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Abstract
Small molecules that bind to normally unoccupied thyroxine (T4) binding sites within transthyretin
(TTR) in the blood stabilize the tetrameric ground state of TTR relative to the dissociative transition
state and dramatically slow tetramer dissociation, the rate-limiting step for the process of amyloid
fibril formation linked to neurodegeneration and cell death. These so-called TTR kinetic stabilizers
have been designed using structure-based principles and one of these has recently been shown to halt
the progression of a human TTR amyloid disease in a clinical trial, providing the first pharmacologic
evidence that the process of amyloid fibril formation is causative. Structure-based design has now
progressed to the point where highly selective, high affinity TTR kinetic stabilizers that lack
undesirable off-target activities can be produced with high frequency.

Transthyretin aggregation appears to cause the transthyretin amyloidoses
The TTR amyloid diseases (amyloidoses) appear to be caused by extracellular TTR tetramer
dissociation, monomer misfolding and misassembly into a variety of aggregate morphologies
[1,2,3•] (Figure 1). The field has hypothesized that oligomers formed during the process of
amyloidogenesis lead to cellular toxicity [4,5]. The displacement of tissue by extracellular
amyloid is also thought to exacerbate pathology [6]. The TTR amyloidoses include senile
systemic amyloidosis (SSA), familial amyloid cardiomyopathy (FAC), familial amyloid
polyneuropathy (FAP), and central nervous system selective amyloidoses (CNSA) [3•]. Those
amyloidoses impacting the most patients include SSA (10–25% of the elderly population) [7]
and FAC (3–4% of African Americans), leading to congestive heart failure [8] (Figure 2).
Compelling genetic evidence is supportive of the amyloid hypothesis in the TTR amyloidoses,
where the notion is that the process of amyloidogenesis is causatively linked to disease
pathology [9•,10].

TTR is a homotetrameric protein, comprising 127-amino-acid, β-sheet-rich subunits [11,12],
(Figure 3A). Amyloidogenesis occurs when the thermodynamically linked equilibrium
between tetramer, natively folded monomer and partially denatured monomer is shifted toward
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the partially denatured TTR monomer that is amyloidogenic (Figure 1) [13]. The energetically
weaker dimer–dimer interface of TTR (i, ii/iii, iv) creates the two T4 binding sites (Figure 3A
and B) that are bisected by the crystallographic two-fold axis (C2) [14•]. In humans, the vast
majority (>99.5%) of the TTR T4 binding sites in blood are unoccupied and available for small
molecule binding [3•]. Occupancy of these sites by small molecule kinetic stabilizers has
recently been shown to halt neurodegeneration in FAP patients (foldrx.com). TTR kinetic
stabilizers differentially stabilize the tetramer over the dissociative transition state by
selectively binding to the tetrameric state. This binding increases the free energy of activation
for dissociation, dramatically slowing tetramer dissociation, which is rate limiting for TTR
fibril formation (Figure 3C). This review focuses on recent developments, and outlines the
current state of structure-based design of TTR ligands that kinetically stabilize TTR and prevent
the process of amyloid fibril formation.

Transthyretin's thyroxine binding sites
Each T4 binding site is characterized by a series of subsites [15•] (Figure 3D), an outer binding
subsite, an inner binding subsite, and an intervening interface that are all composed of pairs of
symmetric hydrophobic depressions referred to as halogen binding pockets (HBPs), wherein
the iodine atoms of T4 reside (Figure 3B) [16]. HBPs 1 and 1′ in the outer binding subsite
comprise the side chains of Ala108/108′, Thr106/106′, Met13/13′ and Lys15/15′ with the
pocket lined by methyl and methylene groups of Lys15/15′, Ala108/108′ and Thr106/106′,
whereas HBPs 2 and 2′, are made up of the side chains from Leu110/110′, Ala109/109′,
Lys15/15′ and Leu17/17′. Finally, HBPs 3 and 3′ are composed of the methyl and methylene
groups of Ser117/117′, Thr119/119′, Ala109/109′ and Leu110/110′ (Figure 3B) [16]. T4 and
most ligands bind to TTR with negative cooperativity, apparently resulting from
conformational changes within the tetramer upon binding to the first T4 site [3•], although this
has yet to be definitively confirmed crystallographically. Comparative studies of TTR from
human and rat in complex with T4 suggest that conformational changes and hydrogen bonding
to Lys15/15′ in the outer subsite and Ser117/117′ in the inner subsite affect both binding
orientation and ligand affinity [17].

Small molecule TTR ligands and the basis for kinetic stabilization
Over one thousand aromatic small molecules exhibiting structural complementarity to the T4
binding sites within TTR have been synthesized [18–25,26••,27••,28••,29,30] and are typically
composed of two aromatic rings occupying the inner and outer T4 binding subsites (Figure
3D). The aromatic rings composing TTR kinetic stabilizers can either be linked directly (e.g.
biphenyls) [19,20] or tethered through short hydrophobic linkers [26••,27••] (Figure 3D). Most
of the kinetic stabilizers were conceived of by structure-based drug design principles, taking
advantage of > 100 high resolution TTR•(small molecule)2 crystal structures [11,16,19,21,22,
26••,27••,28••,31–54] (PDB accession codes and compounds are listed in Appendix A, Table
S1).

Ligands that bind to the T4 sites do so utilizing two dominant forces, the hydrophobic effect
and electrostatic interactions. Proper choice of the aryl substitution pattern and hydrophobic
substituents enable maximal occupancy of the HBPs, thus facilitating ligand interactions with
neighboring monomeric subunits through hydrophobic interactions. These bridging
hydrophobic interactions help impose kinetic stabilization on the weaker dimer–dimer
interface of TTR by stabilizing the tetramer over the dissociative transition state, thereby raising
the barrier for tetramer dissociation [9•], Figure 3C. Bridging hydrogen bonds between the
ligand substructure in the inner binding subsite and the Thr116/116′ or Ser117/117′ residues
of TTR further differentially stabilize the native non-amyloidogenic tetramer. Lysine and
glutamic acid residues (Lys15/15′, Glu54/54′) on the periphery of the outer T4 binding subsite
electrostatically complement polar substituents on the aryl rings further stabilizing the native
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state as also observed in the binding of T4 whose ammonium groups salt bridge with Glu54/54′
[16] (Figure 3B and D). These tetramer stabilizing forces combine to make the dissociation
barrier insurmountable under physiological conditions (Figure 3C) [3•,9•,47].

Structure-based design of TTR kinetic stabilizers
Kinetic stabilizers for the treatment of the TTR amyloidoses must be both highly potent and
selective. The ligands must not interact with the thyroid hormone receptor (THR), a major
concern given the similarity of some kinetic stabilizers with triiodothyronine (T3, the primary
thyroid hormone) and T4 (the prohormone). Nonsteroidal anti-inflammatory drug (NSAID)
activity is also contraindicated for treating TTR amyloidosis patients; thus, TTR kinetic
stabilizers should exhibit minimal NSAID activity [55]. While sometimes unpredictable, these
activities can usually be minimized by maximizing TTR amyloid inhibition potency, TTR
binding affinity and binding selectivity to TTR in human plasma, which we have accomplished
using a combination of structure-based drug design and assays to evaluate the above mentioned
criteria [3•].

A wide variety of TTR kinetic stabilizers have been identified including naturally derived
flavonoid and xanthone derivatives [56–58], as well as synthetic compounds belonging to five
families including: bisaryloxime ethers, biphenyls, 1-aryl-4,6-biscarboxydibenzofurans, 2-
phenylbenzoxazoles and biphenylamines [18–25,26••,27••,28••,29,30]. Kinetic stabilizers
have also been identified through halogenation of NSAIDs, such as salicylic acid [52],
diflunisal [21,48,59,60], and analogues of flufenamic [53,60–62]. More recently, additional
ligands, such as isatin [63] and β-aminoxypropionic acid linked aryl or fluorenyl derivatives
have been identified [54,56]. As of 2005, the primary candidates for the most potent and
selective kinetic stabilizers were biphenyls, 2-phenylbenzoxazoles and dibenzofurans, since
some bisaryloxime ethers have lower than desirable chemical stability [18]. This relative lack
of selective, structurally diverse TTR kinetic stabilizers is largely due to the fact that, until
recently, no systematic optimization had been attempted on the three structural elements
composing a typical TTR amyloidogenesis inhibitor [26••,27••,28••].

Optimization of the ideal aryl substituents and their substitution pattern on aromatic rings X
and Z, as well as the linker substructure joining the rings (Figure 3D), revealed numerous high
affinity solutions for occupancy of TTR's thyroxine binding sites [26••,27••,28••]. On the basis
of these new SAR data, it is now possible to make accurate predictions of which structures will
exhibit TTR kinetic stabilizer potency, TTR plasma binding selectivity and the desired binding
orientation [64••]. Detailed herein is a summary of the emerging trends from this structure-
based, TTR kinetic stabilizer design, with an exhaustive tabulated list of recently synthesized
TTR kinetic stabilizers, complete with so-called efficacy scores (Appendix A, equation S2),
integrating TTR amyloidogenesis inhibitor potency and TTR binding selectivity in plasma
(Appendix A, Tables S3, S5 and S7).

Optimal aryl-X ring substructures
To optimize the aryl-X ring, a library of 2-arylbenzoxazoles was synthesized in which the
benzoxazole ring was purposefully unmodified and the 2-aryl ring was systematically
substituted (Figure 4A). The library members were evaluated for TTR amyloid inhibition
potency, plasma TTR binding selectivity, as well as undesired COX-1 and THR binding
activity (Appendix A, Table S4). Substituents at the 3 and 4 positions and, especially, the 3, 4
and 5 positions afforded the most potent and selective TTR amyloidogenesis inhibitors
(Appendix A, Table S3). The most potent inhibitors had a 4-hydroxyl substituent and
hydrophobic substituents at the 3 and 5 positions [27••,64••,65]. The results showed that
hydrogen and fluorine substituents at the 3 and 5 positions tended to afford poorer TTR kinetic
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stabilizers than their chloro, bromo, iodo, and methyl counterparts, probably due to less
efficient interactions with the HBPs (Figure 4A). Halogens are known to contribute more to
ligand binding affinity than would be expected on the basis of their hydrophobicity alone. This
enhanced binding is probably due to formation of a charge-transfer complex between the
halogen and a neighboring oxygen atom [65,66]. 3,5-substituents are generally superior to 3-
substituents only. Substitution at both the 3 and the 5 position enables simultaneous interactions
with HBPs on adjacent TTR subunits, whereas mono-meta-substitution enables occupancy of
only one HBP on one subunit, less efficiently stabilizing the weaker dimer–dimer interface
[27••]. Recent studies concerning the iodination of salicylic acid show that 3,5-diiodo salicylic
acid binds in the inner T4 binding subsite, interacting with HBP 3 and 3′ as would be predicted
by these results. However, these data demonstrate that a second ring is needed to occupy the
outer T4 binding subsite for high binding affinity, also consistent with our observations [52].

The electrostatic interactions made by the 4-hydroxyl group also appear to be important in
maximally stabilizing the tetrameric, non-amyloidogenic state of TTR. In the case of the 2-
(3,5-dimethyl-hydroxyphenyl)-benzoxazole, the phenol forms hydrogen bonds that bridge
Ser117/117′ hydroxyls deep in the inner binding subsite (Figure 4A, middle panel), mimicking
the structural water oxygen placement seen in the apo TTR structure 2QGB or in 2QGE where
the ligand is devoid of a 4-hydroxyl group [27••] (Figure 4A, left panel). Electron-donating
3,5-dimethyl substituents result in a higher 4-hydroxyl pKa (calculated to be 9.21), enabling it
to be protonated, thus favoring hydrogen bonding with the Ser117/117′ hydroxyls in the so-
called ‘forward’ binding mode. By contrast, in the isostructural 2-(3,5-dibromo-4-
hydroxyphenyl)-benzoxazole, the substituted ring is placed in the outer binding subsite in
‘reverse’ binding mode with the putative phenolate substituent engaged in an electrostatic
interaction with the ε-NH3

+ of Lys15/15′ (Figure 4A, right panel), apparently owing to the
lower pKa of the phenol (calculated to be 5.35) [27••]. Thus, the 3,5-X2-4-hydroxyphenyl ring
binding orientation in the context of 2-arylbenzoxazoles is predicted by the pKa of the phenol.
These amyloidogenesis inhibitors display little, if any, inhibition of COX-1 activity, and with
the exception of the thyroxine-like 3,5-I2-4-OH substituted 2-aryl ring, the majority of the most
potent TTR amyloidogenesis inhibitors do not significantly interact with the THR either
(Appendix A, Table S4).

Optimal linker substructures
We next evaluated possible substructures to link the aryls occupying the inner and outer TTR
T4 binding subsites, including CH=CH, −CH2CH2−, polar 1–3 atom linkers and fused five-
membered ring heteroaromatic linkers. One aromatic ring is always unsubstituted in analogues
made for this purpose, whilst the other ring comprises a 3,5-X2 or a 3,5-X2-4-hydroxyphenyl
substructure, where X is Br or Me (Figure 4B and Appendix A, Table S5). Analysis of the
numerous TTR•(ligand)2 structures in the Protein Data Bank (PDB) reveals that the two aryl
rings are typically bound out-of-plane with respect to each other, thus optimal linkers will
probably have to permit this [18–22,26••,27••,28••,47]. Co-consideration of TTR amyloid
inhibition potency and plasma TTR binding selectivity revealed that the direct linkage of two
aryl rings (i.e. biphenyls or 2-arylbenzoxazole), or linkage through a nonpolar substructure
such as an E-olefin or a −CH2CH2− bridge, afforded the most potent and selective TTR
amyloidogenesis inhibitors [26••] (Appendix A, Table S5). Irrespective of whether a compound
binds in the ‘forward’ or ‘reverse’ orientation, the linker is positioned within the hydrophobic
vicinity of HBPs 2 and 2′ (Figure 4B, left and middle panels). Stilbenes composed of a trans-
CH=CH linker exhibit excellent structural complementarity to the hydrophobic micro-
environments in the vicinity of HBPs 2 and 2′ (Figure 4B, left and middle panels), unlike polar
amide linkers (Figure 4B, right panel). The CH=CH linker positioned proximal to HBPs 2 and
2′ interacts with Leu17/17′, Ala108/108′, Leu110/110′ and Val121/121′ side chains as seen in
the TTR• (Resveratrol)2 structure (Figure S9) [22]. Of the 40 compounds tested, only four
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displayed appreciable inhibition of COX-1 activity (Appendix A, Table S6). All four were
composed of a common 3,5-dimethyl-4-hydroxyphenyl substructure but contained distinct
linkers, suggesting the linker contribution to COX-1 activity is negligible.

Optimal aryl-Z ring substructures
Evaluation of aryl-Z ring candidates was carried out using a library composed of a fixed aryl-
X substructure (N-(3,5-dibromo-4-hydroxyphenyl) as well as a fixed and suboptimal amide
linker (Figure 4C) [28••]. Regardless of the diverse range of aryl-Z substituents evaluated, most
were capable of increasing inhibitor potency and plasma TTR binding selectivity (Appendix
A, Table S7). Independent of the substituent, 2,6-substituents are generally more potent and
selective than 2,5-substituents that are more potent and selective than 2-substituents [3,18–
25,26••,27••,28••,29,30,47]. This effect is probably due to more efficient hydrophobic
interactions with HBPs from adjacent TTR subunits in the case of bis-alkyl and halide
substituted aromatics (Figure 4C). Of 56 compounds synthesized, only 5 were observed to
displace >10% of T3 from the THR (Appendix A, Table S8). The random distribution of
substitution patterns in thyroid-displacing TTR kinetic stabilizers suggests that this undesirable
characteristic could be prevented, perhaps by employing an optimal linker.

Substructure combination strategy is effective
Using SAR data from the aryl-X, aryl-Z and linker-Y substructure optimization studies [26••,
27••,28••], we envisioned that a library rich in highly potent and selective TTR kinetic
stabilizers could be generated by simply combining the most highly ranked substructures.

As a demonstration, we utilized the highly ranked 3,5-dibromo-4-hydroxyphenyl aryl-X ring
(and isosteric variants replacing the OH functional group with a NH2), a variety of highly
ranked aryl-Z rings and two hydrophobic linkers (trans−CH=CH− and −CH2CH2−) that
previously yielded potent TTR kinetic stabilizers [22,26••] (Figure 5).

Of the 88 3,5-dibromo-4-hydroxyphenyl-based stilbene and dihydrostilbene compounds
evaluated, 80 were excellent amyloidogenesis inhibitors allowing < 10% WT–TTR fibril
formation at a concentration of 7.2 μM (minimal concentration required to occupy both T4
sites) and between 15 and 30% fibril formation at a concentration of 3.6 μM. These potent
compounds were further evaluated for their binding selectivity for TTR in human plasma.
Notably, 37 of these exhibited exceptional selectivity to plasma TTR with >1.5 equivalents
bound per tetramer (the maximum being 2). Nonetheless, it was disappointing that more
compounds than would have been predicted displaced T3 at the THR, with 70% of the
promising stilbene compounds displacing >20% of T3. In the case of the stilbenes that displace
T3 from the THR, replacing the CH=CH linker with a dihydrostilbene (CH2−CH2) linker
yielded a library that was largely free of T3 THR displacement (24% displacing >20% of T 3)
[64••].

The 4-amino group was found to be equivalent to the 4-hydroxyl group in terms of potency
and exhibited excellent TTR binding selectivity in plasma. Notably, none of the library
members composed of a 4-NH2 displaced T3 from the THR, suggesting that further aryl-X
optimization may be an effective strategy to reduce THR binding [64••]. While the 3,5–Br2–
4–OH ring prefers to occupy the outer binding subsite in the ‘reverse’ binding mode [26••,
27••,28••], the 3,5-dibromo-4-aminophenyl ring strongly prefers to occupy the inner binding
subsite in the ‘forward’ binding mode, and identifies a key piece of new data in that it is
desirable to have more substructures that bind with subsite selectivity.

The kinetic stabilizer efficacy scores (integrating TTR amyloid inhibition efficacy and TTR
binding selectivity data in human plasma) reveal that the substructure combination strategy is
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very effective for efficiently producing TTR kinetic stabilizers, in that nearly 70% of the
stilbenes examined and 93% of the dihydrostilbenes examined exhibit exceptional TTR kinetic-
stabilizer activity [64••].

Conclusions
The systematic optimization of the three substructures comprising a typical TTR kinetic
stabilizer has enabled rank ordering of these substructural components and these data now
enable us to confidently predict the structures of diverse, potent and highly selective TTR
kinetic stabilizers that inhibit TTR amyloidogenesis in vivo. From the high-resolution X-ray
crystallographic data, we now know why some aryls prefer the inner binding subsite and others
prefer the outer binding subsite. We also now appreciate that those that maximize HBP
occupancy and electrostatic interactions with one or more TTR subunits are the most potent
kinetic stabilizers [26••,27••,28••]. The substructure subsite preferences revealed by X-ray
crystallography now inform us regarding which aryl-X, aryl-Y and linker substructures should
be combined to yield potent and selective TTR kinetic stabilizers.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The transthyretin (TTR) amyloidogenesis cascade. For amyloidogenesis to occur, the TTR
tetramer must dissociate into four folded monomers and undergo partial denaturation in order
to subsequently misassemble into a spectrum of aggregate structures including cross-β-sheet
amyloid fibrils.
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Figure 2.
A table summarizing the transthyretin amyloidoses.
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Figure 3.
Structure of transthyretin•(T4)2 complex and the basis for TTR kinetic stabilization. (a) Crystal
structure of TTR with T4 bound to each T4 binding site (PDB accession code 2ROX [16]).
(b) Close-up view of one T4 binding site with T4 bound. Primed amino acids refer to those
comprising symmetry-related halogen binding pockets (HBPs) of TTR monomers. (b) Kinetic
stabilization of TTR by small molecule binding to the natively folded tetramer stabilizes the
ground state and increases the tetramer dissociation barrier, preventing amyloidogenesis and
pathology. (d) Schematic depiction of one of the two T4 binding pockets within TTR occupied
by a small molecule TTR kinetic stabilizer, where Y represents a linker of variable chemical
structure (e.g. NH, O, CH=CH, C(O)NH, etc.) joining the two aryl rings, which typically bear
a combination of alkyl, carboxyl, halide, trifluoromethyl, or hydroxyl substituents (X and Z).
The inner and outer binding subsites are indicated.
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Figure 4.
Crystal structures of WT–TTR in complex with kinetic stabilizers from substructure X, Y and
Z optimization studies. Ribbon diagram depiction of WT–TTR highlighting one of the two
identical T4 binding sites containing a schematic representation of a typical TTR kinetic
stabilizer. (a) Aryl-X substructure optimization, PDB accession codes 2QGE, 2QGC and
2QGD, as indicated. (b) Linker-Y substructure optimization, PDB accession codes 3CN0,
3CN1 and 3CN4, as indicated. (c) Aryl-Z substructure optimization, PDB accession codes
3ESN, 3ESO and 3ESP, as indicated. All structures have ‘Connolly analytical’ surface
representation of the pocket (green = hydrophobic, purple = polar), defined as all residues
within 8 Å of ligand. Lysine 15′ and serines 117′ and 117 are shown with corresponding bonds
with ligand. Figure is generated using the program MOE (2008.10), Chemical Computing
Group, Montreal, Canada.
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Figure 5.
Overview of the substructure combination strategy. Potent and selective TTR kinetic stabilizers
were created by combining highly ranked aryl-X and aryl-Z rings with appropriate linker-Y.
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