Skip to main content
. 2010 Mar 1;5(3):e9450. doi: 10.1371/journal.pone.0009450

Table 1. Summary of model performance and the estimated coefficients for Hong Kong Influenza.

Model Fit Prediction AR MA Environmental variables
RMSE AIC RMSE Est. Pr > |t| Est. Pr >|t| Vars Est. Pr >|t|
ARIMA(2,1,2) 0.4045 166.26 0.4788 0.44 <.0001 0.588 0.0037
−0.446 <.0001 −0.785 0.0025
ARIMA(1,1,2) 0.4071 166.25 0.4321 0.45 0.0226 0.603 0.0014
−0.375 <.0001
SARIMA(1,0,0)(0,1,0) 0.5144 159.46 0.4993 0.774 <.0001
SARIMA(2,0,0)(0,1,0) 0.5074 156.56 0.5033 0.608 <.0001
0.219 0.0288
ARIMAX(1,1,2) with LST, RF, and RH 0.3675 138.51 0.5292 0.426 0.0181 0.6443 0.0001 LST (Lag2) −0.035 0.0016
−0.446 <.0001 LST (Lag5) −0.0307 0.0049
RF (Lag 3) 0.0534 0.0047
RH 0.0164 <.0001
SARIMAX(0,1,2)(1,0,0) with LST, RF and RH 0.3662 137.52 0.5433 0.276 0.0104 0.2937 0.0005 LST (Lag2) −0.036 0.0011
−0.316 0.0002 LST (Lag5) −0.0324 0.0032
RF (Lag 3) 0.0527 0.0064
RH 0.0168 <.0001
SARIMAX((2),1,0) with LST 0.4013 156.76 0.4649 0.251 0.0022 LST (Lag2) −0.028 0.014
LST (Lag5) −0.0256 0.0257
SARIMAX(1,0,0)(0,1,0) with LST 0.4666 134.7 0.5104 0.795 <.0001 LST (Lag2) −0.048 0.0009
LST (Lag5) −0.0312 0.0248
ARIMAX(2,1,0) with RF 0.4174 168.62 0.4029 0.244 0.0017 RF (Lag 3) 0.0244 0.1985
ARIMAX((2),1,0) with RH 0.4073 163.34 0.4728 0.247 0.0021 RH (Lag 1) 0.011 0.0055
SARIMAX(1,0,1)(0,1,0) with RH 0.4968 152.76 0.5831 0.883 <.0001 0.2588 RH (Lag1) 0.0144 0.0086
ARIMAX((2),1,0) with LST and RH 0.3872 148.07 0.5273 0.259 0.0018 LST (Lag2) −0.029 0.0096
LST (Lag 5) −0.029 0.0097
RH (Lag 1) 0.0124 0.0013

Abbreviations: ARIMA  =  Autoregressive Integrated Moving Average; S = Seasonal; X = with external/input series; LST  =  Land Surface Temperature; RF  =  Accumulated Rainfall; RH  =  Relative Humidity; RMSE  =  Root Mean Square Error; AIC  =  Akaike's Information Criterion; AR  =  Autoregressive coefficients; MA  =  Moving Average Coefficients; Est  =  Estimated values through conditional least square method.