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Abstract
The total free energy of a molecule includes the classical molecular mechanical energy (which is
understood as the free energy in vacuum) and the solvation energy which is caused by the change of
the environment of the molecule (solute) from vacuum to solvent. The solvation energy is important
to the study of the inter-molecular interactions. In this paper we develop a fast surface-based
generalized Born method to compute the electrostatic solvation energy along with the energy
derivatives for the solvation forces. The most time-consuming computation is the evaluation of the
surface integrals over an algebraic spline molecular surface (ASMS) and the fast computation is
achieved by the use of the nonequispaced fast Fourier transform (NFFT) algorithm. The main results
of this paper involve (a) an efficient sampling of quadrature points over the molecular surface by
using nonlinear patches, (b) fast linear time estimation of energy and inter-molecular forces, (c) error
analysis, and (d) efficient implementation combining fast pairwise summation and the continuum
integration using nonlinear patches.
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1. Introduction
Most of the protein molecules live in the aqueous solvent environment and the stabilities of
the molecules depend largely upon their configuration and the solvent type. Since the solvation
energy term models the interaction between a molecule and the solvent, the computation of
the molecular solvation energy (also known as molecule - solvent interaction energy) is a key
issue in molecular dynamics (MD) simulations, as well as in determining the inter-molecular
binding affinities “in-vivo” for drug screening. Molecular dynamics simulations where the
solvent molecules are explicitly represented at atomic resolution, for example as in the popular
package NAMD [1], provide direct information about the important influence of solvation.
Moreover, as the total number of atoms of solvent molecules far outnumber the atoms of the
solute, a larger fraction of the time is spent on computing the trajectory of the solvent molecules,
even though the primary focus of the simulation is the configuration and energetics of the solute
molecule. Implicit solvent models, attempt to considerably lower the cost of computation
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through a continuum representation (mean-field approximation) of the solvent [2]. In the
implicit model, the solvation free energy Gsol which is the free energy change to transfer a
molecule from vacuum to solvent, consists of three components: the energy to form a cavity
in the solvent which is also known as the hydrophobic interactions, the van der Waals
interactions between the molecule and the solvent, and the electrostatic potential energy
between the molecule and the solvent (also known as polarization energy), Gsol = Gcav +
Gvdw + Gpol. Based on the Weeks-Chandler-Andersen (WCA) perturbation theory [3,4], the
non-polar solvation energies are of the form Gcav + Gvdw = G(rep) + G(rep). In [5], G(rep) is
described as the weighted sum of the solvent-accessible surface area Ai of the atoms. In [31],

a volume term is added: , where p is the solvent pressure parameter and
V is the solvent-accessible volume. In [6], the attractive van der Waals dispersion energy

, where , ρ0 is the bulk density,  is the
van der Waals dispersive component of the interaction between atom i in the solute and the
volume of solvent at y, θ(y) is a density distribution function for the solvent. Hence the non-
polar solvation energies

(1.1)

The electrostatic solvation energy is caused by the induced polarization in the solvent when
the molecule is dissolved in the solvent, therefore

(1.2)

where φreaction = φsolvent − φgas-phase, φ(r) and ρ(r) are the electrostatic potential and the charge
density at r, respectively.

The Poisson-Boltzmann (PB) model was developed to compute the electrostatic solvation
energy by solving the equation −∇(ε(x)∇φ(x)) = ρ(x) for the electrostatic potential φ. Numerical
methods to solve the equation include the finite difference method [7,8], finite element method
[9,10], and boundary element method [11]. However the PB methods are prohibitive for large
molecules such as proteins due to the limited computational resources. As an alternative, (1.2)
is approximated by a generalized Born (GB) model which is in the form of discrete sum [12]

(1.3)

where , εp and εw are the solute (low) and solvent (high) dielectric constants, qi and
Ri are the charge and effective Born radius of atom i, respectively, and ri j is the distance
between atoms i and j. The solvation force acting on atom α, which is part of the forces driving
dynamics is computed as
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(1.4)

Because the GB calculation is much faster than solving the PB equation, the GB model is
widely used in the MD simulations. Programs which implement the GB methods include
CHARMM [13], Amber [14], Tinker [15], and Impact which is now part of Schrodinger, Inc.’s
FirstDiscovery program suite. Even though the GB computation is much faster than the PB
model, the computation of the Born radius Ri is still slow. During the MD simulation, the Born
radii need to be frequently recomputed at different time steps. Because this part of computation
is too time-consuming, there are attempts to accelerate the MD simulation by computing the
Born radii at a larger time step. For example, in [16] in their test of a 3 ns GB simulation of a
10-base pair DNA duplex, they change the time step of computing the Born radii and long-
range electrostatic energy from 1 fs to 2 fs. This reduces the time of carrying out the simulation
from 13.84 hours to 7.16 hours. From this example we can see that the calculation of the Born
radii takes a large percentage of total computation time in the MD simulation. In the long
dynamic runs, this decrease in the frequency of evaluating the effective Born radii are not
accurate enough to conserve energy which restricts the MD simulation of the protein folding
process to small time scale [17]. Hence it is demanding to calculate the Born radii and the
solvation energy accurately and efficiently.

In this paper we develop a method for fast computation of the GB solvation energy, along with
the energy derivatives for the solvation forces, based on a discrete and continuum model of the
molecules (Figure 1.1). An efficient method of sampling quadrature points on the nonlinear
patch is given. We also show that the error of the Born radius calculation is controlled by the
size of the triangulation mesh and the regularity of the periodic function used in the fast
summation algorithm. The time complexity of the forces computation is reduced from the
original O(MN +M2) to nearly linear time O(N +M +n3 logn +M logM), where M is the number
of atoms of a molecule, N is the number of integration points that we sample on the surface of
the molecule when we compute the Born radius for each atom, and n is a parameter introduced
in the fast summation algorithm. The fast summation method shows its advantage when it is
applied to the Born radius calculations for macromolecules, where there could be tens of
thousands or millions of atoms, and N could be even larger. In the fast summation method, one
only need to choose a small n which is much smaller than M and N to get a good approximation,
which makes the new fast summation based GB method more efficient.

The rest of the paper is organized as follows: in Section 2 we explain the geometric model that
our energy and force computation are based on; we discuss in detail the energy computation
in Section 3 and the force computation in Section 4; some implementation results are shown
in Section 5; some details such as the fast summation algorithm and the NFFT algorithm are
discussed in the appendix.

2. Geometric model
2.1. Gaussian surface

The electron density and shape are used in a similar sense in the literature with respect to the
modeling of molecular surfaces or interfaces between the molecule and its solvent. The electron

density of atom i at a point x is represented as a Gaussian function:  where xi,
ri are the position of the center and radius of the atom k. If we consider the function value of
1, we see that it is satisfied at the surface of the sphere (x: |x − xi| = ri). Using this model, the
electron density at x due to a protein with M atoms is just a summation of Gaussians:
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(2.1)

where β is a parameter used to control the rate of decay of the Gaussian and known as the
blobbiness of the Gaussian. In [18] β = −2.3, isovalue = 1 is indicated as a good approximation
to the molecular surface.

2.2. Triangular mesh
The triangular mesh of the Gaussian surface is generated by using the dual contouring method
[19,20]. In the dual contouring method a top-down octree is recursively constructed to enforce
that each cell has at most one isocontour patch. The edges whose endpoints lie on different
side of the isocontour are tagged as sign change edges. In each cube that contains a sign change
edge, we compute the intersection points (and their unit normals) of the isocontour and the
edges of the cube, denoted as pi and ni, and compute the minimizer point in this cube which
minimizes the quadratic error function (QEF) [21]:

Since each sign change edge is shared by either four cubes (uniform grid) or three cubes
(adaptive grid), connecting the minimizer points of these neighboring cubes forms a quad or
a triangle that approximates the isocontour. We divide the quads into triangles to generate the
pure triangular mesh.

2.3. Algebraic spline molecular surface (ASMS)
The triangular mesh is a linear approximation to the Gaussian surface. In our solvation energy
computation, we generate another higher order approximation called ASMS model (Figure 2.3
(f)) based on the triangular mesh to improve accuracy and efficiency [22]. Starting from the
triangular mesh, we first construct a prism scaffold as follows. Let [vivjvk] be a triangle of the
mesh where vi, vj, vk are the vertices of the triangle and ni, nj, nk be their unit normals. Define
vl(λ) = vl + λnl. Then the prism is define as

where b1, b2, b3 ∈ [0, 1], b1 + b2 + b3 = 1, and Iijk is a maximal open interval such that (i) 0 ∈
Iijk, (ii) for any λ ∈ Iijk, vi(λ), vj(λ) and vk(λ) are not collinear, and (iii) for any λ ∈ Iijk, ni, nj
and nk point to the same side of the plane Pijk(λ):= {p: p = b1vi(λ) + b2vj(λ) + b3vk(λ)} (Figure
2.1).

Next we define a function over the prism Dijk in the cubic Bernstein-Bezier (BB) basis:

(2.2)

BAJAJ and ZHAO Page 4

SIAM J Sci Comput. Author manuscript; available in PMC 2010 March 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where . The ASMS denoted as Γ is the zero contour of F. The scheme
for defining the coefficients bijk are defined is described in detail in [22]. In short they are
defined such that

• the vertices of the triangular mesh are points on Γ;

• Γ is C1 at the vertices of mesh;

• Γ is C1 at the midpoints of the mesh edges.

Later, given the barycentric coordinates of a point (b1, b2, b3) in triangle [vivjvk], we solve the
equation F(b1, b2, b3, λ) = 0 for λ by Newton’s method. In this way we can get the corresponding
point (x,y,z) on Γ:

(2.3)

We have proved in [22] that the ASMS model is C1 everywhere if the normals of the mesh
satisfy certain symmetry conditions. The error between the ASMS and the Gaussian surface is
bounded and we have shown that the ASMS converges to the Gaussian surface at the rate of
O(h3) where h is the maximum edge length of the mesh.

3. Fast solvation energy computation
3.1. Method

Similarly to what is done for other GB models, we use (1.3) as the electrostatic solvation energy
function. Before we compute (1.3), we need to first compute the effective Born radius Ri for
every atom which reflects the depth a charge buried inside the molecule (Figure: 3.1). An atom
buried deep in a molecule has a larger Born radius, whereas an atom near the surface has a
smaller radius. Hence surfactant atoms have a stronger impact on the polarization. Given a
discrete van der Waals (vdW) atom model, as long as we know Ri for each atom, we can
compute (1.3) by using the fast multipole method (FMM) [23] with the time complexity O
(M logM). However the Born radii computation is not easy and is very time-consuming. There
are various ways of computing the Born radius as summarized in [24]. These methods can be
divided into two categories: volume integration based methods and surface integration based
methods. In general, the surface integration methods are more efficient than the volume
integration methods due to the decreased dimension. So we adopt the surface integration
method given in [25] to compute the Born radius:

(3.1)

where Γ is the molecule-solvent interface, xi is the center of atom i, and n(r) is the unit normal
on the surface at r and we use ASMS as the model of Γ.

Applying the Gaussian quadrature, We compute (3.1) numerically:

(3.2)

where wk and rk are the Gaussian integration weights and nodes on Γ (Figure 3.2). rk are
computed by mapping the Gaussian nodes of a master triangle to the algebraic patch via the
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transformation . Let  and  be one of the Gaussian nodes and weights on the master
triangle. Then the corresponding node rk and weight wk are  and  where |J( )| is
the Jacobian determinant of .

We formalize (3.2) in two steps. First we split it into two parts:

(3.3)

Then we split the second summation in (3.3) into three components:

(3.4)

The first summation in (3.3) and the three summations in (3.4) without the coefficients in front
are of the common form:

(3.5)

with the kernel function  and the coefficient ck = wkrk · n(rk),

, respectively. (3.5) can be efficiently computed by using the fast summation
algorithm introduced in [26] with complexity O(M + N + n3 logn), where n is a parameter used
in the fast summation algorithm.

3.2. Fast summation
The fast summation algorithm is published in [26]. For convenience, we discuss this algorithm
in this section briefly. The fast summation algorithm is often applied to compute the
summations of the form

(3.6)

where the kernel function g is a fast decaying function. Cutting off the tail of g, one can assume
that the support of g is bounded. In our Born radii computation, since the distance between
xi and rk is no less than the smallest radius of the atoms, there is no singularity in g. Without
loss of generality, we assume . After duplicating g in the other intervals,
g can be extended to be a periodic function of period one in ℝ3 and this periodic function can
be decomposed into the Fourier series:

(3.7)
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where I∞:= {(ω1, ω2, ω3) ∈ ℤ3} and gω = ∫Π g(x)e−2πiω·x dx. We approximate (3.7) by a
truncated series:

(3.8)

where . We compute the Fourier coefficients gω
numerically by

(3.9)

by using the fast Fourier transform (FFT) algorithm with complexity O(n3 logn).

Plugging (3.8) into (3.6), we get

(3.10)

where

(3.11)

(3.10) is computed by using the NFFT algorithm with complexity O(n3 logn +M) and (3.11)
is computed by the NFFTT algorithm with complexity O(n3 logn +N). Hence the total
complexity of computing (3.6) is O(N + M + n3 logn), which is significantly faster than the the
trivial O(MN) summation method once the number of terms in the Fourier series n is much
smaller than M and N. We explain the NFFT algorithm and the NFFTT algorithm in Appendix
A and B, respectively.

3.3. Error analysis
The numerical analysis of the error introduced during the computation of (3.1) can be
decomposed as follows: (i) the sum of a quadrature error EQ; (ii) some “fast computation” error
in the evaluation of the quadrature itself. The latter error is then decomposed in three terms,
which correspond to different steps in the numerical procedure. They are the truncation error
EFS when we truncate the Fourier series (3.7) into finite terms, NFFTT errors Eω when we
compute the coefficients (3.11), and an NFFT error ENFFT when we finally evaluate (3.10) by
the NFFT algorithm.

Let Ii and Ĩi denote the exact integration and the numerical output of (3.1) for atom i,
respectively. Then We have
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Let . We have

(3.12)

Next we will analyze each individual error ||EQ||∞, ||EFS||∞, ||ENFFT||∞, and ||ENFFTT||∞.

3.3.1. Quadrature error—Let Γe be one of the algebraic patches on the molecular surface
Γ. Suppose Γe is built based on a triangle e:= [vi, vj, vk]. Any point (b1, b2, b3) ∈ e can be
mapped to a point r(b1, b2) ∈ Γe. The integration (3.1) over Γe is

(3.13)

where Ω0 is the canonical triangle, (b1, b2, b3) is the barycentric coordinates of the points in
Ω0 and |J| is the Jacobian. Let f (b1, b2) denote the integrand in (3.13). As we discuss in
Appendix C, f (b1, b2) ∈ C∞(Ω0). Suppose we use an s-th order quadrature rule on element e,
then

(3.14)

We expand f(b1, b2) in a Taylor series around a point :

(3.15)

where Ps(b1, b2) is a polynomial of degree s:

(3.16)

and the residue Rs is

(3.17)

Then the error E becomes
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Let Wk = max(|wk|), we get

Within Ω0,  and , hence

(3.18)

where  denotes . By the chain rule,

According to (2.3), we have . Let hmax be the maximum edge length of
the triangular mesh, λmax = max{|λ |}, and h = max(hmax, λmax). Then we have .
Similarly, we can get the same bound for the derivatives of x, y, z with respect to b1 and b2.
Therefore

(3.19)

where , and the constant

. Noticing that the area of Ω0 is 1/2, we can write

(3.20)

Even though a greater number of quadrature nodes correspond to the higher order of accuracy,
the increase in complexity is a limiting factor. Meanwhile, since the ASMS error is of the order
h3, there is no point in a very accurate approximation of (3.20) to too high an order. As a trade-
off, we use a two dimensional 3-point Gaussian quadrature over the triangle Ω0 which is of
order 2 [27]. So s = 2 and se = 3. The nodes are ( ) and its permutations.  for k =
1,2,3. Then
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(3.21)

Suppose there are Ne patches on Γ, then |EQ| ≤ 2NeCh3. So we have the same bound

(3.22)

3.3.2. Fast summation error—According to the fast summation method described in
Section 3.2, the Fourier series is truncated into a finite series

where  denotes the truncation error of the Fourier series. Hence

(3.23)

where ,

(3.24)

with

(3.25)

and g being the the kernel function in the fast summation. In the Born radii calculation,
. As defined in Section 3.2, Π is bounded and excludes 0. Let ω = (ω1, ω2, ω3). Then

we rewrite Σω∈I∞\In|gω| as

(3.26)

By successive integration by parts for each dimension, we get
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where m = m1 + m2 + m3 and . Therefore

Let μm = ∫Π |Dmg(x)| dx. We obtain . For the other terms in (3.26) we
have the same upper bound. If we assume m1, m2, m3 ≥ 2, then

For m1 = m2 = m3, we have

(3.27)

Then for (3.24), we have

(3.28)

In fact, the right hand side of (3.28) is independent of i. Therefore we get

(3.29)

3.3.3. NFFT error—The error analysis of the NFFT algorithm is thoroughly discussed at the
end of Appendix A. This error estimation is derived based on the analysis in [28]. In summary,
the NFFT error is split into the aliasing error   and the truncation error   [28]:

The error bounds of  and  are
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(3.30)

(3.31)

where ξ is a 1-periodic window function defined in Appendix A, Cω (ξ) are the Fourier co-
efficients of ξ, and η is a truncated version of ξ. In the fast summation method (3.10), ||Ĝ||1 =
Σω∈In|gωaω|, where gω and aω are defined in Section 3.2. Combining (3.30) and (3.31), one
obtains

(3.32)

In [26], the coefficient C(ξ, m, σ) is given for some special ξ. They are

• Gaussian, ξ(x) = (πb)−1/2e−||σnx||2/b, where , the coefficient C(ξ, m, σ) =
4e−mπ(1−1/(2σ−1));

• cardinal central B-splines [29], ξ(x) = M2m(σnx), the coefficient
;

• powers of sinc function, , the coefficient

;

• Kaiser-Bessel function [30]

3.3.4. NFFTT error—As we mentioned in Section 3.2, (3.11) is computed by the NFFTT

algorithm and then they are plugged in (3.10) for the following evaluation of the summation.
So the NFFT error ENFFTT is

(3.33)

where Eω denotes the error of the NFFTT algorithm and gω is the same as is defined in (3.25).
Then we have
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(3.34)

with  and .

As we discussed in Appendix B, the NFFTT error Eω is decomposed into the aliasing error
( ) and the truncation error . So

where  and . Based on the error bounds derived in Appendix
B,

(3.35)

and

(3.36)

where . Comparing (3.35) with (3.30) and comparing (3.36) with (3.31) yield
the error estimation of Eω which is similar to ENFFT:

Hence

(3.37)

The inequality (3.37) is independent of i, therefore,

(3.38)

4. Fast solvation force computation
The solvation force acting at the center of atom α, which is part of the forces driving dynamics
is
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(4.1)

Partition the solvation energy into polar and non-polar parts:

(4.2)

The non-polar force is proportional to the derivatives of the volume and/or the surface area
with respect to the atomic coordinates. There has been previous work on analytically computing
the derivatives of the area/volume [31,32,33]. To compute the polar force, we first define

(4.3)

Then

(4.4)

Differentiating (4.4) w.r.t. x, one gets

(4.5)

where

(4.6)

From (4.3), one can easily compute  and , which are
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 is nonzero if i or j = α which will be . In (4.6) the computation of  for i = 1,
…,M is not trivial. Because Γ depends on the position of the atoms, it is not easy to compute
the derivative of Ri directly from (3.1). To solve this problem, we convert the integration
domain back to the volume:

(4.7)

Then by defining a volumetric density function to distinguish the exterior from the interior of
the molecule, we may have an integration domain that is independent of {xi}. One way of
defining the volumetric function is given in [34] where they first define a density function for
each of the atoms

and then define the volumetric function by following the inclusion-exclusion principle

(4.8)

There are some nice properties of this model. For example, the exterior region of the molecule
is well characterized by ρ = 0 and two atoms i and j are disconnected if for any r ∈ ℝ3, χi(r)
χ j(r) = 0. The drawback of this model is that function χ is not smooth, which makes it
inapplicable to the derivative computation. Therefore we smoothen χ by introducing a cubic
spline near the atom boundary:

(4.9)

with x =|| r − xi||. The region defined by ρi ≠ 0 is regarded as the interior of atom i and this
region converges to the van der Waals volume of the atom as w goes to 0. In the SES model,
two atoms are considered to be completely separated if the distance between the centers is
greater than the sum of the radii plus the probe diameter. Otherwise they can be connected by
the reentrant surface of the rolling probe. By setting w = 1.4 Å, atoms i and j are disconnected
in the same sense as in the SES model iff ρi(r)ρj(r) = 0, for any r ∈ ℝ3. In addition to this
modification, we neglect the cases that more than four atoms overlap simultaneously. Therefore
the molecular volumetric density function becomes

(4.10)

We define the complementary function ρ̄ = 1 − ρ. It is easy to show that within the VWS of
the molecule, ρ̄ is always 0, beyond the SAS, ρ̄ is always 1, in between, 0 < ρ̄ < 1. Then (4.7)
can be rewritten as
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(4.11)

Differentiating both sides of (4.11), one gets

(4.12)

So

(4.13)

For the first integral in (4.13),

where j, k, l are the atoms overlapping with atom α, g = 1 − Σj ρj + Σj<k ρjρk − Σj<k<l ρjρkρl, and

with x = ||r − xα||. Noticing that  only if aα < |r − xα| < aα + w, the first integral in (4.13)
is simplified as

(4.14)

The integration domain of (4.14) is a regular spherical shell of the width w around atom α
(Figure 4.1(a)). We switch to the spherical coordinate system:

where (r, θ, φ) ∈ [0, w] × [0, 2π] × [0, π]. We sample r, θ, φ by using the 2-point Gaussian
quadrature nodes in each dimension. For all the atoms in the molecule, they share the same set
of sampling points (r, θ, φ).
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The second integral in (4.13) is nonzero if i ≡ α. In that case

(4.15)

We compute each component of (4.15) individually and convert to the surface integration
(Figure: 4.1(b)) by the divergence theorem:

(4.16)

(4.17)

(4.18)

where the quadrature weights and points (wk, rk) and the unit normals ( ) are the same
as those used in Section 3. We compute (4.16), (4.17), and (4.18) by directly applying the fast

summation method with the coefficients , respectively. Since the same
algorithm is used in the Born radius derivative calculation, the error analysis is similar to the
error analysis of the Born radius calculation except that a quadrature error of the integration
over the shell region needs to be added.

To compute the force acting on each of the M atoms, we need to compute (4.15) for i = 1, …,
M. By using the fast summation algorithm, the computational complexity of this part is O(N
+ M + n3 log n), the same as the energy computation. To compute (4.14), since the shell
integration domain is narrow, only a small number of atoms have non-zero densities in this
region, therefore the complexity of computing (4.14) for a fixed α for i = 1, …, M is O(M).
Moreover, since the integrand in (4.14) is very small if atom i and atom α are far apart, we use
a cut-off distance d0 in our computation and compute (4.14) only if d(i, α) ≤ d0. Therefore the
overall time complexity of computing (4.13) is O(N +M +n3 log n).

5. Results
We compare the polarization energy computed based on the fast summation algorithm and the
trivial summation in Table 5.1 for four proteins (PDB ID: 1CGI_l, 1BGX, 1DE4, 1N2C). An
ASMS model is constructed for each protein with Ne number of patches. A three-point Gaussian
quadrature is used on each algebraic patch. We also compare the overall computation time of
the two methods. As we see from the table, for the small proteins (e.g. 1CGI_l), the fast
summation method is slower than the trivial summation. However as the protein size gets larger
(e.g. 1BGX, 1DE4, 1N2C), the fast summation is apparently faster than the trivial summation
without losing too much accuracy. The relative error ε between the fast summation and the
trivial summation is small. As for the trade-off between efficiency and accuracy, since in the
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current research of the MD simulation efficiency is more concerned, the fast-summation-based
GB is superior to the trivial GB method.

In Figure 5.1 we compare Gpol computed by the fast summation based GB and the trivial
summation method along with their computation time for proteins of various sizes. For all
these proteins, we generate the ASMS of the same number of patches (in our test we use 20,000
patches for each protein). We choose the fixed parameters n = 30, m = 4, and σ = 2 for all the
proteins. We observe that the Gpol computed by the fastsum GB is close to that computed by
the trivial GB methods and the error gets larger as the molecule gets bigger. Even though the
error analysis in Section 3.3 does not show that the error depends on the size of the molecule,
the analysis is based on the assumption that the kernel function is defined on the domain

. To ensure that xi − rk, i = 1, …, M, k = 1, …, N are all within this range, we scale the
molecule. The larger the molecule, the larger the scaling factor. Later on when we scale back
to the original coordinates by multiplying the scaling factor, the error gets amplified. As we
expect, computation time of the fastsum GB increases as M becomes large but is much faster
than the traditional GB method.

In Figure 5.2, we compare Gpol computed by the fast summation based GB versus the trivial
summation method and the computation time for a test protein 1JPS where we generate the
ASMS with different numbers of patches. We use the same values for the parameters n, m, and
σ as in the previous test. As shown in the figure, as the triangular mesh becomes denser, the
fast summation result converges rapidly to the result of the trivial method but takes less
computation time.

For the test proteins 1ANA, 1MAG, 1PPE_l, 1CGI_l, we compute the solvation force , for
α = 1, …, M. We show the timing results in Table 5.2. In general, if an atom has a strong
solvation force, this atom is in favor of being polarized, and hence is an active atom. On the
contrary, if an atom has a weak solvation force, it is more likely to be an inactive atom. For
every test protein, after we compute the solvation force for each atom, we sort the forces based
on their magnitude and choose the top most active atoms and the top inactive atoms. As shown
in Figure 5.3, the top 5% of the most active atoms are rendered in red and the bottom 5% of
the atoms are rendered in blue. This provides a convenient and cheaper way, alternative to the
experimental method, to help the biologists quickly find an active site of a protein.

6. Conclusion
We introduce a fast summation based algorithm to calculate the effective Born radii and their
derivatives in the generalized Born model of implicit solvation. The algorithm relies on a
variation of the formulation for the Born radii and an additional analytical volumetric density
function for the derivatives. For a system of M atoms and N sampling points on the molecular
surface, the trivial way of computing the Born radii requires O(MN) arithmetic operations,
whereas with the aids of the Fourier expansion of the kernel functions of the Born radii (and
their derivatives) and the NFFT algorithm which essentially approximates the complex
exponentials in the NDFT by the DFT of a fast decaying smooth window function, the Born
radii as well as their derivatives can be obtained at cost of (M +N +n3 log n) where n is the
number of frequencies in the Fourier expansion. We show that the error of the algorithm
decreases as the mesh gets denser, or as any of the parameters σ, m, n increase. Other than the
Born model developed with a Coulomb field approximation, there has been other models for
the Born radii evaluation, for example the Kirkwood-Grycuk model [35] where

. This model is recently applied to the GBr6NL model which
approximates the solvation energy of the nonlinear Poisson-Boltzmann equation [36]. It is
interesting to note that we can utilize a similar quadrature point generation via ASMS and the
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fast summation algorithm to speed up this GBr6NL computation. In fact, by the divergence

theorem,  and the rest follows similar to the methods in this paper.
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Appendix A. NFFT
The NFFT [28] is an algorithm for fast computation of multivariate discrete Fourier transforms
for nonequispaced data in spacial domain (NDFT1). The NDFT1 problem is to evaluate the
trigonometric polynomials

(A.1)

where . Without loss of generality, we assume
. Instead of computing the summations in (A.1) directly, one can approximate G

by a function s(x) which is a linear combination of the shifted 1-periodic kernel function ξ:
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(A.2)

where  and . We have σ > 1 because of
the error estimation discussed in Section 3.3.3.

The kernel function ξ is defined as

Good candidates for ξ0 include Gaussian, B-spline, sinc, and Kaiser-Bessel functions. Expand
the periodic kernel function ξ by its Fourier series

(A.3)

with the Fourier coefficients

Cut off the higher frequencies in (A.3), one can get

(A4.)

Plug (A.4) into (A.2), we get

(A.5)

with the coefficients

(A.6)

By defining
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(A.7)

one can immediately get

(A.8)

The next problem is to compute gl. From (A.6), one can compute the coefficients gl which are
also coefficients in (A.8) by the discrete Fourier transform

(A.9)

with complexity O(n3 log n) by the FFT algorithm.

Since the function ξ drops very fast, one can further reduce the computation complexity of (A.
8) by cutting off the tail of ξ. Define a function η0:

Construct the one-periodic function η the same way as ξ is constructed:

Replacing ξ with η in (A.8), we obtain that

(A.10)

where Iσn,m(xj) = {(l1, l2, l3): σnxj,i − m ≤ li ≤ σnxj,i + m, i = 1, 2, 3}. There are at most (2m +
1)3 nonzero terms in (A.10). Therefore the complexity of evaluating (A.10) for j = 1, …, M is
O(m3M). Adding the complexity of computing the coefficients gl, the overall complexity of
NFFT algorithm is O(n3 log n + m3M).

Remark
If we reorganize the above equations, it is not hard to see that, in fact, (A.1) is approximately
computed by the expression
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(A.11)

From a linear algebra point of view, equation (A.11) can be written as the product of a matrix
and a vector. For example, for a one dimensional NFFT, (A.11) is equivalent to

(A.12)

with vectors

Ξ is a sparse matrix

F is the classical Fourier matrix

and D is an n × n diagonal matrix with the iith element being . For a multi-dimensional
NFFT, it is the same as the 1D case as long as one orders the indices of the multi-dimension
into one dimension.

As discussed in [28], in the first approximation (A.8), we see that s is equal to G after its higher
frequencies in the Fourier series are cut off. Hence the error introduced in (A.8) which is known
as the aliasing error is

(A.13)

Note that from (A.6), we have the condition G ̃ω+iσn = G ̃ω, for i ∈ ℤ3 and ω ∈ Iσn. By the
definition (A.7), one obtains

(A.14)
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Let . Then

(A.15)

In the second approximation (A.10), since ξ is replaced by η, the so caused error, known as the
truncation error, is

(A.16)

Thus

(A.17)

Appendix B. NFFTT
The NFFTT algorithm deals with the fast computation of multivariate discrete Fourier
transforms for nonequispaced data in frequency domain (NDFT2):

(B.1)

Define a function

(B.2)

where ξ is defined as same as in Appendix A. The Fourier series of A(x) is:

(B.3)

On the other hand,
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(B.4)

Hence we get the relationship of Fourier coefficients of A and ξ:

(B.5)

Comparing (B.5) with (B.1) one obtains

(B.6)

It remains to compute Cω (A). By definition,

(B.7)

Discretizing the integration in (B.7) by the left rectangular rule leads to

(B.8)

Replacing ξ with η yields

(B.9)

where

(B.10)

To compute ĝl, if one scans the rk list, then for each rk there are at most (2m + 1)3 grid points
(l) that contribute nonzero η. Hence, the complexity of computing ĝl is O(m3N). After
computing ĝl one can easily evaluate (B.9) by the FFT algorithm at the complexity of O(n3 log
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n). Lastly the complexity of computing (B.6) is O(n3). So the overall complexity of the
NFFTT algorithm is O(m3N +n3 log n).

Remark
Similar to the NFFT algorithm, we may write the one-line formula for computing (B.1) by the
NFFTT:

(B.11)

which in one dimension is equivalent to the linear system:

(B.12)

with vectors

Matrix Ξ is similar to that defined in Appendix A

F* is the conjugate transpose of the Fourier matrix F, and D is the same as that defined in
Appendix A. From the matrix expression, we see why the algorithm is called the “transpose”
of NFFT.

Let Eω designate the error of a(ω). Eω can also be split into the aliasing error   introduced
in (B.8) and the truncation error   introduced in (B.9), , for ω ∈ Iσn. By taking
the Fourier expansion of ξ, we get form (B.8), so

Since
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we have,

(B.13)

By (B.1),

(B.14)

Define . Then we have

(B.15)

In (B.9), the truncation error

(B.16)

which has the bound

(B.17)

Appendix C. Continuity of f
As defined in Section 3.3.1,

(C.1)

where r ≠ xi and n = ∇F with F given in (2.2). r(b1, b2, λ) is simply defined in (2.3). In this
appendix, we mainly discuss the continuity of n. As derived in [22],
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(C.2)

where

is a nonsingular matrix. Hence n is well defined. Consider ( ):

Let . We have

(C.3)

where , and

(C.4)

To show  is differentiable, we take the first row of  and compute its derivative with respect

to x, i.e. ( ) as an example. We write (2.3) in the form of

(C.5)

Taking the second derivatives of both sides of (C.5) with respect to x, we get
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(C.6)

(C.7)

(C.8)

where

So we get

(C.9)
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Using the same method, we can get the other rows of , matrices  and  by changing Cf,
Cg, Ch in (C.9). Therefore  is differentiable. Similarly, we can compute the higher order
derivatives of  and prove that  ∈ C∞, thus prove F ∈ C∞ (Ω0), where Ω0 defined in Section
3.3.1 is the canonical triangle. Therefore, as defined in (C.1), f ∈ C∞(Ω0).
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Fig. 1.1.
Top left: the discrete van der Waals surface model (436 atoms); top middle: the triangulation
of the continuum Gaussian surface model with 6004 triangles; top right: the regularized
triangular mesh where the quality of the elements is improved (making each as close as possible
to an equilateral triangles); bottom left: the continuum ASMS model generated from the
triangular mesh up right; bottom right: the molecular surface rendered according to the
interaction with the solvent where red means strong and blue means weak interaction.
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Fig. 2.1 .
A prism Dijk constructed with a triangle [vivjvk] as a basis.
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Fig. 2.2 .
The control coefficients of the cubic Bernstein-Bezier basis of function F
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Fig. 2.3 .
(a) is the discrete van der Waals model of protein 1BGX with 19,647 atoms; (b) and (c) are
the zoom-in views of the the initial triangulation of the continuum surface with 85656 triangles;
(d) and (e) are the zoom-in views of the quality improved mesh; (f) is the a continuum ASMS
model generated based on the quality improved mesh.
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Fig. 3.1 .
The effective Born radius reflects how deep a charge is buried inside the molecule. The Born
radius of an atom is small if the atom is close to the surface of the molecule, otherwise the Born
radius is large therefore has weaker interaction with the solvent.
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Fig. 3.2 .
Gaussian integration points on the surface of protein (a) 1PPE, (b) 1ANA, (c) 1MAG, and (d)
1CGI l. The surfaces are partitioned into 24244 triangular patches for (a), 28620 triangular
patches for (b), 30624 triangular patches for (c), and 29108 triangular patches for (d). There
are three Gaussian quadrature nodes per triangle. The nodes are then mapped onto the ASMS
to form the red point cloud.
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Fig. 4.1 .
When computing the derivatives of the Born radii , the quadrature points of the first integral
are points within a spherical shell around atom α, as shown in (a), whereas the second integral
is necessary when i ≡ α and the quadrature points are points on the surface, as shown in (b).
The dark region represents the molecule, the light grey region is the shell of width w around
atom α.
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Fig. 5.1 .
In (a) we compare Gpol computed by the fastsum GB and the non-fastsum GB for various
proteins containing different number of atoms. In (b) we compare the computation time of the
two methods.
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Fig. 5.2 .
For protein 1JPS, in (a) we compare Gpol computed by the fastsum GB and the non-fastsum
GB with various number of surface elements. In (b) we compare the computation time of the
two methods.
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Fig. 5.3 .
Atoms that have the greatest electrostatic solvation force (top 5%) are colored in red; atoms
that have the weakest electrostatic solvation force (bottom 5%) are colored in blue.
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