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The “weighted ensemble” method, introduced by Huber and Kim �Biophys. J. 70, 97 �1996��, is one
of a handful of rigorous approaches to path sampling of rare events. Expanding earlier discussions,
we show that the technique is statistically exact for a wide class of Markovian and non-Markovian
dynamics. The derivation is based on standard path-integral �path probability� ideas, but recasts the
weighted-ensemble approach as simple “resampling” in path space. Similar reasoning indicates that
arbitrary nonstatic binning procedures, which merely guide the resampling process, are also valid.
Numerical examples confirm the claims, including the use of bins which can adaptively find the
target state in a simple model. © 2010 American Institute of Physics. �doi:10.1063/1.3306345�

I. INTRODUCTION

In 1996, Huber and Kim1 introduced a path sampling
method which they dubbed “weighted ensemble Brownian
dynamics” �WEBD� simulation. Their focus was the diffu-
sively controlled binding of a ligand to a receptor, and the
WEBD method was designed to guarantee �statistically� that
some ligands would not simply wander away while also per-
mitting the correct calculation of kinetic rates. The method
was later extended to configuration space in the folding of
coarse-grained proteins.2 Our own use of the approach stud-
ied a conformational transition, and we demonstrated that the
method produces not only kinetic information but also the
full transition path ensemble.3 All these studies considered
only Markovian dynamics. We note that “forward
flux”sampling4,5 uses a strategy similar to WEBD; there are
also related steady-state methods6,7 and Monte Carlo �MC�
approaches.8 Furthermore, there are other rigorous path sam-
pling and generating techniques.9–19

The aim of the present note is to establish or expand
upon two important facts about the WE method. �i� The WE
method produces unbiased results for a broad class of sto-
chastic dynamics, including non-Markovian processes. Thus
the “BD” in Huber and Kim’s original title was overly re-
strictive. Non-Markovian dynamics can arise, for instance, in
self-avoiding walks20 or as a means for accounting for the
effects of degrees of freedom which have been suppressed—
for instance, the hydrodynamic effects of solvent molecules
not explicitly modeled.21 �ii� Further, the WE method can use
arbitrary bins which can change over time. This point was
made in the original WE paper1 and reiterated in our own
work.3

To demonstrate �i� and �ii�, we will show that WE is
simply a resampling process, i.e., it generates an alternative
but equivalent statistical sample of trajectories at occasional
time points. Further, this leads to no bias in the future evo-

lution of the system, subsequent to resampling. Because all
dynamical information, including the configurational distri-
bution, derives from the trajectory ensemble, WE produces
fully unbiased results. In WE simulation, the resampling is
controlled by the choice of bins. Because of the flexibility
intrinsic to resampling, however, there is great flexibility in
bin selection—including the freedom to dynamically rede-
fine bins on the fly. As shown below, it is even possible to
redefine bins adaptively—without using knowledge of the
target state—which eventually lead to successful transitions.
This opens up the possibility to explore configurational
changes not already described by experimental structures.

II. THEORY

A. The WE procedure

The weighted ensemble procedure of Huber and Kim1 is
straightforward to describe. First, the space of interest �real
or configurational� is divided into regions called “bins.” The
choice of bins is arbitrary and may change during a simula-
tion, as discussed below. For concreteness, however, it may
be presumed that the bins are static and chosen so that some
or all bins lead sequentially to a “target state” of interest,
which might be a binding site in real space or a
configuration-space state. Let N be the number of bins.

In conventional WE simulations M stochastic trajecto-
ries are initiated from one bin and each is assigned a weight
�probability� of 1 /M. Any distribution of initial configura-
tions may be used, whether confined to a single bin or not.
The trajectories are run for a short interval of time and
stopped, at which point the current bin of each trajectory is
determined. Trajectories arriving to new bins are split into
identical daughter trajectories sharing the weight and history
of the parent trajectory. Typically, M trajectories are created
in each newly visited bin, and each daughter inherits a suit-
able fraction of the parent’s weight �e.g., 1 /M if only one
trajectory arrives�. All trajectories are then restarted and run
for another short interval of time, after which the process ofa�Electronic mail: ddmmzz@pitt.edu.
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splitting is repeated as necessary. Whenever more than M
trajectories occupy the same bin, some are “killed” by a
probabilistic resampling process �see below�, maintaining a
total weight of one and no more than NM trajectories based
on N bins. The whole process is repeated until the desired
information is obtained.

The WE procedure generates a weighted trajectory en-
semble, which is rich in information. For instance, the tran-
sition rate from the initial state to the target can be calculated
based on the probability arriving in the target state as a func-
tion of time; in simple cases, the arrival probability per unit
time rapidly plateaus to the value of the rate.1,3 �More gen-
erally, the rate can also be calculated based on a steady-state
WE procedure, as we have shown in Ref. 22.� The trajectory
ensemble also includes information on more detailed transi-
tion probabilities and the evolving configurational distribu-
tion, both of which can be used to analyze or identify “struc-
tural” features3 such as intermediate states.

B. Resampling

The first goal is to get a feel for “resampling,”23,24 which
is a method for generating an alternative sample of a prob-
ability distribution, given some initial sample. Consider a
simple static example, where we initially generate, say, 100
numbers distributed according to a Gaussian. We could now
resample this distribution in a number of ways which pre-
serve the distribution. For instance, we could �a� discard 50
numbers at random or �b� duplicate each number exactly
twice. It is clear that such processes are statistically correct
by a “repeated simulation” argument: if we average over
many repetitions of the sample generation and resampling
process—e.g., repeated generation of many sets of 50 num-
bers by process �a�—then we will generate a Gaussian dis-
tribution to any desired precision.

Resampling can also be done in a nonuniform way, by
keeping track of weights. Consider the same set of 100
“Gaussian numbers,” with zero mean. In the initial “ordi-
nary” statistical sample, we can say that each number has a
constant weight which can be set to one without loss of
generality. We could randomly discard half the numbers on
the left �x�0� and assign each of the remaining left-side
numbers a weight of two. Again by the repeated simulation
argument, this is correct resampling. Alternatively, we could
duplicate all the numbers on the right �x�0� and assign each
a weight of one-half. More strangely at first glance, we could
simultaneously do both resampling procedures, which would
lead to a sparse sample on the left and a dense sample on the
right. The repeated simulation argument also demonstrates
the validity of this procedure.

Resampling can be defined as a process which creates an
alternative, but statistically equivalent, sample of a fixed
probability distribution based on an initial sample. The resa-
mpled sample will contain only a subset of elements in the
original sample but with potentially different frequencies and
compensating weights. The new sample can be either larger
or smaller than the original, as desired.

Importantly, the elements in a sample—which can be

resampled—can have arbitrary dimensionality. They can be
vectors or “objects” of any kind and, in particular, a vector
can represent a dynamical process/history. For instance, a
vector can represent the sequence of configurations in a dis-
cretized trajectory. Distributions of trajectories will now be
considered more carefully.

C. Statistical description of discretized stochastic
trajectories

We would like to construct a probabilistic description of
stochastic processes, and in particular, the probability distri-
bution of trajectories.9,12,13 Because our goal is to perform
more effective computer simulations, we will restrict our-
selves to discretized dynamics. That is, for our purposes, the
exact dynamics will be enacted by a computer simulation of
the form

x j = f�x0,x1, . . . ,x j−1� , �1�

which indicates that the present system configuration x j is a
�probabilistic� function of the full history of the trajectory.
In other words, in the notation of Ref. 25, x j is chosen
from the conditional probability distribution
p1�k�x j �x j−k ,x j−k+1 , . . . ,x j−1�, which depends on the previous
k steps of the trajectory. We are restricting ourselves here to
processes which are homogeneous in time, i.e., the function f
�or the conditional probability� is independent of the time
step j.

The important special case of a Markov process corre-
sponds to k=1. For k�1, an operational rule is required to
initialize the trajectory: if j�k, the function f must embody
some rule for using the distribution p1�k, e.g., setting all ear-
lier xi �for i�0� to some arbitrary value�s�.

Such a dynamical process implies that we can construct
the full probability distribution Ppath for n-step trajectories as
the product of the initial distribution p1�x0� and subsequent
conditional probabilities p1�k�x j �x j−k , . . . ,x j−1�. That is, we
have

Ppath�x0, . . . ,xn� = p1�x0��
j=1

n

p1�k�x j�x j−k, . . . ,x j−1� . �2�

This formal—but explicit—equation for the probability dis-
tribution of trajectories shows that for the broad class of
stochastic dynamics governed by Eq. �1�, the distribution of
trajectories can be considered a high dimensional “equilib-
rium” distribution.9,12,13 Indeed, it is this fact which permits
the use of path integrals.

It is also of interest to consider the configuration-space
distribution. This evolving distribution can be derived from
Eq. �2� at any point in time simply by integrating over all
possible histories.26 That is, the distribution at time point n
which depends on the initial distribution is given by �again in
the notation of Ref. 25�

p1�xn� =� dx0 ¯ dxn−1Ppath�x0, . . . ,xn−1� . �3�

In the case of a continuous-time Markov process, this is the
distribution that would be calculated from solutions of the
Fokker–Planck equation. Note that the distribution p1 in Eq.
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�3� is not the same as that in Eq. �2�; rather we are following
van Kampen’s convention,25 where the subscript refers to the
number of variables in the argument and the conditionality if
present.

D. Resampling a distribution of trajectories

Because the distribution of trajectories Ppath�x0 , . . . ,xn�
is an ordinary, albeit high-dimensional, distribution, it can be
resampled just as described for equilibrium distributions.
That is, given one sample of trajectories, we can generate
another �statistically� correct sample using deletions and du-
plications of entire trajectories, provided that we attach the
correct weights to the remaining trajectories. The means for
doing this are identical to that for the equilibrium case, and
the specific procedure used in WE simulation is described
later.

The distribution of trajectories at future times—
subsequent to a resampling process—will also be correct.
That is, if we resample the trajectory distribution at time step
n—preserving Ppath�x0 , . . . ,xn�—the trajectories which
evolve from the new sample via the dynamics �1� will also
have the correct distribution at a later time step n+m. This
can be seen formally by decomposing the full distribution
according to the relation

Ppath�x0, . . . ,xn,xn+1, . . . ,xn+m�

= Ppath�x0, . . . ,xn� �
j=n+1

n+m

p1�k�x j�x j−k, . . . ,x j−1� , �4�

which is equivalent to propagating the dynamics via Eq. �1�
from step n to step n+m.

E. WE as resampling

Weighted ensemble simulation simply performs occa-
sional resamplings of the trajectory distribution. In opera-
tional terms, it follows a set of simultaneous trajectories
simulated in parallel. Thus, the only difference between WE
and brute force simulation of this set of trajectories is that the
WE method entails resampling at occasional time points. Be-
tween resamplings, the WE simulations employ ordinary
brute force dynamics.1

Resampling in WE is performed only among trajectories
at the same point in time, and this is done in two ways. First,
an entire trajectory may be replicated M times, with each
replica assigned a weight of wi /M if the original trajectory
had weight wi. Such replicas are assigned a history identical
to that of the original trajectory. Second, two trajectories, i
and j may be “combined:” the full weight wi+wj is assigned
to one of the trajectories, with probability governed by the
relative weights. The surviving reweighted trajectory retains
its original history. Such combination is, in fact, simply a
removal process, like those described in the examples above.
The two types of resampling processes in WE, by construc-
tion, preserve the correct probability distribution for trajec-
tories for the time at which resampling is performed. There-
fore, as discussed above, the correct trajectory distribution is
preserved at all future times. Because the WE resampling

preserves the distribution of trajectories, it also preserves the
correct configurational distribution, which is derived from
the trajectory distribution via Eq. �3�.

F. Resampling in WE simulation can be achieved
with arbitrary dynamically changing bins

In its simplest form, weighted ensemble simulation di-
vides configuration space into a fixed set of bins or regions.
Resampling is performed to ensure that the number of trajec-
tories in each bin is equal �once a bin has been visited�. For
details, see, for example, Ref. 3.

The arguments above have emphasized that WE simula-
tion is more general than originally thought. Specifically, we
have argued that �i� resampling can be performed correctly in
myriad ways, and �ii� that any correct resampling procedure
will preserve the correct stochastic dynamics in a WE simu-
lation. Thus, WE simulation can exploit alternative resam-
plings.

Most importantly, as noted by Huber and Kim1 in their
original paper, the bin choices which govern resampling in a
WE study can be adjusted during the simulation. Arbitrary
changes to the binning during a WE simulation serve only to
generate different—but statistically correct—resamplings.
We now turn to numerical illustrations.

III. NUMERICAL RESULTS

To confirm our previous conclusions by simulations, we
consider several examples.

A. Colored noise

We first study one-dimensional stochastic dynamics27

governed by the overdamped Langevin equation,

dx

dt
=

F�x�
�

+ R�t� , �5�

where F�x� is the physical conservative force and � is the
friction constant. The noise R�t� can be taken as Gaussian
white noise with zero mean and correlation

�R�t�R�t��	 = 
2kBT

�
���t − t�� = 2D��t − t�� , �6�

or colored noise with zero mean and exponential correlation

��R�t�R�t��	 = D� exp�− ��t − t��� , �7�

where �¯  denotes the average over the distribution of the
initial value of R�t� according to

P�R�0�� =
1

�2�D��1/2exp�−
R�0�2

2D�
� . �8�

Here kB is Boltzmann’s constant, T is the temperature, and D
is the diffusion constant. The inverse of � in Eq. �7� is the
correlation time for the colored noise. If we use the simula-
tion time step size dt as a unit, this timescale can be ex-
pressed as

�−1 = s � dt . �9�
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In the case of colored noise �7�, the process �5� is non-
Markovian for the single coordinate x.25 The particular
choice of noise correlations �7�, related to an Ornstein–
Uhlenbeck process, can be generated using an auxiliary Mar-
kovian variable as a matter of convenience. However we
consider only the single non-Markovian variable, x, in which
case �5� represents a simple stochastic differential equation
with additive noise.

Both the WE method and brute force simulation are ap-
plied to study the duration of transition events28,29 for the
double-well potential

U�x� = 5.0kBT�1 − x2�2, �10�

with F�x�=−dU�x� /dx. The duration of a transition is defined
to be the time interval between the last time the trajectory
leaves x=−1 and the first time it reaches x=1.29 In Fig. 1�a�,
we compare brute force and WE simulation results for dif-
ferent colored noises with s=1, s=20, s=50, and s=100. The
two types of numerical results match very well. Fig. 1�b�
shows the WE simulation results for colored noise with s
=1 and white noise, which are almost identical, as one would
expect. Thus for any s�1, the white and colored noise re-
sults are dramatically different, and WE method reproduces
the effects in detail.

B. Myopic self-avoiding walk

We consider a self-avoiding random walk on a two-
dimensional “simple cubic” grid as a more extreme non-
Markovian example: the “dynamics” �i.e., transition prob-
abilities� at any step depends on the complete previous
history. In particular, we study a “myopic self-avoiding
walk,” following the definition in Madras and Slade’s20

book. Walkers will always look one step forward before they
move. If there are nearest neighbors of the current position
which have never been visited, the next step will be chosen
uniformly from them. Otherwise the next step will be chosen
uniformly from those neighbors which have been visited
least often. This definition ensures that the walk will not be
trapped, and thus contains more dynamical flavor than the
strictly nonintersecting self-avoiding random walk.20 As
shown in Fig. 2�a�, two absorbing walls are placed at x=−1
and x=15, and all the walkers start from the origin �0, 0�.
Those which reach the right absorbing wall before being ab-
sorbed by the left absorbing wall are defined as successful
transition events.

Brute force simulation and the WE method are applied to
obtain the distribution of the durations of the transition
events. The results are shown in Fig. 2�b�, and they match
very well. In WE simulation �10.865	0.015�% of all the
walkers reached the right absorbing wall successfully, which
is in agreement with the brute force result,
�10.854	0.004�%. It is noteworthy that when applied to
self-avoiding walk simulations, the WE method is operation-
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b for the double well potential
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ally very similar to the early work of Erpenbeck and Wall,30

as well as to later refinements �e.g., Refs. 31 and 32�.

C. WE method with random number of bins

The WE method can use arbitrary bins which can change
over time. To check this important fact, the WE program was
changed to randomly choose the number of bins N from a
range before every resampling �splitting and combination�.
Because such random binning is not selected to aid the effi-
ciency of WE simulation, it should provide a good test for
the correctness of WE under somewhat “adverse” conditions.
The modified WE program is applied to study the duration of
transition events for a Brownian particle in the double well
potential described by Eq. �10�. In the WE simulations, the
region x�−1 is treated as the first bin and the initial state,
the region x�1 is the last bin and the final state. The area
between them −1�x�1 is divided into �N−2� bins evenly.
As shown in Fig. 3, the modified WE program with fluctu-
ating bins yields excellent agreement with the result from
static bins.

D. WE method with adaptive Voronoi bins

The WE approach can adopt clustering ideas to divide
multiple simulations into groups, and change the bins during
the simulation for better performance; see also Refs. 7, 33,
and 34. In a particularly intriguing approach, the bins can be

constructed and adjusted without using information about the
target state. Such an adaptive strategy could be important in
biomolecular simulations, where only a single state �e.g., ex-
perimental protein structure� is known, but the presence of
other states is suspected.

The idea in adaptive WE simulation is for the bins to
follow the evolving probability distribution. For example, the
simulation can employ bins arising from the Voronoi
diagram35 based on N reference configurations. These refer-
ence configurations are chosen as follows.

�1� The first reference configuration is randomly chosen
from the current set of M �N configurations �i.e., M
configurations per bin�.

�2� Suppose we already have n chosen references �n�N�.
For every configuration i, calculate the distances to
each of these n previous references, and then find the
minimum of these distances, denoted Dmin�i�.

�3� The configuration with the maximum Dmin�i� will be
the next reference.

This procedure guarantees that the reference configura-
tions will spread evenly over the represented configurational
space. Furthermore the definition of bins will evolve with the
simulation as shown in Fig. 5.

We apply this adaptive WE method to a toy two-
dimensional system with two distinct pathways. The two-
dimensional double well potential is inspired by Chen, Nash,
and Horing’s work,36 and defined via

U�x,y�/kBT = 20�x2 + y2 − 1�2y2 − exp�− 4��x − 1�2 + y2�

− exp�− 4��x + 1�2 + y2� + exp�8�x − 1.5��

+ exp�− 8�x + 1.5�� + 4 exp�− 4�y + 0.25��

+ 16 exp�− 2x2� , �11�

as shown in Fig. 4�a�. The barrier between the two wells is
about 15kBT along each pathway. Both the WE methods with
dynamic Voronoi bins and static bins are applied to get the
distribution of duration of transition events. The initial state
and the final state are defined as the regions where the po-
tential satisfies U�x ,y�� �Umin+2kBT�, where Umin is the
lowest potential in the left and right wells.

We compare the results obtained via WE simulations
with dynamic Voronoi bins and static bins in Fig. 4�b�.
Again, The WE method with dynamic bins reproduces the
result from static bins. In Fig. 5, we show the evolution of
Voronoi bins in one of the WE simulations. The bins follow
the evolving probability distribution and find the target spon-
taneously after �200�, where � is the time interval between
resamplings �splitting and combination�.

IV. DISCUSSION

A. How resampling can improve efficiency
in WE simulation

A simple example illustrates how WE simulation can
improve the efficiency of estimating dynamical quantities
like the transition rate or of sampling the transition path en-
semble. Consider a simple double-well potential, and imag-
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ine starting 100 brute force simulations from the minimum of
the left well, state A. At some time t later, one expects to
sample approximately 100kt transitions to the right well
�state B�, where k is the rate for that process. For t1 /k, it
is unlikely to observe any transitions.

Also consider a WE simulation of the same system, us-
ing 100 simulations also started from state A, with just a
single resampling process at time t /2. At such an intermedi-
ate time, if the rate is low, we expect that roughly half the
trajectories ��50� have diffused to the left of the state A
minimum and half to the right. Assume that the WE resam-
pling process at t /2 removes about half of the left trajectories
and replicates half of the right trajectories �with appropriate
reweighting�, maintaining 100 trajectories overall. Because
successful transitions must proceed from the right side of the
minimum, and because there will now be about �75 trajec-
tories on the right instead of �50 without resampling, the
resampling will increase the chance of observing a transition
trajectory. With repeated resampling and a series of bins cov-
ering the reaction coordinate, a kind of “statistical ratchet-
ing” is achieved.

There is a price paid for the increased efficiency of esti-
mating dynamical quantities, namely, a decreased precision
in the sampling of the initial state, A. This is especially true
when there is a low transition rate out of state A. However
the typical goal of WE simulation is to sample transitions
and not the initial state.
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B. Improved efficiency is not guaranteed

On a practical level, we note that WE simulation �i.e.,
resampling a set of dynamical trajectories� does not neces-
sarily increase the efficiency with which a certain dynamical
process is characterized. To see this, consider again the ex-
ample of a double-well potential with trajectories initiated
from the left well. If, perversely, the trajectories were resa-
mpled so as to have fewer in the transition region between
the two wells �and perhaps more to the left of the left mini-
mum�, such a WE simulation would likely be less efficient
than simple brute force simulation with no resampling. In
fact, we found that the WE method could be more or less
efficient than brute force depending on the particular random
walk problem selected �see Sec. III B�.

There is therefore, as with many other simulation strat-
egies, a certain amount of “art” to optimizing the efficiency
of the WE method-even though it will remain rigorous if
performed based on rigorous resampling. This aspect has
been discussed in Ref. 3 but bears further investigation.

C. Connection to other methods

In a sense, we have shown that the WE approach ac-
counts properly for the trajectory “history” and therefore is
applicable for non-Markovian dynamics. Other path sam-
pling methods can also account for trajectory history, includ-
ing “forward flux sampling” �FFS�,4 “dynamic importance
sampling” �DIMS�,13 “transition path sampling” �TPS�,12

“transition interface sampling” �TIS�,17 etc. The MC method
“Russian roulette and splitting,”8 which is closely related to
WE method, apparently also can account for history effects.
Failure to account for trajectory history rules out an exact
description of non-Markovian processes.

V. CONCLUSIONS

We used probabilistic arguments and numerical tests to
demonstrate the generality of weighted ensemble path sam-
pling simulation. The method, in fact, applies to a broad
class of Markovian and non-Markovian dynamics. We also
confirmed that the bins used for “sampling” trajectories can
be changed during a simulation. In a toy system, we demon-
strated an adaptive approach to changing bins which did not
require knowledge of the target state.
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