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Abstract
The quality of an RF detector coil design is commonly judged on how it compares with other coil
configurations. The aim of this article is to develop a tool for evaluating the absolute performance
of RF coil arrays. An algorithm to calculate the ultimate intrinsic signal-to-noise ratio (SNR) was
implemented for a spherical geometry. The same imaging tasks modeled in the calculations were
reproduced experimentally using a 32-element head array. Coil performance maps were then
generated based on the ratio of experimentally measured SNR to the ultimate intrinsic SNR, for
different acceleration factors associated with different degrees of parallel imaging. The relative
performance in all cases was highest near the center of the samples (where the absolute SNR was
lowest). The highest performance was found in the unaccelerated case and a maximum of 85% was
observed with a phantom whose electrical properties are consistent with values in the human brain.
The performance remained almost constant for 2-fold acceleration, but deteriorated at higher
acceleration factors, suggesting that larger arrays are needed for effective highly-accelerated parallel
imaging. The method proposed here can serve as a tool for the evaluation of coil designs, as well as
a tool to guide the development of original designs which may begin to approach the optimal
performance.
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INTRODUCTION
Parallel MRI methods exploit the local nature of the reception pattern of the individual elements
of coil arrays to extract spatial information about the detected magnetization 1-3. When this
coil sensitivity information is combined with the spatial information obtained from externally
applied magnetic field gradients, images can be reconstructed from under-sampled datasets
acquired in less time than would otherwise have been required with gradient encoding alone.
Despite the many advantages of parallel imaging, one disadvantage is that parallel MR image
reconstructions require the inversion of a non-unitary encoding matrix, which leads to spatially
dependent amplifications of noise. This additional source of signal-to-noise ratio (SNR) loss
has been used to assess the performance of coil arrays in parallel MRI applications and has
been referred to as the geometry factor (g), since it depends on the shape of the coil sensitivity
functions 2.

The dependency of baseline SNR and g upon coil array geometry suggests that the final SNR
of the reconstructed image can be improved by optimizing the design of the receiver coil array.
Nowadays it has in fact become common practice to include simulations of SNR and g in the
design process 4,5. Although effective in improving existing array configurations, such a
method does not necessarily aid in developing innovative designs and, furthermore, it gives
no indication of how well a given design performs in comparison to the maximum achievable
SNR.

Prior work has shown that there is in fact an inherent electrodynamic limit to the achievable
SNR for any physically realizable receiver coil, and the behavior of ultimate intrinsic SNR
(assuming sample-dominated noise) has been modeled both in the absence 6 and in the presence
7,8 of parallel acceleration. In these prior studies ultimate intrinsic SNR was calculated by
performing a mode expansion of the electromagnetic (EM) field inside the object, without
making any assumption about the origin of each EM field in the basis set. In this work we
propose a different approach, using a mode expansion to express the general current distribution
on a surface surrounding the sample and deriving the EM field inside the object associated
with each current basis function. The resulting basis of EM fields is then employed to calculate
the best possible SNR as in the other studies. However, with our method we can also derive
and display the optimal current patterns associated with the ultimate intrinsic SNR.

The existence of an upper bound, independent of coil array design, on the performance of
parallel MRI may be very useful for coil optimization. The comparison of the ultimate SNR
with the SNR of a coil array under development can indicate whether there is room for further
improvement and can help in selection of the best design for given field strengths and sample
properties. Ocali et al. introduced a method to express the SNR performance of a coil as a
percentage of the best possible performance, in the case of standard gradient-encoded MRI 6.
The aim of the present work, following preliminary results presented at the 2006 meeting of
the ISMRM in Seattle, Washington 9, is to extend this method to include the effects of parallel
imaging, and to compute absolute coil performance for a particular many-element array which
is expected in principle to approach the ultimate limit.

In order to achieve absolute comparisons, it was necessary to scale computed ultimate intrinsic
SNR values by all known experimental factors influencing baseline SNR. Coil performance
maps, which at each pixel display the experimentally measured SNR value divided by the
corresponding scaled ultimate achievable value, were used to evaluate a close-fitting 32-
element head array design 10.
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METHODS
Review of the theoretical basis for ultimate intrinsic SNR

The source of noise that inherently limits the SNR performance of MRI systems is
electromagnetic fluctuations caused by thermal agitation of particles in the sample, as the
contribution of other noise sources can in principle be diminished through technological
improvements. For this reason, our derivation of the best possible SNR starts from the concept
of intrinsic SNR, which is defined as the ratio of the NMR signal to the RMS noise voltage
produced by the randomly fluctuating noise currents in the sample 6-8,11. The complex-valued
signal voltage induced in a receiving coil by a nuclear magnetic moment M precessing at
position r0 with the Larmor frequency ω about the z-axis, immediately after a 90° pulse, can
be expressed, using the principle of reciprocity 12, in terms of the RF magnetic field that would
be transmitted at the same position by a unit current of frequency ω flowing around the coil
(see Ref. 12 for notational conventions):

[1]

where M0 is the equilibrium magnetization (magnetic moment of a unit volume) and the net

coil sensitivity is defined as the complex conjugate of , the left-hand circularly polarized
component of the RF magnetic field. The RMS noise voltage per unit square root receiver
bandwidth is given by:

[2]

where kB is Boltzmann's constant, T is the absolute temperature of the sample and PL is the
power loss per unit current within the load (or sample). Assuming isotropic conductivity in the
sample, and invoking again the principle of reciprocity, PL can be calculated with a volume
integral as the Ohmic loss due to the RF electric field , which would be generated within a
sample with conductivity σ by the coil if it were driven by a unit current 13.

An expression of the intrinsic SNR received by the coil, per unit sample volume and unit square
root receiver bandwidth, can be found by combining Eq. [1] and [2]:

[3]

The ultimate value of intrinsic SNR at any particular position r is found by maximizing the
ratio in Eq. [3]. The net coil SNR is directly related to the electromagnetic fields responsible
for both signal reception and Ohmic losses in the sample; therefore signal and noise are linked
by Maxwell's equations and cannot be treated separately in the search for the optimum SNR.
The EM field can be expanded in a complete set of basis functions, each representing a valid
solution of Maxwell's equations within the object:

[4]
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and every EM mode can be associated with a hypothetical coil, so that it is possible to specify
a complete basis of coil sensitivities and the total noise power associated with any linear
combination of them. The best possible SNR would then be given by the weighting coefficients
αc (r0) that result in the highest intrinsic SNR 6-8. In Cartesian parallel imaging, undersampling
during signal acquisition leads to aliasing in single-coil image data, so the weighting
coefficients must also serve to remove aliasing in the combined image. In the present work we
computed the coefficients αc (r0) using the weak Cartesian SENSE algorithm 2, which is an
SNR-optimal reconstruction algorithm for parallel imaging that yields unit net coil sensitivity
at the reconstructed voxel position r0 and zero at all aliasing positions rn. For this particular
case, the search for maximum SNR is therefore equivalent to finding the reconstruction weights
that minimize the total noise power in the denominator of Eq. [3], subject to the following
constraint:

[5]

where δ is the Kronecker delta and R is the reduction, or acceleration, factor. The solution was
given by Pruessmann et al. 2 and an expression for the ultimate intrinsic SNR per unit volume
and unit bandwidth at any pixel position r0 was derived in Ref. 7 and 8:

[6]

In this expression, from which any scaling factor related to the particular pulse sequence has
been removed, the superscript H indicates conjugate (Hermitian) transpose and S denotes the
encoding matrix 2 containing the sensitivities of all basis elements at the reconstructed voxel
position r0 and all aliased positions in case of undersampling:

[7]

For a complete basis, the encoding matrix S would be infinite-dimensional (dim(S) = ∞×R).
In practice, the ultimate intrinsic SNR may be shown to converge for a finite number L of
suitably-chosen basis elements 6-8, and S has dimension [L×R]. Ψ is the [L×L] noise covariance
matrix, which characterizes the noise received by each coil and the correlated noise between
coils 14:

[8]

The “0,0” subscript in the denominator of Eq. [6] indicates the diagonal element of the matrix
in square brackets with an index associated with the target position r0.

Ultimate intrinsic SNR depends on the modeled object geometry and dielectric properties, but
is independent of the particular choice of the basis functions. However, previous authors have
shown that the numerical complexity involved in calculating SNR from Eq. [6] is affected by
the choice of basis functions, and have selected basis functions tailored to the object geometry
7,8. In the present study, the EM modes inside a spherical object were derived by performing
a full-wave EM field expansion into vector spherical harmonics.
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Ultimate intrinsic SNR calculation
Ultimate intrinsic SNR was calculated inside a sphere with uniform electrical properties. The
net EM field was derived by performing a mode expansion with dyadic Green's functions
(DGF) 15, following a method recently described that enables calculation of the optimal field
and current patterns associated with the best possible SNR 16. Given any spatial current
distribution J, the electric field can be calculated as:

[9]

where μo is the magnetic permeability in free space and G(r,r′) is the branch of the DGF
associated with the region indicated by r. The expression of G(r,r′) used for this work is defined
in Ref. 16 in terms of a double series of vector wave functions in spherical coordinates:

[10]

where l, m are the expansion indices, Xl,m is a vector spherical harmonic 13, k is the complex
wave number, r is the radial coordinate and jl is a spherical Bessel function of order l.

We started by defining a complete basis set of surface current modes, distributed on a spherical
surface at 5 mm distance from the surface of the modeled sphere, in order to mimic the case
of previously-constructed close-fitting coil geometries. The generic surface current mode was
expressed as:

[11]

where and  and  are the series expansion coefficients representing divergence-free
and curl-free surface current contributions, respectively. As in Ref. 8, a subset of the infinite
basis with L = 13,122 basis elements (corresponding to an expansion order of lmax = 80) was
used in the calculation of Eq. [6], to ensure convergence. For each mode, the electric field was
computed using Eq. [9] and the magnetic field was then derived as .
The individual EM fields were used to construct the encoding matrix and the noise covariance
matrix in Eq. [7] and [8], respectively. It is worth noting that, by adjusting the relative scaling
between the electric and the magnetic field, it is possible to obtain for these matrices precisely
the same expressions as in Eq. [B8] and [B7] of Ref. 8 (after multiplying Eq. [B7] by the
conductivity of the sample, to correct for a minor typographical error). Wiesinger et al. in Ref
8 used a multipole expansion to compute the EM fields inside a dielectric sphere, independent
of the underlying details of surface current patterns. In this work, we chose for convenience to
take advantage of our previously derived DGF software, which has the additional advantage
of allowing computation of optimal current patterns for comparison with particular coil
designs, and enabling prediction of conductor losses and other current-related effects 16.

The modeled sphere was chosen to match the geometry and the electrical properties of two
existing spherical MR phantoms, henceforward referred to as “Phantom 1” and “Phantom 2”.
Phantom 1 is a “Braino” phantom (GE Medical Systems, Milwaukee, WI, USA), containing
12.5 mM of N-acetyl-L-aspartic acid [NAA], 10 mM of creatine hydrate [Cr], 3 mM of choline
chloride [Ch], 7.5 mM of myo-inositol [mI], 12.5 mM of L-glutamic acid [Glu], 5 mM of DL-
lactic acid [Lac], sodium azide (0.1%), 50 mM of potassium phosphate monobasic
[KH2PO4], 56 mM of sodium hydroxide [NaOH] and 1 mL/L of Gd-DPTA [Magnevist].
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Phantom 2 is a low-conductivity phantom (Siemens Healthcare, Erlangen, Germany), filled
with a solution of 1.25 NiSO4 × 6 H2O, per 1000 g of distilled H2O. Both phantoms have
diameter equal to 16.9 cm (Figure 1). T1 relaxation time was measured to be 450 ms for
Phantom 1 and 200 ms for Phantom 2. Water solutions equivalent to the content of each
phantom were mixed and their conductivity and permittivity at 123.22 MHz (the operating
frequency of the 3T scanner used in our experiments, whose actual operating field strength is
2.89T) were measured using an Agilent 85070E dielectric probe (Agilent Technologies, Palo
Alto, CA, USA). Conductivity was 0.97 Ohm−1m−1 and relative permittivity was 81.3 for
Phantom 1, whereas for Phantom 2 conductivity was 0.084 Ohm−1m−1 and relative permittivity
was 80. Magnetic permeability of free space was used in both cases. A transverse section
through the center of the sphere was divided into an 84×84 grid of square pixels with 2 mm
side (Figure 1) and ultimate intrinsic SNR was calculated at each position, using 2.89 T static
magnetic field strength and a temperature of 298 degrees Kelvin, as measured with a
thermometer in the scanner room where the experimental part of this work was conducted.
Calculations were implemented in Matlab (MathWorks, Natick, MA, USA).

Experimental data acquisition
The spherical phantoms were scanned on a Siemens TIM Trio 3T scanner (Siemens Healthcare,
Erlangen, Germany) using the same image planes modeled in the ultimate intrinsic SNR
simulations (see Figure 1). The RF receive coil used in the SNR measurements was a receive-
only head coil array (Figure 2) consisting of 32 overlapping circular surface coil elements
arranged over the entire dome of the head 10, with the scanner body coil used for transmit. The
receive array was tuned and matched for a human head. A single proton density weighted two-
dimensional gradient echo image was obtained with parameters TR = 2000 ms, TE = 3.8 ms,
flip angle = 20°, slice thickness = 3 mm, 128×128 matrix, FOV = 256 mm, pixel half-bandwidth
= 25.6 kHz (line bandwidth = 200 Hz/pixel). With the known T1s and our chosen flip angle
of 20 degrees, the selected TR was computed to be sufficient for full relaxation between
excitations. To map the flip angle distribution over the phantom, eight additional images were
acquired with slice-selective excitations, using identical pulse sequence parameter values but
with increasing transmit voltages to achieve several nominal flip angles ranging from 60° to
150° in 15° increments and receiving with the body coil, including an additional zero signal
point.

For each acquisition, raw k-space data were saved for offline analysis, and magnitude images
reconstructed online were also saved for comparison. Each image acquisition was accompanied
by a noise reference measurement obtained by recording complex-valued data with the array
coil during the same pulse sequence used for the image acquisition but with no RF excitation.
This ensured that the noise samples were bandwidth-matched with the image acquisition and
that a sufficient number of noise samples were acquired to accurately estimate the noise
statistics.

Experimental SNR calculation
All image reconstruction and analysis was performed offline with custom software written in
Matlab. Image data were acquired with a Cartesian k-space sampling and two-dimensional
Fourier imaging, thus a standard image reconstruction consisting of standard FFT operations
for each individual coil channel was carried out as a start. No apodization or filtering was
applied at any stage of the image reconstruction, other than for the processing of coil sensitivity
estimates for SENSE reconstruction.

Due to the dielectric properties of the spherical phantoms, the flip angle of the RF excitation
varied spatially over the phantom, with higher flip angles at the center of the phantom 17,18.
Since the flip angle distribution affects image SNR, these transmit effects were identified and
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removed from the empirical SNR calculation. To compute the flip angle distribution, we fit a
sinusoid model of image intensity as a function of transmit voltage across the eight body coil
reference images to each image pixel with the Matlab function fminsearch. In this model, the
magnitude image intensity I is given by I = p1 sin(v · p2), where v represents the applied
transmitter voltage for the given reference image, parameter p1 captures both the object
magnetization contributing to the signal as well as the receive coil sensitivity profile, and
parameter p2 captures the flip angle per unit voltage. Given the eight reference images and
corresponding eight voltages, the fit produced the two estimated parameter values at each pixel
that yielded the minimum mean squared discrepancy between the model and the reference
image data. The achieved flip angle map  was then calculated at each pixel as the product
v0 · p2, where v0 is the desired voltage applied during the final image acquisition. Individual

coil images were then divided by the spatially varying function  to normalize the
effect of the intensity non-uniformity caused by the flip angle distribution, giving rise to a
compensatory intensity increase in the periphery of the phantom. Because the phantoms
contained no internal structure, the resulting image from a given coil element after flip angle
normalization provided a good approximation to the element's sensitivity profile.

The noise covariance matrix Ψ was calculated from the statistics of the noise samples scaled
by dividing the sample covariance matrix  by the scalar-valued noise equivalent bandwidth
bnoise to account for noise autocorrelations within each channel due to the filtering introduced
by the data acquisition electronics and receiver, i.e. .

With coil sensitivity estimates and channel noise covariance estimates in hand, composite
images in absolute SNR units were obtained following the general procedure outlined by
Kellman & McVeigh 19. Component coil images were combined using a Cartesian SENSE
reconstruction algorithm 2, which in the unaccelerated case corresponds precisely with the
optimal matched filter SNR combination method described by Roemer et al. 20. Note that,
because the MR signal is defined to be complex-valued, we adopted an observation model
where the signal is assumed complex-valued and thus the image SNR calculated from the
imaging data does not require an additional  scaling (see, e.g., Ref. 19 and 21). In order to
eliminate any phase variation in the experimental data (so as to match the simulated results,
for which M0 is assumed real in Eq. [6]), the absolute magnitude of the complex-valued
combined SNR image was taken. To account for the SNR bias introduced by this final
magnitude operation, a correction was applied to the resulting image SNR as detailed in Ref.
19 (following Ref. 21 and 22, which generalize the well-known Rician distribution correction
23 to the case of multi-element coil arrays).

SNR and g maps for acceleration factors 2, 4, and 6 were obtained from the fully sampled
dataset, using the SENSE reconstruction algorithm 2 with one-dimensional undersampling on
the x-y plane. To give a true measure of g for various acceleration rates, and to provide the best
match between simulated and experimental conditions, the images were cropped, before
undersampling, to produce a tight FOV around the phantom, resulting in a cropped image size
of 84×84. Estimates of the coil sensitivity profiles were generated by low-pass filtering the
resulting image intensities with a two-dimensional Hanning filter (normalized for unity noise
gain) with a cutoff set to include only the central 25% of k-space. Noise covariance matrices
were estimated as described above, and the geometry factor was calculated directly from the
analytic expression 2.

Coil performance maps
The ultimate intrinsic SNR is calculated considering the effects of a net EM field acting at
particular positions inside a sample, and deliberately ignoring all experimental factors which
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are not considered “intrinsic,” The units of an ultimate intrinsic SNR calculation are therefore
arbitrary – useful for investigating relative behavior of the optimum as a function of key
parameters such as acceleration factor and field strength 6-8, but not suitable for evaluation of
actual coil performance.

On the other hand, in order to compare the experimental SNR data with the simulated data, the
ultimate intrinsic SNR values must be properly scaled to account for the specific pulse sequence
parameters and system characteristics 6:

[12]

where Vvoxel is the volume of the voxel, Nacq is the number of the acquired k-space samples,
which accounts for the signal summation resulting from Fourier transform, NEX is the number
of signal averages, θ is the nominal flip angle, F is the system noise factor and Δf is the receiver
bandwidth. The system noise figure (NF), which is the noise factor expressed in dB, was
calculated from noise power measurements, obtained experimentally for one of the system
receiver channels using the “hot-cold resistor” method 24. The noise factor F was then derived
using NF = 10log10 F. The NF is a measure of the degradation of the SNR of an RF coil
introduced by downstream components in the RF signal chain, including the preamplifiers. For
this work, the published hot-cold resistor method 24 was followed closely. Metal film resistors,
which have a low thermal coefficient of resistivity, were used, and it was confirmed, using a
network analyzer, that these resistors had the same value at room temperature and when cooled
with liquid nitrogen. The resulting measured noise factor of F = 1.22 is consistent with the
manufacturer's specifications. Note that the inclusion of a single noise factor correction to
ultimate intrinsic SNR in Eq. [12] assumes that all receiver channels share the same noise
factor. If this is not the case (e.g. due to differential source impedances seen by distinct
preamplifiers), a single multiplicative correction is not possible, and the effects of receiver-
chain noise must instead be removed from experimental SNR measurements through
modification of each element of the measured noise correlation matrix, since ultimate intrinsic
SNR calculations do not refer to particular receive channels. Potential effects of neglecting
channel-to-channel variations in noise factor are addressed in the Discussion.

Table 1 summarizes the numerical values of the scaling factors, as well as the values of the
phantom's dielectric properties and of the other quantities used in the calculations. These
quantities include the operating frequency ω and the equilibrium magnetization M0 at the field
strength of interest, here 2.89 T. M0 appears in Eq. [6] for ultimate intrinsic SNR, and must be
accounted for correctly. The final value of M0 listed in Table 1 was computed using the
expression 25:

[13]

with the gyromagnetic ratio γ = 2.68×10 8 rad T−1 s−1, the temperature of the sample T = 298
K, the main magnetic field B0 = 2.89 T, I = 1/2 for hydrogen and the number of nuclear spins
per unit volume N = 6.691×10 28 m−3, assuming that the signal due to non -water components
of the phantom liquids is negligible. kB is Boltzmann's constant and ħ is Planck's constant
divided by 2π. It is also important to notice that, although the final matrix size is 128×128,
Nacq is equal to (256×128)/Raccel, with Raccel being the acceleration factor, because there were
256 k-space samples for each readout, due to an automatic 2-fold oversampling performed by
the MR system. The total bandwidth, including the oversampling, was 51.2 kHz.
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An accurate scaling of ultimate intrinsic SNR is critical to the absolute significance of coil
performance maps, which are defined as the ratio of the experimental SNR images to the
corresponding scaled ultimate intrinsic SNR images:

[14]

Performance maps provide a measure of the efficiency of each coil array for the specific
imaging task, as a function of position inside the sample of interest. Performance maps for the
32-element head array were generated for various acceleration factors, with the computational
grid adjusted to match the voxel positions of the 84×84 cropped experimental image matrix.

Performance maps were also synthetically generated for a 32-element array of loop coils, which
was modeled in simulation with a linear combination of the current modes, using appropriate
weighting coefficients to constrain the current patterns to be similar to the configuration in
Figure 2. The noise model for this simulation included a body noise contribution as for the
ultimate intrinsic case, as well as a coil noise contribution accounting for the finite conductivity
of the coil conductors 16. In this case, it was not necessary to scale the ultimate intrinsic SNR,
as the simulated coil SNR was calculated within the same framework and using the same basis
functions as the ultimate intrinsic SNR.

RESULTS
Coil performance maps for the 32-element head array are shown in Figure 3, for both phantoms
at various acceleration factors. In all cases the performance relative to the ultimate intrinsic
SNR was highest near the center of the object and approached zero near the surface, where the
ultimate SNR assumes its largest values.

A peak performance of 85% and 70% for Phantom 1 and Phantom 2, respectively, was observed
in the unaccelerated case. The maximum and mean performance (reported in square brackets
above each map) both decreased as the acceleration factor was increased. For 2-fold
acceleration, the performance relative to the ultimate SNR was almost equal to that in the fully-
sampled reconstruction (i.e. the array demonstrated the minimal allowed degradation in
absolute SNR with acceleration), whereas for 6-fold undersampling, noise amplifications
substantially degraded image SNR and the maximum performance decreased to 22% and 11%
of the ultimate SNR for phantoms 1 and 2, respectively.

Figure 4 shows the g-factor performance of the coil array relative to the ultimate intrinsic case.
We notice that, in terms of g-factor performance, the 32-element array is almost equivalent to
a hypothetical infinite array for 2-fold acceleration, whereas its efficiency in accelerating by a
factor of 6 is on average less than 20% of that predicted for the ultimate case. It is important
to note that the g-factor performance maps are only a measure of how well the finite array
preserves SNR with parallel imaging acceleration as compared to the ultimate case. g-factor
performance values can approach 100% even in the case of overall poor coil performance, i.e.
when the baseline unaccelerated SNR is very small compared to the ultimate intrinsic SNR.
Nevertheless, although the maps in Figure 4 do not provide an absolute measure of coil
performance, they are useful in investigating the capabilities of the coil array for parallel
imaging tasks, and they can be calculated more easily than absolute performance maps, without
reference to the scaling factors in Eq. [12].

Comparisons with the ultimate intrinsic SNR and g-factor in the center of the sample are shown
as a function of acceleration factor in Figures 5 and 6, respectively. In Figure 5 we see that
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absolute SNR (both for the 32-element array and in the ultimate case) is more than three times
higher for Phantom 2 than for Phantom 1. However, the relative performance of the coil array
is worse for Phantom 2, and the difference between the SNR of the coil array and the ultimate
intrinsic SNR increases more rapidly with increasing acceleration for Phantom 2. This is
confirmed by the graphs in Figure 6, which show that for 2-fold acceleration ultimate intrinsic
g-factor and g of the array overlap for both phantoms, whereas for 6-fold acceleration g of the
array becomes 12 for Phantom 1 and 18 for Phantom 2, though ultimate intrinsic g remains
almost equal in both plots.

Figure 7 provides an example of the surface current patterns that can be calculated with the
DGF formalism. The rightmost plot shows the net optimal surface current pattern resulting in
ultimate intrinsic SNR at a voxel at the center of the sphere. The optimal current patterns were
derived by summing the contributions of the individual current modes in Eq. [11], each
weighted by the corresponding coefficient from the SNR-optimal reconstruction. For the other
plots, three current modes (order l = 3, m = 0; l = 5, m = 3; l = 10, m = −10) were arbitrarily
chosen as examples of individual contributions to the net ultimate pattern. The current patterns
of the individual modes actually have more apparent structure than does the optimal
combination, which consists of a large distributed current loop with its axis in the transverse
plane.

Figure 8 shows (at right) a simulated performance map for our synthetically generated 32-
element array with Phantom 1, for comparison with experimental results. The simulated peak
performance in the unaccelerated case was 97%. Difference between simulated and
experimental performance are addressed in the Discussion. To the left of the performance map
in Figure 8 are a schematic of the array and a plot of the simulated current patterns.

DISCUSSION
As the number of available receiver channels on modern MR systems increases, greater
attention will be paid to the design and performance of many-element RF coil arrays. Questions
regarding the balance of coil-noise and sample-noise, or the suitability of any particular array
design for parallel imaging, promise to take on new significance as the number of elements
increases. In the present work a method has been described to evaluate the performance of any
particular coil array against a well-defined absolute benchmark. Coil performance is strictly
constrained by the behavior of electromagnetic fields within the sample 6-8. For a chosen
imaging task, the best possible SNR achievable for any coil configuration can be computed
using a complete set of coil sensitivity basis functions. In this study, we used ultimate intrinsic
SNR as a reference to assess the efficiency of a 32-element head receive array.

It should be noted that, although our experiments were performed only at 2.89 T, the basis
functions used in this work take full account of the frequency-dependence associated with
operation at different field strengths, and that coil performance maps are possible at arbitrary
field strength. That said, simple phantom geometries with uniform electrical properties are
expected to become an increasingly poor approximation of in vivo SNR behavior with
increasing field strength. The characterization of coil performance for arbitrary electrically
inhomogeneous objects remains possible with appropriate choices of surface-based field or
current basis functions, but such characterization would likely require extensive computational
effort. In fact, the calculation of ultimate intrinsic SNR would require a full-wave numerical
solution, for example using the Finite Difference Time Domain (FDTD) technique, for each
current mode, as well as detailed knowledge of the dielectric structure and spin distribution of
the object.
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In simulating the ultimate SNR we are effectively using an infinite number of coils surrounding
the object, and we expect a very high signal close to the surface. As a consequence, the ultimate
SNR rises rapidly at the edges, and relative coil performance is higher near the center of the
object. A similar spatial variation was reported in a previous paper which showed coil
performance maps in the case of non-parallel MRI 6. The performance values presented in that
study are slightly lower than those found for the unaccelerated case in this investigation, but
the results are not directly comparable as the phantom, the image section, and the imaging
system were different. Coil performance maps for parallel MRI were presented for the first
time at the 2006 meeting of the International Society for Magnetic Resonance in Medicine 9,
for the case of a cylindrical phantom. In that preliminary work, we reported performance values
of less than 50% in the center of the sample, for a coil array with fewer elements that was more
poorly matched to the phantom than was the case in this work.

In the current work, the overall maximum performance, corresponding to the unaccelerated
case with Phantom 1, was more than 80% in the central portion of the phantom, implying that
there is little room for improvement in coil array design for the case of fully-sampled
acquisitions. A slightly higher performance in the center of a uniform spherical sample was
predicted by a prior simulation study which modeled receive arrays of circular coils distributed
around the surface of the sphere 26. In that work the electrical properties of the sphere were
chosen to approximate values in the human brain and they were consistent with the properties
measured for Phantom 1. In order to investigate whether the higher performance values in the
center were due to the fully encircling configuration of the coil elements in Ref. 26, as opposed
to the open-faced configuration of our 32-element array, we also simulated (see Figure 8) the
performance with respect to the ultimate intrinsic SNR of a 32-element array, with loop coils
arranged similarly to the head array in Figure 2. The simulated unaccelerated peak performance
of 97% is similar to the values reported in Ref. 26, which suggests that removing coils at the
bottom and front of the array has little effect on the SNR in the central region of the phantom.
The difference in values between the map in Figure 8 and the corresponding map in Figure 3
must be then linked to other factors.

1. A minor contribution may traced to our expression for voxel volume in Eq. [12]. In
reality the signal contributions to a given reconstructed voxel value are weighted by
the point-spread function (PSF), whose integrated volume may differ somewhat from
simple cuboid voxels. However, the Cartesian SENSE reconstruction we used
maintains a nearly sinc-shaped PSF, whose integrated volume is the same as that for
a cuboid voxel. To the extent that the phantom is uniform, that the sensitivities vary
slowly within a given voxel, and that partial volume effects are limited to positions
near the edges of the object, the voxel volume is not expected to differ from that used
in Eq. [12].

2. Another minor effect may be related to our assumption of uniform noise factor for all
receiver channels. In practice, variations in noise factor are expected to be modest
(e.g. ~10%), resulting in still smaller variations in measured SNR for any given
channel (~5%). Meanwhile, differing values in different receiver channels will be
averaged to some extent by inclusion in the noise correlation matrix, resulting in even
smaller effects on combined SNR.

3. An additional complication is that, while we do account for body-derived noise
correlation between array elements (see Eq. [8]), we do not model inductive coupling,
which may also contribute to noise statistics. In fact, measured noise correlations
between coil elements are on average higher than predicted by our DGF method (ratio
of off-diagonal to diagonal elements of the noise correlation matrix 55% maximum
and 9% average for simulations versus 53% maximum and 12% average for
experiments). To the extent that this increased correlation reflects pure linear
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inductive coupling, it is not expected to have a significant effect on SNR when the
noise correlation matrix is included in the reconstruction 27. However, some
degradation due to extensive coupling cannot be ruled out.

4. The most significant contribution to the discrepancy between simulated and measured
performance is likely due to the presence of additional noise sources that are not taken
into account by our DGF formulation. The weights used for our 32-element DGF
calculations produce a relatively simple current distribution inside the conductors,
neglecting current concentration effects along edges and around capacitors.

The particular contributions of each of these effects to the observed discrepancy between
simulated and experimental coil performance may be investigated in detail. However, one of
the explicit advantages of ultimate performance maps is that, when combined with appropriate
simulations of particular array geometries, they can indicate now much of the room for
improvement in coil performance relates to practical as opposed to theoretical limits.

Phantom 2 was included in this study to illustrate the effects of electrical properties upon coil
performance, and also to provide data from a phantom which is widely available to the research
community. Absolute SNR values were higher for Phantom 2 (see Figure 5) due to its smaller
electrical conductivity, which results in lower sample noise (see Eq. [2]). On the other hand,
smaller electrical conductivity corresponds to larger standing wave effects, which are partly
responsible for the lower performance of the 32-element head array with Phantom 2. In fact,
as the array was tuned and matched for the human head, better loading with Phantom 1 might
have positively affected the performance results because the array was designed to provide the
correct noise match to the preamplifiers with a human head-type load, and because the higher
conductivity of Phantom 1 increases loading and leads to a smaller relative contribution of coil
noise. The fact that coil performance was lower with Phantom 2 does not imply that the head
array design is suboptimal for its target clinical applications, as Phantom 2 is filled with a
solution whose electrical properties are not meant to approximate human tissue, but rather to
minimize susceptibility artifacts.

The average performance of the coil array (see Figures 3 and 4) was almost constant for 2-fold
acceleration, but rapidly decreased for larger acceleration factors. This suggests that 32
elements, arranged as in Figure 2, are not enough for effective highly-accelerated parallel
imaging and that larger arrays, or a different configuration of the conductors, are needed in
order to approach the acceleration efficiency of the ultimate intrinsic case.

The examples shown in this work demonstrate that the method proposed here can serve as a
tool for the evaluation of coil designs. Ultimate intrinsic SNR defines an absolute performance
target for coil designers, and coil performance maps provide useful and immediate feedback
on how far a particular array configuration is from this target. Ultimate SNR need be computed
only once for each particular geometry and object composition, which facilitates its use as an
effective evaluation instrument for coil engineers.

Given the comparatively large set of basis functions required for convergence of the ultimate
intrinsic SNR at multiple positions, it is unlikely that all the modes used to simulate the
optimum can be practically realized with an actual coil array. However, the asymptotic growth
of the ultimate intrinsic SNR with increasing number of modes (see Ref. 6-8), and our results
showing that 32 elements nearly saturate the ultimate SNR in the unaccelerated case,
demonstrate that a smaller subset of the larger basis can capture the dominant SNR behavior.
It may even be possible to build an array targeted to that subset of modes in order to approach
the simulated optimal sensitivity patterns, using the weighting factors generated by the ultimate
SNR optimization to directly compute these ideal EM fields. For example, the distributed
optimal current pattern shown in Figure 7 could in principle be approximated with a
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comparatively small number of concentric loops. However, the optimum will be different for
every point in the sample and thus only a tradeoff solution might exist for the conductor patterns
needed to approach optimal performance at a large number of positions. Genetic algorithms
have been already applied to a similar optimization problem 28 and, with an accurate and robust
parameterization, they might be employed also for the design of optimized coil arrays for
different parallel MRI applications.

Since such arrays should in principle perform very close to the optimum, any substantial
discordance could be linked to noise other than that coming from the sample. The development
in recent years of arrays with very many elements 29 has raised to practical priority the question
of what is the smallest size for array elements before the final SNR begins to be dominated by
the noise coming from the electronic components. Compared to other methods previously
proposed to calculate ultimate intrinsic SNR (see Ref. 6-8), the DGF approach used in this
work allows convenient modeling of arbitrarily-shaped finite arrays within the same
framework.

In conclusion, the capability of parallel MRI to accelerate image acquisitions is fundamentally
limited by electrodynamic constraints, but the knowledge of such limitations can be exploited
to evaluate current coil design and eventually to guide the development of innovative receivers
that may operate close to the optimum performance.
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Figure 1.
Schematic diagram of the image plane and the FOV used to calculate ultimate intrinsic SNR
for the spherical phantoms used in this study. The FOV is a square with a side of 16.8 cm, just
large enough to contain the entire circular section. It is uniformly divided into an 84×84 grid
of pixels.
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Figure 2.
32-element receiver coil array employed in the experimental study. The surface coils are packed
on a thin helmet-shaped fiberglass frame that minimizes the distance from the sample.
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Figure 3.
Coil performance maps at 2.89 T for a central axial slice through each of two homogeneous
spherical phantoms with equal dimensions and different electrical properties (“high
conductivity”: σ = 0.97 Ohm−1m−1, εrel = 81.3; “low conductivity”: σ = 0.084 Ohm−1m−1,
εrel = 80). The performance of the 32-element head array with respect to the ultimate SNR is
shown for each phantom at various acceleration factors. Each pixel represents the experimental
SNR divided by its corresponding ultimate SNR value. Above each map, the maximum and
the mean performance are indicated in brackets and reported as a percentage of the optimum.
The mean is computed including only the pixels inside the circular cross-section of the object.
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Figure 4.
Geometry factor performance for various parallel imaging acceleration factors at 2.89 T for a
central axial slice through each of the two uniform spherical phantoms. Since the g-factor in
the ultimate intrinsic case is always smaller than the g-factor for the 32-element array (or indeed
any finite array), gultimate is shown as a percentage of garray in these maps.
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Figure 5.
SNR as a function of acceleration factor for a voxel in the center of each spherical phantom.
The SNR obtained with the 32-element head array is compared with the corresponding ultimate
intrinsic SNR for each of the two phantoms. Both plots are normalized to the value of ultimate
intrinsic SNR at an acceleration factor of 1 for the phantom with the highest electrical
conductivity (i.e. Phantom 1).
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Figure 6.
Geometry factor as a function of acceleration factor for a voxel in the center of each spherical
phantom. The geometry factor of the 32-element head array is compared with the corresponding
optimal values.
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Figure 7.
Illustration of the process by which optimal surface current patterns are generated. The first
three plots from the left show current patterns for three arbitrarily chosen modes (l = 3, m = 0;
l = 5, m = 3; l = 10, m = −10). The rightmost plot show the optimal current patterns, evaluated
at every arrow position as the sum of the contributions of all current modes, weighted by the
combination coefficients resulting in maximum SNR at a voxel in the center of the object.
Optimal current patterns can be similarly computed for other voxel positions.
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Figure 8.
Simulation of the performance of a 32-element head array with respect to the ultimate intrinsic
SNR. Loop coils were arranged in software around a spherical object to obtain a configuration
similar to the array in Figure 2 (left plot). Current modes in our basis set were then weighted
with appropriate coefficients in order to reproduce the current patterns corresponding to this
conductor geometry (center plot). The SNR of the array was calculated using the DGF method
on a transverse FOV and the resulting values were reported as a percentage of the optimum by
means of a performance map (right plot). The maximum and the mean performance are
indicated in brackets above the map.
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Table 1

Dielectric properties, constants and scaling factors used in the calculations

Larmor frequency ω/2π 123.22 MHz

Equilibrium magnetization MO 9.03 × 10−3 A·m−1

Boltzmann constant kB 1.381 × 10−23 J·K−1

Sample temperature T 298 K

Conductivity σ 0.97 Phantom 1
0.08 Phantom 2 Ω−1·m−1

Relative permittivity εr 81.3 Phantom 1
80 Phantom 2 -

Vacuum permittivity εo 8.85 × 10−12 C2·N−1·m−2

Permeability μ 1.2566 × 10−6 Wb·A−1·m−1

Volume of the voxel Vvoxel 1.2 × 10−8 m3

Receiver bandwidth Δf 51.2 kHz

Flip angle θ 0.3421 rad

Noise factor F 1.22 -

Signal averages NEX 1 -

Acquired data points Nacq (256 × 128)/Raccel -
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