Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Jun;66(2):411–418. doi: 10.1073/pnas.66.2.411

Electrophoretically Homogeneous Anti-DNP Antibodies with Restricted Isoelectric Points Elicited in Mice by Immunization with the Antigen Papain-S-DNPL*

Gary N Trump 1,, S J Singer 1,
PMCID: PMC283060  PMID: 5271172

Abstract

The primary immunization of outbred mice with the antigen Pap-S-DNPL results in the generation of low titers of anti-DNP antibody which in about one-third of the responding animals is as homogeneous as a myeloma protein by the combined criteria of (a) isoelectric focusing in gels and (b) gel electrophoresis of the antibody light chains. The electrophoretically homogeneous antibodies show a marked restriction of isoelectric points near pH 5.0. Such marked selectivity of the antihapten antibodies appears to result from the chemical and structural homogeneity of the Pap-S-DNPL antigen.

Full text

PDF
415

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awdeh Z. L., Williamson A. R., Askonas B. A. Isoelectric focusing in polyacrylamide gel and its application to immunoglobulins. Nature. 1968 Jul 6;219(5149):66–67. doi: 10.1038/219066a0. [DOI] [PubMed] [Google Scholar]
  2. Braun D. G., Eichmann K., Krause R. M. Rabbit antibodies to streptococcal carbohydrates. Influence of primary and secondary immunization and of possible genetic factors on the antibody response. J Exp Med. 1969 Apr 1;129(4):809–830. doi: 10.1084/jem.129.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenneman L., Singer S. J. On homogeneous antigens and antibodies. 3. The preparation and properties of the univalent hapten-protein conjugate papain-S-DNPL. Ann N Y Acad Sci. 1970 Feb 13;169(1):72–92. doi: 10.1111/j.1749-6632.1970.tb55972.x. [DOI] [PubMed] [Google Scholar]
  4. Brenneman L., Singer S. J. The generation of antihapten antibodies with electrophoretically homogeneous L chains. Proc Natl Acad Sci U S A. 1968 May;60(1):258–264. doi: 10.1073/pnas.60.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen S., Porter R. R. Heterogeneity of the peptide chains of gamma-globulin. Biochem J. 1964 Feb;90(2):278–284. doi: 10.1042/bj0900278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dale G., Latner A. L. Isoelectric focusing in polyacrylamide gels. Lancet. 1968 Apr 20;1(7547):847–848. doi: 10.1016/s0140-6736(68)90303-6. [DOI] [PubMed] [Google Scholar]
  7. FARAH F. S., KERN M., EISEN H. N. The preparation and some properties of purified antibody specific for the 2,4-dinitrophenyl group. J Exp Med. 1960 Dec 1;112:1195–1210. doi: 10.1084/jem.112.6.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FLEISCHMAN J. B., PAIN R. H., PORTER R. R. Reduction of gamma-globulins. Arch Biochem Biophys. 1962 Sep;Suppl 1:174–180. [PubMed] [Google Scholar]
  9. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gray W. R., Dreyer W. J., Hood L. Mechanism of antibody synthesis: size differences between mouse kappa chains. Science. 1967 Jan 27;155(3761):465–467. doi: 10.1126/science.155.3761.465. [DOI] [PubMed] [Google Scholar]
  11. Haber E. Immunochemistry. Annu Rev Biochem. 1968;37:497–520. doi: 10.1146/annurev.bi.37.070168.002433. [DOI] [PubMed] [Google Scholar]
  12. Hood L., Lackland H., Eichman K., Kindt T. J., Braun D. G., Krause R. M. Amino acid sequence restriction in rabbit antibody light chains. Proc Natl Acad Sci U S A. 1969 Jul;63(3):890–896. doi: 10.1073/pnas.63.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lark C. A., Eisen H. N., Dray S. Distribution of allelic allotypes among gamma-G-immunoglobulins and purified anti-hapten antibodies from the same rabbit. J Immunol. 1965 Sep;95(3):404–411. [PubMed] [Google Scholar]
  14. Little J. R., Counts R. B. Affinity and heterogeneity of antibodies induced by epsilon-2,4-dinitrophenylinsulin. Biochemistry. 1969 Jul;8(7):2729–2736. doi: 10.1021/bi00835a006. [DOI] [PubMed] [Google Scholar]
  15. McDevitt H. O., Sela M. Genetic control of the antibody response. I. Demonstration of determinant-specific differences in response to synthetic polypeptide antigens in two strains of inbred mice. J Exp Med. 1965 Sep 1;122(3):517–531. doi: 10.1084/jem.122.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Melchers F., Lennox E. S., Facon M. A carbohydrate-containing mouse light chain-protein. Biochem Biophys Res Commun. 1966 Jul 20;24(2):244–251. doi: 10.1016/0006-291x(66)90727-3. [DOI] [PubMed] [Google Scholar]
  17. POTTER M., BOYCE C. R. Induction of plasma-cell neoplasms in strain BALB/c mice with mineral oil and mineral oil adjuvants. Nature. 1962 Mar 17;193:1086–1087. doi: 10.1038/1931086a0. [DOI] [PubMed] [Google Scholar]
  18. Pincus J. H., Haber E., Katz M., Pappenheimer A. M., Jr Antibodies to pneumococcal polysaccharides: relation between binding and electrophoretic heterogeneity. Science. 1968 Nov 8;162(3854):667–668. doi: 10.1126/science.162.3854.667. [DOI] [PubMed] [Google Scholar]
  19. Rüde E., Mozes E., Sela M. Role of the net electrical charge of the complete antigen in determining the chemical nature of anti-p-azobenzenearsonate antibodies. Biochemistry. 1968 Aug;7(8):2971–2975. doi: 10.1021/bi00848a038. [DOI] [PubMed] [Google Scholar]
  20. SMITH E. L., KIMMEL J. R., BROWN D. M. Crystalline papain. II. Physical studies; the mercury complex. J Biol Chem. 1954 Apr;207(2):533–549. [PubMed] [Google Scholar]
  21. Sartorelli A. C., Fischer D. S., Downs W. G. Use of sarcoma 180/TG to prepare hyperimmune ascitic fluid in the mouse. J Immunol. 1966 Apr;96(4):676–682. [PubMed] [Google Scholar]
  22. Sela M., Mozes E. Dependence of the chemical nature of antibodies on the net electrical charge of antigens. Proc Natl Acad Sci U S A. 1966 Feb;55(2):445–452. doi: 10.1073/pnas.55.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thorpe N. O., Singer S. J. The affinity-labeled residues in antibody active sites. II. Nearest-neighbor analyses. Biochemistry. 1969 Nov;8(11):4523–4534. doi: 10.1021/bi00839a045. [DOI] [PubMed] [Google Scholar]
  24. WILLIAMS D. E., REISFELD R. A. DISC ELECTROPHORESIS IN POLYACRYLAMIDE GELS: EXTENSION TO NEW CONDITIONS OF PH AND BUFFER. Ann N Y Acad Sci. 1964 Dec 28;121:373–381. doi: 10.1111/j.1749-6632.1964.tb14210.x. [DOI] [PubMed] [Google Scholar]
  25. Wu W. H., Rockey J. H. Antivasopressin antibody. Characterization of high-affinity rabbit antibody with limited association constant heterogeneity. Biochemistry. 1969 Jul;8(7):2719–2728. doi: 10.1021/bi00835a005. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES