hippocampal neu-
rogenesis were also observed in October/November
and in February/April, with no significant difference
in hippocampal neurogenesis between these two
times of year (Hoshooley & Sherry 2007). The sites
where chickadees were collected in the studies by
Barnea & Nottebohm (1994), Smulders et al.
(1995), Hoshooley et al. (2007) and Hoshooley &
Sherry (2007) are all found between 418 and 438 N
latitude so it is unlikely that population difference of
the kind described by Roth & Pravosudov (2009) is
responsible for differences observed in the timing or
occurrence of seasonal hippocampal change.
5. NEUROGENESIS IN THE AVIAN BRAIN
In birds, new neurons originate in a zone lining the lat-
eral ventricles. This region is known by various names,
Phil. Trans. R. Soc. B (2010)
usually the ventricular zone in birds, but in mammals
the subventricular zone, periventricular zone or
subependymal zone. The birth of new cells that even-
tually mature into neurons occurs throughout the
avian ventricular zone, although there are neurogenic
‘hotspots’ with higher mitotic activity (Alvarez-Buylla
et al. 1990). The ventricular zone is the only neuro-
genic region in the avian brain (figure 3), in contrast
to the mammalian brain in which new neurons are pro-
duced in both the subventricular zone and the
subgranular zone of the dentate gyrus of the hippo-
campus. Reptiles, like birds, have a single neurogenic
region in the brain—also the ventricular zone—while
fish and amphibians have multiple neurogenic regions
in the adult brain. In teleost fish, over 100 neurogenic
regions have been described (Lindsey & Tropepe
2006). The broad evolutionary trend in adult neuro-
genesis in the vertebrate brain has been a reduction
in the number of neurogenic zones.

Much of what is known about the origin and
migration of new neurons in the adult avian brain,
from the ventricular zone where they originate to the
telencephalic areas where they are later detected,
comes from studies of the song control system of
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Figure 3. (a) Black-capped chickadee hippocampus. The
avian hippocampus consists of the hippocampus (HP) and
the area parahippocampalis (APH). Solid arrows mark the

boundary with hyperpallium apicale (HA). The ventricular
zone (VZ), shown by dashed arrows, is the region of stem
cell division that produces both neurons and radial glial
cells. Cells are labelled for the neuronal nuclei specific
protein NeuN. V, ventricle (scale bar, 200 mm). (b) Dis-

tances new neurons have travelled from the VZ six days
following administration of the mitotic cell division marker
BrdU, are shown in the bar graph. (c) Radial glial processes
of cells labelled for the glial fibrillary acidic protein (GFAP).
Glial cell bodies remain in the VZ while new neurons move

along the radial processes into the hippocampus and other
regions of the telencephalon (scale bar, 30 mm). (a) Adapted
from Sherry & Hoshooley (2009). (b) Adapted from
Hoshooley et al. (2007).
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the canary (Alvarez-Buylla & Nottebohm 1988;
Alvarez-Buylla et al. 1988, 1998; Kirn et al. 1999).
The term ‘neurogenesis’ is often used loosely to refer
to the process that includes the production of new
cells from stem cell progenitors, the differentiation of
these cells into neuronal phenotypes, their migration
Phil. Trans. R. Soc. B (2010)
to target brain areas, and eventual incorporation of
these new neurons into neural circuits. Some authors
reserve the term ‘neuronal recruitment’ for the final
inclusion of new neurons in their destination areas
(e.g. Barnea & Nottebohm 1994). In any case, the
generation of new neurons is clearly a complex process
that involves both phenotypic transformation and
spatial displacement of post-mitotic cells over a time
course of days to weeks. The following summarizes
the central features of neurogenesis in the avian brain.

New neurons can be identified in the adult brain in
several ways. [3H]thymidine and 5-bromo-20-deoxyur-
idine (BrdU) are incorporated into DNA in the cell
nucleus at the S-phase of cell division, replacing thy-
midine during DNA synthesis, and such cells can
later be identified by autoradiography or immunohis-
tochemistry, respectively. Both of these cell division
markers label cells for about 2 h after they are injected
systemically (Cameron & McKay 2001)—perhaps for
an even shorter time in birds (Alvarez-Buylla et al.
1990)—and so the time at which cell division occurred
can be determined with some precision. When deter-
mining the time of cell division is not an objective,
multiple injections are often given over a period of sev-
eral hours or several days in order label a greater
number of dividing cells. Other methods that do not
require injection of exogenous markers are also used.
The protein Ki-67 is expressed by proliferating cells
during mitosis and such cells can be identified immu-
nohistochemically (Scholzen & Gerdes 2000). These
methods label dividing cells of all kinds, however,
and confirming the neuronal identity of labelled cells
requires an additional step. Neuronal morphology
can be used (e.g. Kirn et al. 1999) as can immunohis-
tochemical double labelling of cells for the neuronal
nuclei specific protein NeuN expressed by mature
neurons (e.g. Hoshooley & Sherry 2007). The protein
doublecortin (DCX) is expressed by immature neur-
ons for several weeks following cell birth and is used
increasingly in studies of neurogenesis (Brown et al.
2003). Because this protein is found almost exclusively
in neurons it serves as both a cell birth marker and
confirmation of neuronal identity, though by its
nature it cannot be used to identify new neurons
once they mature.

The progenitor cells producing new neurons in the
avian ventricular zone are radial glia (Doetsch 2003;
figure 4). These cells divide producing new cells that
migrate along the radial processes of glial cells with
their soma in the ventricular zone and long processes
extending into the parenchyma of the adult forebrain.
The radial processes of these cells are readily obser-
vable in the hippocampus of chickadees by
immunohistochemically labelling for glial fibrillary
acid protein (GFAP, figure 3).

Some cells produced in the ventricular zone can be
found with the morphology of young migrating neur-
ons in HVC (higher vocal centre) as early as 3 days
following labelling with [3H]thymidine (Kirn et al.
1999). There is a marked increase in the number of
new neurons in HVC, however, 8–11 days following
cell labelling. New neurons originating in the ventricu-
lar zone are present in the hippocampus within 7 days
following cell division (Barnea & Nottebohm 1994;
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Figure 4. The ventricular zone of adult birds showing epen-
dymal cells (E) in grey, radial glial cells (B) in blue and new
neurons (A) in red. Ependymal cells have multiple cilia
extending into the lateral ventricle (V) while radial glia

have only a single cilium. Radial glia divide to produce new
neurons which migrate along the processes of radial glial
cells (elongated cells shown in red) as well as moving parallel
to the ventricle (oval cells shown in red). New neurons are
not in contact with the ventricle. Glia nuclei may move

close to the ventricle at the time of cell division. Adapted
from Doetsch (2003) based on data from Alvarez-Buylla
et al. (1998) and Garcı́a-Verdugo et al. (2002).
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Hoshooley et al. 2007; see figure 3). Seven to 11 days is
thus the approximate time required for a new neuron
to move from the ventricular zone to its target area
in the avian brain and to differentiate into a neuronal
phenotype. Fifteen to 18 days after cell birth, some
HVC neurons have established connections with area
RA (robust nucleus of the archistriatum, Kirn et al.
1999). By 22 days following labelling, however, the
number of new HVC neurons has decreased by half,
a process of attrition similar to that occurring early
in brain development.

Studies in which birds are sacrificed at varying
intervals following injection of cell birth markers
such as BrdU and [3H]thymidine thus provide snap-
shots of different stages of the neurogenic sequence.
In one study, new neurons were present in the hip-
pocampus six days following BrdU labelling at
various distances from the ventricle (figure 3) but
most were within 50 mm from their probable birth-
place (Hoshooley et al. 2007). Six weeks following
labelling with [3H]thymidine, new hippocampal
neurons were found an average 165 mm from the
ventricle, though distributed at a range of distances
in a broad band parallel to the ventricle (Barnea &
Nottebohm 1996). Short survival times following cell
labelling probably give a picture of migration and
early recruitment in progress while longer survival
Phil. Trans. R. Soc. B (2010)
times show the final destination of postmigratory
neurons.

The role of radial glia as neural stem cells in the
avian brain is somewhat surprising but parallels the
neural stem cell role of glia in the mammalian subven-
tricular and subgranular zones (Doetsch 2003). Since
these cells occur throughout the brain, one question of
current interest is whether the ventricular, subventri-
cular and subgranular regions are specialized niches
that allow cells to act as neural progenitors (Miller &
Gauthier-Fisher 2009). In mammals, neural stem
cells in the subventricular zone are in contact with
both blood vessels and the ventricle and can thus
respond to chemical signals from many different
sources. Avian neural stem cells, similarly, are in
direct contact with the ventricle, extend a single
cilium into the ventricle, and are in close contact
with ependymal cells possessing multiple ventricular
cilia (figure 4). In the mammalian subventricular
zone, ependymal cells synthesize proteins that affect
cell division and differentiation (Miller & Gauthier-
Fisher 2009). The organization of the avian ventricular
zone, coupled with current knowledge of the relation
between behaviour and adult neurogenesis in birds,
may provide an opportunity to better understand the
regulation of neural stem cell activity in general.
6. PHOTOPERIODIC EFFECTS ON FOOD
STORING
Given the seasonality of both food storing and hippo-
campal plasticity, it is reasonable to suppose that such
circannual changes in behaviour and the hippocampus
might be under photoperiodic control, as is the case
for annual change in reproductive behaviour, song
and the song control nuclei of passerines. There have
been a number of attempts to induce change in food
storing and the hippocampus by manipulation of
photoperiod. Shettleworth et al. (1995) found that
exposing chickadees taken from the wild in March to
long days (14L : 10D followed by 16L : 8D) and
warm temperatures (228C) produced higher levels of
food storing after 6–8 weeks than holding birds on
short days (8D : 16L) at lower temperatures (178C).
After a period of 12 weeks, however, birds held on
short days increased storing to near the level found
in long day birds. Subsequent observation of these
two groups when tested under identical conditions of
day length and temperature suggested that photoperi-
odic history, rather than day length and temperature at
the time of testing determined the level of storing.
Shettleworth et al. (1995) interpreted these results as
showing that for birds captured in March, a period
of long days simulates summer conditions and leads
eventually to the initiation of storing as would be
expected to occur in autumn. The occurrence of
moult in the long day group but not in the short day
group in this experiment supports this interpretation.
In a further experiment, Shettleworth et al. (1995)
repeated a similar photoperiodic manipulation with
birds captured in November. They found that storing
did not differ between the short day and long day
groups but from the beginning of the study birds in
both groups stored at a higher level than observed
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in birds taken from the wild in March. Season of cap-
ture was shown in this way to have a major effect on
food storing, greater than any effect produced in cap-
tivity by manipulation of day length and temperature.

Day length and time available for feeding were
varied together in the experiments of Shettleworth
et al. (1995) described above. Although the availability
of storable sunflower seeds was equated for the groups,
long day length meant a longer period of daylight in
which to feed on the standard diet available to all
birds. The amount of time available for feeding may
have influenced fat deposition, body weight, and
hence the amount of food stored each day, without
there being a direct photoperiodic effect on food-
storing behaviour. Karpouzos et al. (2005) separated
the effects of day length and time available for feeding
by placing birds on short days (9L : 15D), long days
(15L : 9D) or a long day photoperiod (15L : 9D) but
with only 9 h of food availability. Birds in the latter
group thus had a longer daylight period but the same
number of hours in which to feed as birds on the
short day photoperiod. Although these manipulations
had significant effects on body mass and body fat,
they had no effect on food storing. Birds on short
days, with 9 h in which to feed, reached higher body
masses than birds on long days with 15 h in which to
feed. Birds on long days with 9 h in which to feed
maintained body masses intermediate between the
other two groups. The two groups with only 9 h in
which to feed had significantly higher fat scores
than the long day group. Nevertheless, food storing
showed a pattern of gradual increase during the
five weeks of the experiment in all groups with no
differences between the groups.
7. PHOTOPERIODIC EFFECTS ON THE
HIPPOCAMPUS
Do manipulations of photoperiod that produce
changes in food-storing behaviour also cause changes
in the hippocampus? Krebs et al. (1995) performed
manipulations of day length similar to those per-
formed by Shettleworth et al. (1995) described
above. Chickadees and non-storing house sparrows
(Passer domesticus), both captured in March, were
placed on either long (16L : 8D) or short (8L : 16D)
days. After several months on long days, both chicka-
dees and house sparrows began to moult. After they
had experienced several months on long days, chicka-
dees in the long day group also began to store more
food than birds kept on short days. The timing of
moult and the difference in food storing observed
between the groups of chickadees on long and
short days were comparable to those observed by
Shettleworth et al. (1995). There was no effect of the
day length manipulation, however, on the size of
the hippocampus in either species. Manipulations
of photoperiod that clearly produce eventual changes
in food storing—changes of the kind that would be
expected to occur at the end of the summer after an
extended period on long days—had no detectable
effect on the size of the hippocampus.

It is possible that in these studies manipulations of
photoperiod were performed with birds that were not
Phil. Trans. R. Soc. B (2010)
in a photosensitive state, ready to respond to changes
in day length. Birds’ responses to day length depend
not only on the photoperiod they are exposed to, but
also on their ability to respond to changes in day
length (Dawson et al. 2001). Birds exposed to long
summer days, for example, cease to respond to
long days with gonadal recrudescence, reproductive
behaviour and song and instead enter a period of photo-
refractoriness. Exposure to short days is necessary to
re-establish photosensitivity. MacDougall-Shackleton
et al. (2003) therefore compared food storing and
hippocampal size in three groups of black-capped
chickadees captured in October and November. A
photorefractory group was maintained on long days
(19L : 5D) simulating summer conditions. A photosen-
sitive group was maintained on short days (8.75L :
15.25D) simulating winter conditions. A subset of
these photosensitive birds were then photostimulated
by exposure to long days (19L : 5D) simulating spring
conditions. Photostimulated males underwent a very
large increase in gonad size, confirming that the birds
responded physiologically to this manipulation of
photoperiod. Females also showed a gonadal response,
with greatest ovary size in photostimulated birds, inter-
mediate ovary size in photosensitive birds and smallest
ovary size in photorefractory birds, as would be
expected to occur in females in the wild. Photorefrac-
tory birds exhibited very little food storing, compared
with the other two groups. Photosensitive birds contin-
ued to store food at elevated levels throughout the
experiment while photostimulated birds abruptly
decreased the amount of food they stored when
photostimulated, as would be expected to occur in
chickadees in the wild in spring. There was no
change, however, in hippocampal size in any of these
groups (MacDougall-Shackleton et al. 2003).

In a subsequent experiment, manipulations of
photoperiod that simulated autumn conditions were
found to have no effect on the recruitment of new
neurons into the hippocampus (Hoshooley et al.
2005). In this experiment, all chickadees were initially
maintained on short days (8L : 16D) then transferred
to long days, initially (24L : 0D) followed by (15L :
9D), simulating a summer photoperiod. After 71
days, when moult indicated these birds had become
photorefractory, some were transferred to short days
(8L : 16D), simulating autumn conditions, while con-
trols remained on long (15L : 9D) days. There were no
differences in the recruitment of new neurons into the
hippocampus among these groups, nor was there any
difference among the groups in hippocampal size.
The manipulations of photoperiod were not without
effect, however, because there was some indication of
greater recruitment of new neurons into the hyperpal-
lium apicale adjacent to the hippocampus (Hoshooley
et al. 2005).

The general conclusion that emerges from these
studies, each examining a different aspect of photo-
periodic responsiveness in chickadees and simulating
different seasonal conditions, is that while the fre-
quency of food storing can be changed by
manipulations of photoperiod, the size of the hippo-
campus and the recruitment of new neurons into the
hippocampus cannot. This is in contrast to field
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studies that report seasonal changes in both hippo-
campal size and neuronal recruitment in the wild.
Several reasons for this difference between field and
laboratory studies have been proposed. One possibility
is that the hippocampus, unlike the song control nuclei
(Tramontin & Brenowitz 2000), does not respond to
changes in photoperiod by a change in size, or in the
frequency of neurogenesis, either in the field or in
the laboratory. Field studies in which birds are
sampled from a wild population at different times of
year may not give a portrait of seasonal change in
the hippocampus within individuals. Instead, changes
in the hippocampus between samples may be due to
differential survival in the wild of birds that differ in
hippocampal anatomy or to changes in the age struc-
ture of the population being sampled. The variability
in the annual timing of food storing in the wild,
described above, supports the idea that food storing,
unlike reproductive behaviour in song birds, is not a
circannual cycle controlled by photoperiod.

Alternatively, it is possible that photoperiod does
drive changes in hippocampal size and neurogenesis
in the wild, but these changes are not observed in cap-
tivity, for several reasons. A ‘captivity effect’ on
hippocampal size and neuronal recruitment has been
reported in a number of studies, the latter not only
in the hippocampus of birds (Barnea & Nottebohm
1994; Smulders et al. 2000; Hoshooley & Sherry
2004; LaDage et al. 2009) but also in structures such
as the olfactory pathway of the shore crab Carcinus
maenas (Hansen & Schmidt 2004). Birds held in cap-
tivity have lower rates of neurogenesis than wild caught
birds (Barnea & Nottebohm 1994), and the pro-
duction of new hippocampal neurons is negatively
correlated with time in captivity over a 5–20 day
period (Hoshooley & Sherry 2004). Experience,
activity and enriched environments have positive
effects on hippocampal neurogenesis (Kempermann
et al. 1998; Gould et al. 1999; van Praag et al. 2005).
The hippocampus may, thus, change in response to
photoperiod, but only indirectly, as a consequence of
a substantial change in food storing behaviour induced
by change in day length and perhaps other seasonal
factors. In captivity, it may not be possible for birds
to engage in enough food storing and cache retrieval
to produce the changes in hippocampal size and
neurogenesis observed in the wild.
8. HIPPOCAMPAL NEUROGENESIS IN STORING
AND NON-STORING BIRDS
Although the timing of the appearance of new neurons
in the adult chickadee hippocampus is correlated with
the onset of food storing, there are many changes
occurring in the chickadee’s environment and in the
behaviour of chickadees in autumn. The social
system changes, from breeding pairs that have just
completed raising young to winter flocks of 6–8 indi-
viduals that defend a shared winter territory (Smith
1991). Home range expands because the winter flock
territory is about 3 times the size of the breeding terri-
tory. Diet also changes in the autumn, as the
proportion of invertebrate food in the diet declines.
Furthermore, the appearance of the habitat can
Phil. Trans. R. Soc. B (2010)
change dramatically as deciduous trees lose their
leaves and snow covers the ground and tree branches.
Other non-migratory residents of the north temperate
zone are experiencing the same seasonal changes, how-
ever, and many of these birds do not store food. We
therefore compared the annual cycle of hippocampal
neurogenesis in food-storing chickadees with that of
the house sparrow (Passer domesticus). House sparrows,
like chickadees, form dominance-structured winter
flocks (Smith 1991; Lowther & Cink 1992). The pro-
portion of invertebrate food in the house sparrow
diet, though normally lower than that of chickadees,
shows an autumn decline parallel to that which
occurs in chickadees (Smith 1991; Lowther & Cink
1992). The home range size of both chickadees and
house sparrows increases, neither species is migratory,
and house sparrows are found throughout all but
the extreme northwest part of the black-capped
chickadee’s geographical range.

We administered the cell bird marker BrdU
(5-bromo-20-deoxyuridine), which, like [3H]thymidine,
labels mitotic cells, to chickadees and house sparrows in
autumn (October–November) and spring (February–
April). Birds were captured and held throughout the
study in large outdoor aviaries exposed to natural
temperatures and photoperiod. Birds were given
6 BrdU injections over a 2-day period beginning
on the first day following capture and sacrificed
six weeks later.

Chickadees showed significantly more neuronal
recruitment in the hippocampus than found in
house sparrows in both spring and autumn measured
as the total number of new hippocampal neurons, the
density of new neurons per mm3, and the percentage
of hippocampal neurons that were new (figure 5).
There was no effect of season, however, and no inter-
action between season and species, showing that
neuronal recruitment was greater in chickadees than
in house sparrows in both autumn and spring with
no indication of seasonal change in recruitment in
either chickadees or house sparrows. Double-labelling
with NeuN (neuronal nuclei-specific protein) in a
subset of eight birds showed that 32 per cent of all
BrdU-labelled cells co-expressed this neuronal
marker and this percentage was the same for both
chickadees and house sparrows. Counts of NeuN-
labelled neurons were highly correlated with counts
performed using strictly morphological criteria of
neuronal identity (r ¼ 0.908, p , 0.001, n ¼ 5).
In the hyperpallium apicale laterally adjacent to the
hippocampus there was a low level of neuronal
recruitment that did not differ between species and
showed no effect of season.

The total number of neurons in the chickadee hip-
pocampus was greater than in the house sparrow, not
surprisingly because the chickadee hippocampus is
larger (figure 6), despite the larger body size of
house sparrows: a mean body weight of 27 g compared
with 11 g for chickadees. The chickadee hippocampus
thus incorporates new neurons at a substantially higher
rate than the hippocampus of the house sparrow.
Because both species experience similar changes in
social system, home range size, diet and appearance
of their habitat—but only chickadees store food—we
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conclude that this higher rate of hippocampal neuro-
genesis is associated in some way with food-
storing behaviour. This is not, of course, the ideal
comparative analysis. Chickadees and house sparrows
belong to different families and differ in more ways
than food storing. The ideal comparative analysis of
Phil. Trans. R. Soc. B (2010)
the relation between food storing and hippocampal
neurogenesis would include many species, both food-
storing and non-food-storing and control for
phylogeny (Felsenstein 1985; Harvey & Purvis 1991;
Sherry 2006). The results of the comparison of
black-capped chickadees and house sparrows are
suggestive, however, and indicate that a broader com-
parative analysis of hippocampal neurogenesis in birds
would be informative.
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9. SUMMING UP
What, then, do we know about the seasonal variation
in the hippocampus and its relation to seasonal
change in food storing? The basic facts are that food
storing is elevated in autumn and winter and
sometimes has a subsequent spring peak. This maxi-
mum can be a broad plateau spanning several
months and its exact timing can vary from year to
year. The hippocampus is essential for the accurate
recovery of caches (Sherry & Vaccarino 1989). The
hippocampus also differs in a number of ways between
food-storing and non-food-storing birds. Among
others, it is both larger and shows greater hippocampal
neurogenesis than the hippocampus of non-storing
species. Hippocampal size may vary seasonally in
food-storing birds and the available evidence indicates
that when a seasonal maximum is observed it occurs
sometime in the autumn and winter. Seasonal vari-
ation in hippocampal neurogenesis is more reliably
observed than change in total hippocampal size and
also exhibits an autumn or winter maximum, but for
neurogenesis, too, there is variation in timing of the
seasonal maximum. Given this basic information,
what can we reasonably suppose the hippocampus of
food-storing birds does, and what does seasonal
change in the hippocampus indicate?

If we assume that the hippocampus serves some
function that makes food storing advantageous for
chickadees, tits and other food-storing birds, what,
exactly, might the hippocampus do? It may help
food-storing birds space their caches apart to reduce
pilfering by other animals (Male & Smulders 2007).
Food-storing chickadees and tits disperse their
caches quite widely within their home range (Cowie
et al. 1981). One way to space caches apart is to
remember where earlier caches were put, and the hip-
pocampus may play a role in doing this. Once caches
are in place, the hippocampus could play no further
role in the food-storing strategy. According to this
view, caches could be retrieved by some mechanism
that does not require memory (Brodin & Clark 1997;
Smulders & Dhondt 1997) and so neurogenic activity
and perhaps total size of the hippocampus decreases
when food storing begins to decline.

Another possibility is that the hippocampus is
important in remembering the locations of caches
but its role is encoding, not the retrieval of information
from memory about the spatial locations of cache. The
hippocampus undergoes neuronal recruitment, and
perhaps a size increase, in autumn and winter because
that is when caching happens. The hippocampus is not
needed for cache retrieval in this scenario and so neu-
rogenesis subsides and the structure decreases in size
once food caching declines.

Finally, the hippocampus may be required for both
encoding and retrieving information about the
locations of caches. This can occur any time from
early autumn to late spring and so hippocampal neuro-
genesis during autumn or winter may create the
neuronal architecture that encodes information about
cache locations and later retrieves this information
from memory. Autumn neurogenesis, and perhaps an
increase in hippocampal size, builds a hippocampus
that deals with the large numbers of caches that are
Phil. Trans. R. Soc. B (2010)
to be created and retrieved over the ensuing months
until invertebrate food is once again available and
breeding begins. None of these ideas can be ruled
out by the available evidence, but all can be tested
using a variety of experimental methods in the field
and in the laboratory. The hippocampus of birds and
mammals is an ancient structure (Rodrı́guez et al.
2002) that exhibits diversity in both organization and
function (Bingman et al. 2006; Pravosudov et al. 2006;
Smulders 2006; Spencer et al. 2008; Eichenbaum &
Fortin 2009). Research on seasonal variation in the
hippocampus of food-storing birds may help us better
understand the evolution of this complex structure.

All research was carried out under Canadian Wildlife Service
Scientific Collection Permit CA-0031 and University of
Western Ontario Animal Use Protocols 2002-084-8 and
2007-001-03.
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be der Weidenmeise Parus montanus im Jahresverlauf
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