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Abstract
The ensheathment of neurons and their axons creates an ion-sensitive microenvironment that allows
rapid conduction of nerve impulses. One of the fundamental questions about axonal ensheathment
is how insulating glial cells wrap around axons. The mechanisms that underlie insulation of axons
in invertebrates and vertebrates are not fully understood. In the present article we address cellular
aspects of axonal ensheathment in Drosophila by taking advantage of glial mutants that illustrate a
range of phenotypic defects including ensheathment of axons. From the findings of these mutant
studies, we summarize that loss of glial cells, defects in glial membrane wrapping, failure of glial
migration, and loss of specialized ladderlike septate junctions between ensheathing glial membranes
result in axon-glial functional defects. These studies provide a broad perspective on glial
ensheathment of axons in Drosophila and key insights into the anatomical and cellular aspects of
axonal insulation. Given the powerful genetic approaches available in Drosophila, the axonal
ensheathment process can be dissected in great detail to reveal the fundamental principles of
ensheathment. These observations will be relevant to understanding the very similar processes in
vertebrates, where defects in glial cell functions lead to devastating neurological diseases.
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In 1928, neurobiologist P. D. Rio Hortega wrote,

Such minute corpuscles could not evoke any aesthetical emotions. Yet these cells
refractory to every protoplasmic staining, because of their infinite numbers, their
dissemination in encephalic terrains and their strategic location next to neurons and
nerve fibers, deserved, at some point, to seize the attention of neurologists and to be
placed on an equal rank with the classic neuroglia. This moment has arrived!

Glial cells are abundant in the nervous system, and the ratio of glia to neurons increases with
increasing neural complexity. A thorough understanding of the diverse functions that glial cells
perform and of the underlying molecular mechanisms that control axonal ensheathment is still
lacking. Extensive studies have uncovered a variety of roles for glia in neuronal development
and function. For example, glial cells provide growth factors that regulate neuronal
proliferation and survival (Xiong and Montell, 1995; Booth et al., 2000; Lemke, 2001), help
to compartmentalize to delimit regions of axonal outgrowth (Younossi-Hartenstein and
Hartenstein, 1993; Oland and Tolbert, 2003), modulate axonal growth and fasciculation (Booth
et al., 2000; Gilmour et al., 2002), and secrete factors essential for the maintenance and
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ensheathment of synapses (Barres and Raff, 1999; Fields and Stevens-Graham, 2002; Auld
and Robitaille, 2003). In addition, glial cells act as the primary immune cells of the nervous
system and perform engulfment functions to clear dying cells or invading pathogens in order
to protect neural tissues (Freeman et al., 2003; Awasaki et al., 2006; MacDonald et al., 2006).

Among the various functions that glial cells perform in the nervous system, ensheathment or
insulation of neurons and their axons is one of the functions that have high clinical relevance
to human health and disease. Thus, the molecular mechanisms that underlie the ensheathment
of axons remain an area of immense interest and are believed to be involved in the etiology of
several debilitating myelin diseases such as Charcot-Marie-Tooth disease and multiple
sclerosis that dramatically alter neuronal function. In vertebrates, myelin membranes are
produced by Schwann cells in the peripheral nervous system (PNS) and by oligodendrocytes
in the central nervous system (CNS). These cells generate a multilayered structure around axons
that provides a high-resistance and low-capacitance barrier and organizes axons into distinct
molecular domains essential for conduction of saltatory action potentials (Poliak and Peles,
2003; Bhat, 2003; Salzer, 2003). In contrast, glial ensheathment of peripheral axons in
Drosophila is accomplished by ensheathing inner glial cells (Klambt and Goodman, 1991;
Juang and Carlson, 1994; Leiserson et al., 2000; Banerjee et al., 2006a,b). Similar to that in
vertebrate oligodendrocytes, ensheathing glial cell processes in Drosophila peripheral nerves
wrap around individual axons or axon fascicles. A second outer glial cell wraps both the inner
glial cell and the axons. In both vertebrates and invertebrates, the encasing of axons in insulating
glial processes is a unique way to increase the conduction velocity of electrical impulses. This,
in turn, increases the capacity of the nervous system to process information at a faster pace,
decreasing the reaction time to stimuli. In addition, glial sheaths sort axons into appropriate
fascicles in order to isolate them and enable them to conduct unique electrical impulses.

In the present article we address key aspects of axonal ensheathment by glial cells in
Drosophila peripheral nerves and revisit some of the published studies on various glial mutants
in order to highlight the critical steps involved in ensheathment of PNS axons.

GLIAL ENSHEATHMENT OF PERIPHERAL AXONS
Glial cells have been carefully classified and described using various enhancer trap markers
that identify specific subsets of glial cells (Fredieu and Mahowald, 1989; Klambt and
Goodman, 1991; Ito et al., 1995; Kania et al., 1995; Bellen and Schulze, 2003). The 6–8 PNS
glia in each embryonic segment are derived from two lateral neuroglioblasts (Schmidt et al.,
1997; Sepp et al., 2001; see Fig. 1). These glia become intermediate targets for motor neurites
extending into the periphery. Initially exit glia migrate to the CNS/PNS border, where they
first form a cone-shaped structure at the site where the growth cones of motor neurons exit the
CNS (Sepp et al., 2001; Sepp and Auld, 2003a; Banerjee et al., 2006a). Nearly all glial cells
are born in the CNS, but those that perform the ensheathment function of the peripheral nerves,
namely, exit glia and peripheral glia, migrate out of the CNS along motor axon tracts during
midembryonic development. Motor axons exit the periphery, and sensory axons grow toward
the CNS and are all insulated by the same glial cells (schematic in Fig. 1O). Thus, the
spatiotemporal distribution of neurons and glia in the embryonic nervous system suggests a
highly coordinated mechanism of neuron–glia interactions and axonal insulation in which glial
cell processes must undergo complex morphological changes to enable fewer glial cells to
accommodate and insulate a large number of axons at the same time.

The distinction between the fate of glia and neurons is under the control of the glial cells missing
(gcm/glide) gene (Hosoya et al., 1995; Jones et al., 1995; Vincent et al., 1996). In gcm-mutant
embryos, the presumed glial progenitors are directed toward a neuronal cell fate. Conversely,
overexpression of gcm in the developing embryonic nervous system is able to transform most
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neurons into glia (Hosoya et al., 1995; Jones et al., 1995; Vincent et al., 1996). Also, gcm can
induce several glial differentiation markers in the mesoderm when expressed early in
development, thus acting as a master regulator of glial cell development (Akiyama-Oda et al.,
1998; Bernardoni et al., 1998). The transient expression of gcm has been shown to initiate glial
differentiation and activation of its downstream targets, such as repo, which control both
differentiation and maintenance of glial cell fate (Campbell et al., 1994; Halter et al., 1995).
Repo is the most ubiquitous glial marker expressed in the nuclei of all glial subtypes and many
PNS glial support cells. Repo is not expressed in midline glial cells (Campbell et al., 1994;
Halter et al., 1995; Jones, 2001).

Visualization of axonal ensheathment has been impeded by not having a proper glial membrane
marker. Although glial proteins, such as neurexin IV (Nrx IV), contactin (Cont), and neuroglian
(Nrg), are localized to glial membranes, they are also highly expressed in ectodermally derived
epithelia (Baumgartner et al., 1996; Faivre-Sarrailh et al., 2004; Banerjee et al., 2006a). We
therefore took advantage of a glial-specific driver (repo-GAL4) to drive expression of a reporter
transgene, UASmCD8-GFP, in glia during embryogenesis (Brand and Perrimon, 1993; Lee
and Luo, 1999). UASmCD8-GFP encodes a transmembrane protein that is targeted to the cell
membrane, with no apparent lethality or toxicity associated with overexpression (Lee and Luo,
1999). As shown in Figure 1, glial cells that ultimately become peripheral glial cells originate
from the CNS/PNS border region (Fig. 1F). After these glial cells undergo proliferation (Fig.
1G), they begin their migration toward the periphery (Fig. 1H). This glial migration was
followed in embryos of the genotype repo-GAL4::UAS-mCD8GFP double-immunostained
using anti-GFP antibody in order to visualize the extent of glial processes and anti-Fas II as a
marker for motor axons (Fig. 1I–N). The development of the peripheral nerve occurs in multiple
stages beginning with specification of glial cells and growth of motor and sensory axons. By
stage 16 (~16 hr after egg lay), a fully formed peripheral nerve contains approximately 7
peripheral glial cells in a single abdominal segment. Glial cells that remain nearer to the CNS
region are exit glia (EG; see Fig. 1O). One exit glia stays associated with the segmental nerve
(SN), and the rest of the glia line the long intersegmental nerve (ISN). Although no systematic
ultrastructural analysis of developing peripheral nerve ensheathment has been carried out,
ultrastructural characteristics show that by stage 17 (~17 hr after egg lay), glial ensheathment
of the embryonic peripheral nerve appears to be complete, that is, glial processes surrounding
axons and formation of glial–glial septate junctions (SJs; Banerjee et al., 2006a). Glial
ensheathment appears continuous along the length of peripheral nerves, as it leaves no
uninsulated areas that would resemble vertebrate nodes of Ranvier. In Drosophila thick glial
membrane sheaths along peripheral nerves and any anatomically distinct domains in nerves
are also absent. Thus, axonal insulation in Drosophila is accomplished by thin glial processes
running continuously the length of peripheral axons (Banerjee et al., 2006a).

Invertebrates lack myelin, and most genes encoding myelin protein homologues are absent
from the Drosophila genome. However, during ensheathment of adult Drosophila thoracic
ganglia, glial wrapping somewhat resembles the vertebrate myelin as the glial membrane forms
multiple layers around the neurons (Freeman and Doherty, 2006). Ultrastructural analyses have
revealed myelin-like glial sheaths found in other invertebrates such as copepods to have similar
structures and apparently the same functions (Weatherby et al., 2000). Genomewide analysis
of the presence of myelin proteins across species is providing novel information about the
evolution of myelin and myelin-related proteins (Gould et al., 2005; Schweigreiter et al.,
2006). The Drosophila genome lacks most genes encoding major myelin proteins, for example,
myelin basic protein, myelin P zero, and peripheral myelin protein. However, Drosophila has
a homologue of myelin proteolipid protein (Gould et al., 2005). These finding suggest that
multilayer membrane formation may require proteins present only in Drosophila (Freeman
and Doherty, 2006). Thus, the ensheathment of peripheral nerves in flies more closely
resembles that of unmyelinated peripheral axons, where nonmyelinating Schwann cells

Banerjee and Bhat Page 3

J Neurosci Res. Author manuscript; available in PMC 2010 March 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ensheath small-diameter axons, referred to as Remak bundles (Taveggia et al., 2005). Whether
this structural resemblance translates into functional similarity in action potential conduction
remains to be addressed.

In the embryonic nerve, the inner ensheathing glial cell wraps around individual axons or
fascicles and plays an essential role in axonal insulation and axon–glial interactions (Fig. 2),
and perineurial (outer) glial cell processes wrap around inner glial cells along with axons. In
third instar larval peripheral nerves, perineurial cells undergo postembryonic proliferation to
accommodate the growing larval nerve (Leiserson et al., 2000), whereas inner glial cells do
not proliferate during postembryonic stages and accommodate nerve growth by extending
longer processes (Sepp et al., 2000). It is interesting to note that in Drosophila terminal glial
differentiation and the ensheathment of nerve tracts occur in larval stages. What starts out as
CNS-derived peripheral glia during embryonic stages migrate peripherally positioning
themselves along the ISN and SN completes the ensheathment of SN motor branches and the
ISN only during larval development, with glia showing a preference for ensheathing sensory
neuron tracts over motor axons (Sepp et al., 2000;Parker and Auld, 2004).

EFFECTS OF LACK OF GLIAL CELLS ON PERIPHERAL NERVE
ORGANIZATION

Because gcm is the master regulator gene for most glial cells in Drosophila, embryos mutant
for gcm lack most glial cells in both the CNS and PNS. This provides an ideal situation for
studying the effects of lack of glial cells on axon guidance, nerve fasciculation, and action
potential conduction. Studies carried out on gcm mutants related to ensheathment, guidance,
and fasciculation have revealed defects in nerve tracts in both the CNS and PNS (Sepp et al.,
2001; Banerjee et al., 2006a). Embryos mutant for gcm display aberrant CNS longitudinal axon
tracts and defasciculation of SN and ISN branches that exit the CNS (Sepp et al., 2001).
Ultrastructural studies carried out on gcm mutant peripheral nerves demonstrated in greater
detail the precise defects resulting from loss of glial cells and their ensheathing processes on
the ensheathment of these nerves. In the absence of glial wrapping, the peripheral nerves of
gcm mutants show total disorganization of axons in terms of their morphology and structural
integrity and show signs of degeneration along with fluid buildup in the interaxonal spaces
likely a result of the penetration of hemolymph inside nerve fibers (Banerjee et al., 2006a;
Banerjee and Bhat, unpublished data).

A second gene, gcm2/glide2, was identified as both necessary and sufficient to promote glial
differentiation (Kammerer and Giangrande, 2001; Alfonso and Jones, 2002). The gcm and
gcm2 genes are about 27 kb apart, and the lack of both these proteins eliminates all Repopositive
glial cells. Thus, these two genes encode all the glia-promoting activity in fly embryos.
Similarly, a deficiency line, Df(2L)γ1 (Lane and Kalderon, 1993), removes both gcm and
gcm2 genetic loci and displays a more severe phenotype of misrouted motor axons and
complete lack of glial ensheathment compared with that in either mutant alone (Banerjee and
Bhat, unpublished data). Because this deficiency removes many other genes in addition to both
gcm genes, the severity of the mutant phenotype cannot be attributed solely to the complete
loss of glial cells resulting from loss of gcm and gcm2. Despite these caveats, it is worth noting
that even in the complete absence of glial cells, some motor axons do exit the CNS to travel
toward the periphery. It raises an interesting possibility that apart from glial cells, other
substrates or cell types might provide cues for axons to seek their targets. Although this area
is still underinvestigated, there are reports showing that peripheral sensory axons are guided
by multiple cues such as the trachea and musculature that ensure the high fidelity of axon
trajectories evident in wild-type embryos (Younossi-Hartenstein and Hartenstein, 1993).
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At about embryonic stage 13, the growth cones of motor axons extend their way through the
array of peripheral glia at the CNS exit point and navigate a specific trajectory to pioneer the
ISN tract (Sepp et al., 2000). Peripheral glia thus play an important role in the CNS–PNS
transition zone through which motor axons grow out of the CNS and sensory axons grow toward
the CNS. The Drosophila CNS–PNS transition zone is strongly reminiscent of the CNS–PNS
interface in vertebrates, where boundary cap cells expressing Schwann cell markers are born
in the neural crest and proceed to form compact arrays at the ventral transition zone and the
dorsal root entry zone. Sensory and motor axons transit and interact with astrocytes and
Schwann cells at this interface (Golding and Cohen, 1997). As in flies, vertebrate Schwann
cells have also been shown to migrate along preestablished tracts determined by path-finder
motor neurons, and glial processes never project beyond the leading edge of their neuronal
migratory substrate (Carpenter and Hollyday, 1992).

Similar to that seen in gcm mutants, pathfinding errors as well as defasciculation are also seen
in motor and sensory axons by targeted ablation of peripheral glia by expressing cell-death
genes such as grim and ced-3 (Sepp et al., 2001). Similarly to that in vertebrates, virally
mediated oligodendrocyte ablation causes defects in migration, dendritic arborization, and
axon fasciculation, thereby profoundly affecting cerebellar neuronal development (Mathis et
al., 2003).

Until recently, there were no available data to implicate the vertebrate homologues of
Drosophila gcm in glial development and function. gcm1-Knockout mice die early during
development because of failure of the placenta (Gunther et al., 2000; Schreiber et al., 2000),
whereas gcm2-knockout mice are viable but lack a parathyroid gland (Gunther et al., 2000).
Recent studies showed that Drosophila gcm genes are required in specific neuronal
populations, in addition to glia in the larval visual system (Chotard et al., 2005; Yoshida et al.,
2005). These rather puzzling observations were addressed in a recent study by Soustelle et al.
(2007) in which the authors reevaluated the mode of gcm gene function in evolution. Using c-
gcm, the chicken orthologue of Drosophila gcm, they demonstrated that a vertebrate gcm gene
is expressed and required in the CNS. In Drosophila postembryonic development, gcm1 and
gcm2 overexpression induced ectopic neuronal differentiation. This dual potential of gcm genes
to perform both gliogenic and neurogenic roles in Drosophila but only a neurogenic role in
vertebrates points to an interesting evolutionary aspect of the function of gcm genes (Soustelle
et al., 2007). These findings also suggest that transcription factors may use cell-specific
cofactors in a context-dependent manner to carry out their function in cellular specification
and differentiation.

AXONAL ENSHEATHMENT FAILURE AND/OR IONIC IMBALANCE IN FRAY
MUTANTS

The Drosophila fray locus encodes a 552-amino-acid protein with a serine–threonine kinase
domain (Leiserson et al., 2000). The Fray kinase domain is most closely related to the PAK
family of protein kinases, whose founding members are yeast STE20 and the mammalian PAKs
(Ushiro et al., 1998; Manser and Lim, 1999). The closest members of the Fray kinase family
include Fray, rat PASK, mouse SPAK, human OSR1, human Strerile-20-like, and C.
elegans CAB6094. Thus, this family has been referred to as PF kinases, for PASK and Fray
(Leiserson et al., 2000). Mutations in the fray gene result in defective axonal ensheathment in
Drosophila larval peripheral nerves (Leiserson et al., 2000). Under light microscopy fray
mutant third-instar larvae show unique nerve bulgings or swellings (Leiserson et al., 2000).
Furthermore, the fray nerve phenotype seems to be manifested during larval development,
suggesting it has a role in late glial development (as glial processes in fray mutants seem to
elaborate and extend into the nerve to surround the axons but fail to form complete wraps).
Immunostaining of fray mutant third-instar larval nerves reveals complete defasciculation and
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splitting of axons in the swollen regions (Banerjee and Bhat, unpublished data). Ultrastructural
analyses of fray mutant nerves has demonstrated that the phenotype may be a result of the
failure of the inner glial process to wrap the axons and not of a defect in the outer glial membrane
(Leiserson et al., 2000). This is true for both the bulging and the nonbulging regions of the
fray larval peripheral nerve. These initial ultrastructural observations have suggested that
fray may modulate the glial cytoskeleton to bring about proper ensheathment of axons.

Recent biochemical and physiological studies suggest that the mammalian fray homologue
PASK is required to maintain ionic homeostasis (Dowd and Forbush, 2003). It was reported
that the sodium-potassium-chloride cotransporter (NKCC1) is the physiological substrate of
PASK kinases and that phosphorylation of NKCC1 by PASK kinases results in enhanced
transporter activity (Piechotta et al., 2002). Activation of NKCC1 was drastically reduced when
a kinase-inactive, dominant-negative PASK mutant was overexpressed with the transporter.
However, wild-type PASK overexpression caused only a modest increase in cotransporter
activity (Dowd and Forbush, 2003). These mammalian studies have led to the idea that
Drosophila Fray may also play an important role in ionic homeostasis in nerve fibers. Recent
studies in Drosophila indicate that fray and a Drosophila cation chloride cotransporter display
dominant genetic interactions (Leiserson and Keshishian, personal communication). These
preliminary findings suggest that the fray nerve–bulging phenotype may result from an
imbalance of ionic homeostasis, leading to fluid buildup and ultimately the fraying of the nerves
in fray mutant larvae (Leiserson et al., 2000). These observations raise other questions about
whether the phenotype displayed by fray mutant nerves is a secondary consequence of the
physical damage to nerves as a result of fluid accumulation. The ultrastructural abnormalities
displayed by fray mutant nerves at the level of the bulges indicate incomplete inner glial
processes that fail to wrap the axons (Leiserson et al., 2000; Banerjee and Bhat, unpublished
data). How does the fray phenotype manifest itself, and why do the bulges form at certain
places and not throughout the nerve fibers? Are these hot spots for ionic exchange or places
where cation cotransporters are localized? Future studies should be aimed at elucidating the
mechanism by which Fray performs its function, and identification of Fray kinase substrates
will provide insights into the signaling pathway that regulates ionic homeostasis and glial
ensheathment.

GLIAL MIGRATION AND AXONAL ENSHEATHMENT
The ability of a cell to migrate over its substratum requires directed and asymmetrical
organization of cellular activity. A migrating cell generates a protrusive force, usually
associated with the formation and extension of lamellipodia in the direction of migration
coupled with the development of new cell adhesions with the extracellular substrate. In
addition, cell contractility is required to allow the cell body and the rear of the cell to follow
the extending front. This protrusion and cell contraction are dependent on actin cytoskeleton
and provide the driving force for cell migration. Myelinating glial cells like Schwann cells also
migrate long distances over axonal surfaces prior to myelination. It has been shown that insulin-
like growth factor–I increases Schwann cell process extension and motility by reorganizing
the actin cytoskeleton via downstream activation of phosphatidylinositol 3-kinase, small
GTPases, and focal adhesion kinase (Cheng et al., 2000). Similar to vertebrates, Drosophila
peripheral glia are also known to migrate long distances from their site of origin in the CNS
to ensheath peripheral axons. Using overexpression studies of dominant-negative and
constitutively active RhoA and Rac1, it was demonstrated that interference with the glial actin
cytoskeleton leads to defects in glial migration (Sepp and Auld, 2003a).

Many cell surface receptors signal through the Rho family of small GTPases to induce
cytoskeletal changes to cause motility (Etienne-Manneville and Hall, 2002; Moon and Zheng,
2003; Starz-Gaiano and Montell, 2004). This family includes Rho, Rac, and Cdc42, which are
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capable of imparting a range of biological effects. For example, overexpression of dominant-
negative Rac (N17) leads to failure of border cell migration (Murphy and Montell, 1996),
whereas dominant-negative RhoA prevents germ-cell migration at an early stage (Kunwar et
al., 2003). Alterations in the expression or function of Rho family members have been shown
to contribute to inadequate regulation of cell motility, leading to invasive behavior of tumors
(Schmitz et al., 2000).

The extent of the actin cytoskeleton in embryonic peripheral glia can be visualized by
expressing actin-GFP in the glial cells under repo-GAL4 (Verkhusha et al., 1999; Sepp and
Auld, 2003a). Actin-GFP highlights the glial actin cytoskeleton, and glial cell bodies and their
processes can also be visualized in the early- and late-migrating phases. When RhoA and small
GTPases are expressed in wild-type peripheral glial cells, subtle migration defects have been
observed (Sepp and Auld, 2003a). Similarly, overexpression of constitutively active and
dominant-negative RhoA and Rac1 shows severe glial migration defects, with peripheral glia
stalling at the CNS–PNS transition zone, leading to ensheathment defects (Sepp and Auld,
2003a). In contrast, overexpression of RhoA as well as Rho dominant-negative and
constitutively active forms using a pan-neuronal GAL4 driver (elav-GAL4) does not result in
major glial migration phenotypes (Banerjee and Bhat, unpublished data) compared with using
repo-GAL4. From these overexpression studies, it appears that the glial actin cytoskeleton plays
an important role in glial migration and ensheathment of axons.

Rho kinase (ROCK) has been implicated in Schwann cell myelination in vertebrates
(Melendez-Vasquez et al., 2004). ROCK, a major downstream effector of Rho, coordinates
changes in glial cytoskeleton during spiral wrapping of glial processes via regulation of myosin
phosphorylation and actomyosin assembly (Melendez-Vasquez et al., 2004). Given the striking
similarity between Drosophila and vertebrate Rhos, elucidating regulation of Rho activity and
the role of other Rho GTPases should provide important insights into the mechanisms of glial
migration and ensheathment.

In addition to Rho GTPases, the Notch signaling pathway has been implicated in peripheral
glial migration. Both loss- and gain-of-function mutations showed that Notch negatively
regulates gcm and thereby gliogenesis in the Drosophila PNS (Van De Bor and Giangrande,
2001). Recent reports showed that Notch and Numb are required for normal migration of
peripheral glia in Drosophila embryos, thereby implicating the Notch signaling pathway in
peripheral glial migration (Edenfeld et al., 2007). Hypomorphic Notch alleles display a
relatively normal-looking nervous system (Edenfeld et al., 2007). However, these mutants
display abnormally positioned peripheral glial cells, suggesting that Notch may play a role
during glial cell migration. Cell labeling experiments revealed that Notch mutant peripheral
glia have an unusually enlarged growth cone, suggesting that the normal function of Notch
may be to ensure proper neuron glial interaction by keeping the glial growth cone in close
proximity to axonal membranes during glial migration (Edenfeld et al., 2007). In vertebrates,
Notch regulates oligodendrocyte differentiation and the timing of axonal myelination (Wang
et al., 1998; Hu et al., 2003). Interestingly, Delta-1 is also essential for proper migration and
differentiation of neural crest cells, thereby implicating a function of Notch during cell
migration in the vertebrates as well (De Bellard et al., 2002).

Recent studies indicate that glial cell differentiation is also controlled by the cytoplasmic
assembly of a splicing factor, crooked neck (Crn). Crn is a conserved component of the splicing
machinery that on translocation to the nucleus, promotes splicing of SJ-specific genes (Chung
et al., 2002; Wang et al., 2003; Edenfeld et al., 2006). These crn mutants affect glial migration
and differentiation, thus impairing proper wrapping of axons. For example, glial cells fail to
form well-defined cellular processes around axonal fascicles and also seem to fail to establish
SJs (Edenfeld et al., 2006). These findings further establish that glial migration coupled with
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differentiation is required for ensheathment of axons and link it to the assembly of cellular
junctions formed by glial cells (Edenfeld et al., 2006). Interestingly, Crn does not have specific
RNA-binding motifs to carry out alternative splicing. Crn accomplishes its splicing ability by
interacting with held out wing (How; Lo and Frasch, 1997; Zaffran et al., 1997). The how locus
in Drosophila encodes a number of RNA-binding proteins that display different subcellular
expression patterns (Baehrecke, 1997). Indeed, biochemical experiments demonstrated that
Crn binds to a short isoform of How (Edenfeld et al, 2006). The vertebrate homologue of How
is Quaking, which is also required for glial differentiation, and Quaking mutants display
tremors because of severe myelination defects (Sidman et al., 1964). Because Quaking and
how mutants share defective axonal wrapping, it seems likely that the underlying molecular
control of glial wrapping in invertebrates and vertebrates may have conserved mechanisms.

LOSS OF SJs RESULTS IN DEFECTIVE AXONAL ENSHEATHMENT AND
COMPROMISED BLOOD–NERVE BARRIER

Another key aspect of peripheral axon ensheathment is maintenance of a proper blood–nerve
barrier. This barrier is established by the close proximity of the inner and outer glial processes
to form a tight seal that prevents the surrounding hemolymph from entering the nervous system
and disrupting neuronal function. To this end, a number of glial mutants have been reported
that show compromised blood–nerve barrier function because of partial or complete loss of
functional SJs. The mutants identified in this category are gliotactin (gli; Auld et al., 1995)
and nrx IV (Baumgartner et al., 1996). In gli mutants, the glia appear normal under light
microscopy in terms of their birth, migration, and morphology. However, both ultrastructurally
and physiologically they exhibit defects in glial SJs that lead to a compromised blood–nerve
barrier (Auld et al., 1995; Baumgartner et al., 1996). The nrx IV–mutant peripheral nerves are
in close proximity to glial membranes but completely lack glial SJs, resulting in a breach of
the blood–nerve barrier (Banerjee et al., 2006a,b; Banerjee and Bhat, 2007). Since the discovery
of Gli and Nrx IV, several SJ proteins have been identified in the nervous system. These include
contactin, neuroglian, Lachesin, Moody, and Loco (Bainton et al., 2005; Schwabe et al.,
2005; Banerjee et al., 2006a; Strigini et al., 2006). SJs and SJ-specific proteins such as Nrx IV
in Drosophila and vertebrates show remarkable functional similarities in the formation and
function of SJs (Bellen et al., 1998; Bhat et al., 2001; Banerjee et al., 2006a,b; Garcia-Fresco
et al., 2006; Banerjee and Bhat, 2007).

The inner and outer glial processes establish distinct junctions that display unique ladder-like
structures, the SJs. Because these junctions are formed between the outer and inner glial cell
membranes, they could be considered heterotypic junctions. There is some evidence that SJs
may also be formed between axons and inner glial membrane processes (Banerjee and Bhat,
unpublished data). However, tissue fixation artifacts have not allowed us to conclusively
establish the presence of axoglial SJs in fly nerves. SJs are also present in vertebrate myelinated
axons in the paranodal region between myelin loops and the axolemma (Einheber et al.,
1997; Bhat et al., 2001). These vertebrate axo-glial SJs are heterotypic junctions and are
localized in the paranodal regions flanking a node of Ranvier between the myelin and the axonal
membrane (Bhat, 2003). Functionally, SJs create an ionic barrier to protect the neural
microenvironment (Baumgartner et al., 1996) and also serve as a fence that separates ion
channels at nodes of Ranvier (Bhat et al., 2001; Rios et al., 2003). Each SJ may confer partial
impermeability such that all the strands together form a barrier that protects neurons from a
high potassium concentration in the hemolymph of insects (Hoyle, 1952; Juang and Carlson,
1992).

Not all SJ-specific proteins have been characterized for their role in nerve ensheathment or
other aspects of the nervous system. One such family of proteins, found in both Drosophila
and vertebrates, is the claudin family (Anderson and Van Itallie, 1995; Behr et al., 2003; Wu
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et al., 2004). Claudins are tight junction–specific proteins in vertebrates (Furuse and Tsukita,
2006). The SJs in invertebrates and the tight junctions of vertebrates were long thought to be
distinct from both a morphological and a molecular standpoint. However, the identification of
homologous epithelial junctional proteins of the claudin family in vertebrates and
Drosophila has led to a change in this perspective (Behr et al., 2003; Wu et al., 2004).

A complex signaling pathway involving G-protein-coupled receptors, moody, loco, and the
Gα genes Gi and Go are involved in the establishment of the intercellular SJs that generate the
protective seal required for proper insulation of the CNS (Schwabe et al., 2005). Moody was
identified in a screen for fly mutants with altered cocaine sensitivity and may thus provide
interesting insights into the involvement of the blood-brain barrier in the physiological response
to narcotics (Bainton et al., 2005). Phenotypic analysis of moody mutant embryos revealed that
a junctional seal is created by the intercellular SJs formed by the surface glia that coalesce into
single-layer epithelium and form contiguous SJ belts late in embryonic development (Schwabe
et al., 2005). Using dye occlusion and onset of embryonic movement, the sealing of the nerve
cord is complete by about 20 hr of development. The expression pattern of Moody, its G-protein
α subunits Gi and Go and their regulator Loco in the surface glia, and the insulation defects
and abnormal motor behavior phenotypes displayed by the respective mutants suggest that
GPCR signaling plays a crucial role in the insulation of the nerve cord (Schwabe et al.,
2005). In addition, both the moody and loco mutants were found to have insulating SJs of
reduced length, irregular cell shape and size, and weaker and variable accumulation of cortical
actin in the surface glia (Schwabe et al., 2005). These data suggest that the primary function
of GPCR signaling may be linked to the organization of the cortical actin cytoskeleton, which
in turn may be required to generate lengthy stretches of SJs. Future studies should unravel the
genetic and molecular mechanisms of GPCR signaling in neuronal insulation and help to
establish the role of Moody and its binding partners in organizing the glial cytoskeleton and
forming the right complement of SJs.

One important aspect of glial ensheathment that remains to be addressed is the conduction of
action potentials in glial mutants. To what extent do axons in glial mutants that have proper
glial ensheathment but lack SJs conduct action potentials? For example, ultra-structural studies
show that nrx IV and cont mutants have proper glial ensheathment but lack SJs (Banerjee et
al., 2006a). Although synaptic transmission measurement has been carried out in glial mutants
(Auld et al., 1995; Baumgartner et al., 1996), the rate at which mutant axons conduct action
potentials remains to be established. It is estimated that the potassium (K+) ion concentration
in Drosophila hemolymph is close to 40 mM, and at this K+ concentration, wild-type embryos
with intact SJs display normal synaptic transmission, but synaptic transmission in nrx IV and
gliotactin mutants is essentially abolished (Auld et al., 1995; Baumgartner et al, 1996; Banerjee
et al., 2006a). That synaptic transmission can be restored to almost wild-type levels by
decreasing the extracellular K+ concentration to 2 mM suggests that the key role of SJs is to
maintain the ionic barrier (Auld et al., 1995; Baumgartner et al., 1996). To better understand
the role played by glial ensheathment and SJs in action potential propagation, a thorough
electrophysiological analysis of all glial mutants needs to be undertaken. Such studies, although
technically challenging, will establish the role of individual loci in ensheathment, SJ formation,
and ionic homeostasis and perhaps will help in separating various mutants into specific
phenotypic categories.

CONCLUSIONS AND FUTURE DIRECTIONS
Although the study of Drosophila glia has come a long way since its inception, extensive
studies are still needed to unravel the complex processes that underlie interactions between
neuronal and glial cells. These coordinated mechanisms protect and insulate highly ion-
sensitive neurons and their axons against hemolymph, as seen in Drosophila, and act as charge-
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selective barriers and molecular fences between ion-conducting channels, as seen in vertebrate
myelinated nerve fibers. Most important, identification and characterization of novel
components involved in neuronal–glial interactions will help in building a molecular
framework to advance the understanding of the functional deficits that accompany
demyelinating disorders and thus improve our ability to design strategies to prevent, diagnose,
and treat human diseases like central and peripheral neuro-pathies that interrupt normal
saltatory propagation of action potentials.

One of the lesser-known aspects of peripheral axon ensheathment is the possible involvement
of various signaling pathways. Although recent studies have started to shed light on signaling
aspects of the PNS in Drosophila, the existence of signaling pathways directly regulating glial
ensheathment of axons remains largely unknown. It is an important area of research, as
intercellular signaling among the various cell types in the peripheral nerves is likely to
contribute to its proper growth and functioning. Axon contact is necessary for differentiation
of peripheral glial cells. Certain aspects of axon ensheathment by peripheral glia have been
shown to require EGFR signaling, which is known to express the necessary components of the
DER/Ras/MAPK pathway (Sepp and Auld, 2003b). The inner glial cells that wrap around
individual axons or fascicles also control the growth of perineurial glia (Yager et al., 2001).
Recent studies using Drosophila peripheral nerves have identified molecules such as RasV12
that when specifically expressed in peripheral glia influence their thickness, which is mediated
by phosphatidylinositol 3-kinase and Akt, suggesting that this pathway may promote
nonautonomous growth of perineurial glia (Lavery et al., 2007).

Studies on the control of myelin thickness by the neuregulin/Erb B pathway have opened up
new avenues for understanding the instructive roles of signaling mechanisms (Michailov et al.,
2004). Do similar mechanisms exist in the fly axonal insulation? How is axonal ensheathment
regulated in Drosophila nerves? Although our knowledge of the various signaling pathways
involved in nerve ensheathment in the fly PNS is quite preliminary, it still provides a basic
framework to unravel novel components that participate in signaling between neurons and glial
cells.
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Fig. 1.
Distribution, migration and process extension of glial cells around axons in the Drosophila
embryonic PNS. A–D: Embryonic segments from wild-type stage 12 (A), stage 14 (B), stage
15 (C), and stage 16 (D) embryos immunostained for sensory neuronal marker 22C10 (22C;
green, white arrowheads) and glial nuclear marker Repo (REP; red) showing profile of sensory
axon trajectories in the PNS. The sensory neurons were born in the periphery (A) and start
sending their axons toward the CNS (B–D). The peripheral glial cells ensheath the sensory
axon tracts as they grow toward the CNS. E–H: Portion of embryonic segments from wild-
type stage 12 (E), stage 14 (F), stage 15 (G), and stage 16 (H) embryos immunostained for
motor neuronal markers Fas II (FAS; green) and REP (red) shows motor axonal trajectories.
As soon as the neurons and glia were specified in the CNS (E), they expressed these markers.
The glial cells are in close proximity to the motor neurons in the neurectoderm, which produces
both neuroblasts and glioblasts. F: Embryonic stage 14 shows migration of the glia toward
periphery along the motor axons that exit the CNS (white arrowhead). G: Glial cells are lined
along the axons as they are still in the process of migrating to their final destination. H: Stage
16 embryo marks the completion of glial migration to the periphery along with the motor axons.
I–K: Whole-mount embryos of the genotype repo-GAL4::UAS-mCD8GFP at stage 12 (I),
stage 14 (J), and stage 16 (K) show glial membrane ensheathment, highlighted by anti-GFP
(green) around the peripheral motor axons stained for FAS (red). L–N: Higher magnification
of embryos at stage 12 (L, arrowhead points to cone-shaped glia exiting CNS), stage 14 (M),
and stage 16 (N) showing extension of glial processes around the motor axons as they migrated
out of the CNS and made their way to the periphery. Not all of the axon tracts at stage 16 (N)
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were ensheathed as glial ensheathment is completed during the larval stages. White lines in B–
H and L–N refer to the CNS/PNS transition zones. O: Schematic showing distribution of 7
peripheral glial cells in a single segment at stage 17 of embryonic development in the PNS.
The glial cells nearer to the CNS region are exit glia (EG). One of the exit glia is closet to the
segmental nerve (SN), and the rest of the glia line the intersegmental nerve (ISN). The neuronal
clusters ventral (v), ventral’ (v’), lateral (l), and dorsal (d) are shown as a reference. The most
prominent neuronal cluster is the lateral cluster with 5 chordotonal neurons (lch). Both the ISN
and SN contain motor and sensory axons.
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Fig. 2.
Peripheral nerve insulation in Drosophila. A: Transverse section through a Drosophila larval
peripheral nerve showing individual axons (a) being wrapped by the membrane (m) of the inner
glial cell. This in turn is wrapped by another glial cell, the perineurial glial cell. Extensive SJs
were established between perineurial and inner glial membranes (arrowhead; Banerjee et al.,
2006a). There is an outer-most layer of neural lamella (L) surrounding the nerve fibers. Scale
bar = 1 μm. B: Schematic of a Drosophila peripheral nerve showing the axons and fascicles
(a) surrounded by a sheath formed by the inner ensheathing glial cell (i), which in turn is
surrounded by the outer perineurial glial cells (o). Arrowhead points to the areas where septate
junctions formed between glial membranes.
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