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Abstract
The performance of a biomarker predicting clinical outcome is often evaluated in a large prospective
study. Due to high costs associated with bioassay, investigators need to select a subset from all
available patients for biomarker assessment. We consider an outcome- and auxiliary-dependent
subsampling (OADS) scheme, in which the probability of selecting a patient into the subset depends
on the patient’s clinical outcome and an auxiliary variable. We proposed a semiparametric empirical
likelihood method to estimate the association between biomarker and clinical outcome. Asymptotic
properties of the estimator are given. Simulation study shows that the proposed method outperforms
alternative methods.
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1. INTRODUCTION
In medical research, there is a growing need to assess the utility of a biomarker (e.g., genetic,
molecular, or imaging) in predicting disease prognosis and treatment efficacy. Such a task
involves estimating the association between clinical outcome and biomarker while adjusting
for confounding variables in regression models. In many cases, due to a low prevalence rate
of subjects with positive outcome (e.g., response) and a low prevalence rate of positive
biomarker (e.g., genetic mutations), rigorous evaluation of biomarkers performance requires
large prospective cohort study. If the biomarker assays are expensive, the cost of assessing all
subjects in the entire study cohort is prohibitive. In such a situation, subsampling a subset of
subjects from the study cohort for biomarker assays is often necessary.

We illustrate the idea using a lung cancer biomarker study. The epidermal growth factor
receptor (EGFR) inhibitors, such as Erlotinib and Gefitinib, modestly extended survival for
patients with advanced non-small-cell lung cancer. Of these patients, however, researchers
found that those with EGFR mutations responded to the EGFR inhibitor drugs significantly
better than those without mutations. Since this finding is based on small retrospective studies,
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a national consortium was recently established (Eberhard et al., 2008) to prospectively evaluate
EGFR mutations as a predictive biomarker for receiving EGFR inhibitors. Hundreds of patients
treated with EGFR inhibitors will be assembled into a study cohort and all of them are required
to submit tissue samples. The study cohort is expected to predominantly consist of non-
responders to the treatment (~70%) and EGFR wild types (~85%). Due to the high cost of
genotyping EGFR genes, it is not cost-effective to genotype all banked samples for such a large
cohort. How to efficiently select a subset of patients for EGFR mutations assays becomes an
important issue. Paez et al. (2004) found that women, East Asians, nonsmokers, and patients
with adenocarcinoma have much higher probability of being EGFR mutants. Taking advantage
of this finding, CALGB investigators (Jänne et al., 2008) suggested a subsampling scheme that
includes a simple random subsample from the study cohort as well as two supplementary
samples. Of the two supplementary subsamples, one includes all responders and the other
includes nonresponders with a >0.70 likelihood score of EGFR mutations. The likelihood score
of EGFR mutations is the predicted probability of a patient having EGFR mutations from
logistic regression model using baseline patient predictors, such as smoking history, sex, race,
and histology. The likelihood score correlates with the true status of EGFR mutations, and it
contains valuable auxiliary information about EGFR mutations for those subjects who have
no EGFR mutations measured.

In the preceding example, the selection of a patient into the subset depends on the outcome
(tumor response: yes vs. no) and an auxiliary variable (the likelihood of EGFR mutations:
likely vs. unlikely). We refer to such subsampling scheme as the outcome- and auxiliary-
dependent subsampling (OADS). The OADS can be considered as an extension of the outcome-
dependent subsampling (ODS). In the ODS, the subsampling depends on the subjects’
outcomes in order to enrich the selected sample with those who have a rare outcome. Study
designs using the ODS subsampling have been discussed by Zhou and his colleagues (Weaver
and Zhou, 2005; Zhou and Weaver, 2001; Zhou et al., 2002, 2007). In the OADS, the
subsampling depends on both the subjects’ outcome and an auxiliary variable. The motivation
is to achieve higher efficiency by concentrating more information in the OADS subsample as
compared to the simple random subsample (SRS) and the ODS subsample. Wang and Zhou
(2006) considered an OADS design with two sampling components—a random sample (SRS)
and an outcome- and auxiliary-dependent sample (OADS), in which all subjects have all
variables observed, including the expensive biomarker. On the other hand, the OADS design
that we consider here consists of three sampling components: a simple random subsample
(SRS), an outcome- and auxiliary-dependent subsample (OADS), and those subjects who are
not selected. In this article, we assume that complete data information is observed for each
subject in SRS and OADS. We also assume that the outcome and the auxiliary variable are
observed for the rest of subjects in the study cohort.

The origin of the ODS sampling can be found in the case-control study (e.g., Breslow and Day,
1993) and its extensions such as the nested case-control study (Breslow and Cain, 1988), case-
cohort study (Prentice, 1986), and two-stage study (e.g., Breslow and Chatterjee, 1999;
Weinberg and Wacholder, 1993; White, 1982). These designs may be considered as examples
of ODS sampling. The sampling scheme we consider in this article is closely related to a two-
stage study, in which the outcomes and some stratification variables of all subjects are observed
at the first stage, but the expensive biomarker and other variables are observed in a subsample
of all subjects at the second stage. In a general framework of a two-stage sampling, Weaver
and Zhou (2005) developed an estimated likelihood method to allow both continuous outcome
and ODS subsampling. For the two-stage study with binary outcome, Flanders and Greenland
(1991) and Zhao and Lipsitz (1992) proposed a Horvitz–Thompson type method (Horvitz and
Thompson, 1952) that weights the complete data observed inversely with the selection
probability; Breslow and Cain (1988) developed a conditional likelihood estimator; Wild
(1991), Cosslett (1981), and Breslow and Holubkov (1997) studied nonparametric maximum
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likelihood estimation. The two-stage sampling scheme can be viewed as a missing data
problem, where some subjects have the biomarker of interest missing by design in our example.
In this case, the missingness is missing at random (MAR) as defined by Little and Rubin
(1987). Robins et al. (1994) proposed a class of semiparametric estimators based on the inverse
selection probability weighted estimating equations for the missing covariates problem. These
statistical methods were proposed without considering the role of auxiliary variable, and many
of these methods are not fully likelihood-based. Therefore, they may not be ideal methods for
data arising from the motivating lung cancer biomarker study.

To make unbiased inference on data arising from the ODS design or the OADS design, one
generally needs statistical methods that account for the outcome-dependent nature of the
sampling scheme. In this article, we study statistical inference on the OADS design that consists
of three sampling components: a simple random subsample (SRS), an outcome- and auxiliary-
dependent subsample (OADS), and those subjects who are not selected. We formulate the
association between biomarker and clinical outcome in a generalized linear model. We use an
empirical likelihood method (Owen, 1988, 1990; Qin and Lawless, 1994) to enforce the
constraints existing among different quantities of the observed likelihood and to estimate the
conditional distribution of the covariates G(x | w). The proposed method is efficient because
it involves a fully likelihood-based estimator. The proposed method is semiparametric in the
sense that it treats G(x | w) as nuisance and profiles the quantity out from the likelihood function
using a nonparametric procedure.

We organize the rest of the article as follows. In section 2, we specify the data structure and
the likelihood function of the OADS design. In section 3, we propose a semiparametric
empirical likelihood estimation method and present the asymptotic properties of the proposed
estimator. In section 4, we compare via simulation the proposed method to several alternative
methods and investigate the effect of the correlation between the biomarker and its auxiliary
variable on estimation efficiency. A data example is provided in section 5 to illustrate the
proposed method. The Appendix gives a proof outline for the asymptotic properties of the
proposed estimator.

2. DATA STRUCTURE AND LIKELIHOOD
Let Y be a categorical outcome with possible values 1, …, J. Let X1 be the biomarker of interest
(continuous or binary). X1 is observed only if a subject is selected into either the SRS subsample
or the OADS subsample. Let X2, …, Xp be additional covariates. Denote by X the covariate
vector, i.e., X = {1, X1, X2, …, Xp} where 1 represents the intercept. X may contain both
continuous and discrete variables. Let P(Y | X) be the conditional density of Y given X, which
can be parameterized as a generalized linear model Pβ(Y | X) = r(X′β) with r−1 a known link
function and β the regression parameters for X.

Let W be a categorical auxiliary variable for X1 with possible values 1, …, K. Assume {Y,
W} partitions the entire study cohort into J × K strata such that the number of subjects for the
{Y = j, W = k} stratum is Njk. Following the motivating study, we first draw an SRS subsample
from the study cohort, and then from the rest of study cohort we draw an OADS subsample
from each of the strata {Y = j, W = k} with j = 1, …, J and k = 1, …, K. Denote the SRS
subsample by V0, the OADS subsample by V1 and the rest of subjects by V̄. Define V = V0 +
V1. Let V0jk, V1jk, Vjk and V̄jk denote the {Y = j, W = k} substrata for V0, V1, V, and V̄ respectively,
and n0jk, n1jk, njk, and n̄jk for their sizes. Notice that njk = n0jk + n1jk, where n1jk is fixed by
design, and n̄jk = Njk − njk. The data structure is as follows:
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The combined likelihood consists of the contribution from the observed data of subjects in
V0, V1, and V̄. Since the N − n0 observations left in the cohort after the SRS subsample is drawn
still constitute a random sample from the joint distribution of {Y, W}, {Njk − n0jk} must be
distributed according to a multinomial distribution. Therefore, the distribution of {n̄jk} must
be the same as that of {Njk − n0jk}, shifted with respect to the value {n1jk}. By putting the three
parts together and by applying Bayes law to P(X | Y, W), we have the combined likelihood

(1)

where πjk needs to satisfy the constraint

(2)

where G(x | w) is the cumulative distribution of X given W. We assume P(Y | X, W) = Pβ(Y |
X), which is true when W is a surrogate for X or when W is absorbed by X.

3. SEMIPARAMETRIC EMPIRICAL LIKELIHOOD METHOD
Because the constraint (2) involves G(x | w = k), inference about β requires estimation on G
(x | w). One straightforward approach is fitting a parametric model to G(x | w), but β ̂
inconsistency could be resulted if G(x | w = k) is misspecified, specifically when x is high-
dimensional. In this section, we describe a semiparametric empirical likelihood based method
that allows the maximization of the likelihood function (1) with respect to β without specifying
G(x | w).

3.1. The Proposed Method
For simplicity of presentation, we assume Y = {1, 2} a binary variable with 1 for positive and
2 for negative outcome, and W = {1, 2} a binary auxiliary variable. Pβ(y | x) is parameterized
as a generalized linear model with a known link function, such as logit, probit, or log-log. Let

 with size . Note . The log of the
combined likelihood (1) becomes

(3)

where pik = g(xi | wi = k) and θ = (β′, π11, π12)′ with π2k = 1 − π1k.
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To estimate θ, we first profile the likelihood function l(θ, G(x | w)) in Eq. (3) by fixing θ and
obtaining the empirical likelihood function of G(x | w) over all distributions whose support
contains the observed x values. We then maximize the resulting profile likelihood function
with respect to θ. Specifically, to maximize G(x | w) over all distributions whose support
contains the observed x values, we only need to consider discrete distributions with jumps at
each of the observed points (Owen, 1988,1990;Qin and Lawless, 1994). As a result, we search
for pik that maximize L(θ, G(x | w)) under the following constraints:

(4)

For a fixed θ, a unique maximum pik which satisfies the above constraints exists if 0 is inside
the convex hull formed by the points {P(y = 1 | xi; β) − π1k} for i ∈ Vk.

Let lN (θ) be the maximum value of the log likelihood with respect to pik, where pik and θ now
satisfy the constraints (4). An explicit expression for lN (θ) can be derived by a Lagrange
multiplier argument:

where λk and tk are Lagrange multipliers. Taking derivatives with respect to pik, and setting

 and , we have

with restriction

(5)

where λk and θ satisfy the constraint (5).

Typically, the true value of the Lagrange multiplier is zero. However, due to the nature of the
biased sampling schemes, the λk are not centered at zero. To be consistent with the literature
of empirical likelihood theory, we center them by reparameterizing λk as follows

such that νk has a true value 0. Now we write pik as

Wang et al. Page 5

J Biopharm Stat. Author manuscript; available in PMC 2010 March 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and the constraint (5) as

(6)

where

Substituting pik into the likelihood (3), we obtain the log empirical profile likelihood

(7)

The constraint (6) implicitly defines a continuous and differentiable function νk(θ), and it is
the same as . The estimate β ̂ can be obtained by solving the score equations

, and . We use the Newton–Raphson iterative algorithm to solve the equations,
and transform π to the logit scale to avoid the boundary problem.

3.2. Asymptotic Properties
Assume nk/N → ρk, nhk/nk → ρhk, nhjk/nhk → ρhjk and all ρ’s are between 0 and 1. Note ρ0jk ≡
πjk. Let ξ′ = (β′, π′, ν′) be the parameter vector with dimension (p+ 2K) where dim(β) = p. Let

 be the random profile score equations with respect to ξ. Let Q(ξ) be its the limiting
form so that ξ* satisfies Q(ξ) = 0.

Theorem
i. For N large enough, the score equations QN(ξ) = 0 at some point ξ̂ in a small

neighborhood of ξ*, which is the solution of Q(ξ) = 0. Then,  as N → ∞.

ii. Under general regularity conditions, the solution ξ̂ of QN(ξ) = 0 satisfies the constraint
equation (6) and the score equations of lN(θ) in (7), and
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where Σ = limN → ∞ N var(ξ̂) = S−1(V + A)S−1 where S, V, and A are defined in
Appendix.

An outline of the proof for the theorem is given in the Appendix. A consistent estimator of the
covariance matrix Σ is Ŝ−1 (V̂ +Â)Ŝ−1, where Ŝ, V̂, and Â are obtained by replacing the large
sample quantities by their corresponding small sample quantities.

4. SIMULATION STUDIES
4.1. Comparison with Alternative Methods

To evaluate the proposed method β ̂SMP, we conduct simulation study to investigate its small
sample behavior and compare it with alternative methods. We review the alternative methods
as follows.

β ̂CS: Component stratification method treats the subsampling components as separate strata.
It fits a logistic regression model to the pooled SRS and OADS data by setting a separate
intercept term for each component. This may be viewed as an application of the Prentice and
Pyke (1979) result for case-control data to our setting. This method is not fully likelihood-
based and only works for data with binary outcome and a regression model with logit link.

β ̂SM: Wang and Zhou (2006) studied a semiparametric method for an OADS design with
unknown {Njk}. Working with the combined likelihood of the SRS component and the OADS
component only, the authors applied similar empirical likelihood approach to estimate β.

β ̂WL: The weighted-likelihood method employs the Horvitz–Thompson approach to data from
a two-stage study (e.g., Flanders and Greenland, 1991; Zhao and Lipsitz, 1992). The idea is to

estimate  by using the completely observed subjects and weighing their
contributions inversely according to their selection probability into the second stage.

β ̂CL: The conditional likelihood method focuses on the conditional probability that a subject
is selected into the second stage P(xi|y = j, w = k, δi = 1) where δi is the selection indicator
(Breslow and Cain, 1988). The β is estimated after factoring the likelihood into P(y = j|xi; β)
and the selection probability.

In the case of a binary outcome, we generate y = {1, 2} according to the following logistic
model:

where β0 = −2.5, β1 = 0.0 or 0.5, and β2 = 0.5. The value of β0 is chosen to simulate the situation
of a rare disease. Under this model, βk (k = 0, 1, 2) represents the increase in log odds ratio of
observing y = 1 due to the corresponding covariate while holding other covariates fixed. Two
types of distribution of X are considered: (i)  where  and C90% is
its 90th percentile, x2 has the same distribution as x1, and they are independent. Define w = I
(x1 + ε > C90%), where ε ~ N(0, 0.25), such that corr(x1, w) = 0.64. (ii) x1 and x2 are independent
standard normal variables. Define w = I[x1 + ε > 0], where ε ~ N(0, 0.25), such that corr(x1,
w) = 0.82.

A simple random subsample (SRS) of size n0 = 300 is chosen first without stratifying on w
from the study cohort of 30,000. Then 50 subjects are sampled from each of the four strata
defined by y and w, resulting in n1 = 200 subjects in the OADS subsample.

Wang et al. Page 7

J Biopharm Stat. Author manuscript; available in PMC 2010 March 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Simulation is based on 2,000 independent runs. Results are displayed in Table 1 for binary
x1 and Table 2 for normal x1 with mean of the estimates (Mean), standard deviation of the
estimates (SE), mean of the estimated standard errors ( ), and coverage of the 95% nominal
confidence intervals (Coverage).

We make the following observations from the two tables. First, all estimators except β ̂CS yield
consistent estimates for all regression parameters β including the intercept term. Second, as
shown by a smaller standard error, β ̂SM is more efficient in estimating β1 than β ̂CS is, but the
estimators β ̂WL, β ̂CL, and β ̂SMP, which incorporate the information from the Njk, are more
efficient than the estimators β ̂CS and β ̂SM, which do not utilize such information. Third, the
proposed method β ̂SMP produces good estimation of var(β ̂SMP), as shown in Tables 1 and 2,
by the coverage of the 95% nominal confidence intervals based on the estimated variances. As
a reference, the two tables also provide the results assuming all subjects in the cohort have
complete data (β ̂ALL). It can be seen that the standard errors of β ̂ associated with β ̂SMP are not
much bigger than those of β ̂ALL.

Based on the preceding observations, we conclude that the proposed estimator β ̂SMP performs
better than alternative estimators in the analysis of the OADS design data with known Njk. It
yields more efficient estimates than the weighted likelihood method and the conditional
likelihood method. The proposed variance estimator yields good coverage by the 95% nominal
confidence intervals.

4.2. Impact of Auxiliary Information
An important issue in the OADS subsampling that we discussed is the impact of the auxiliary
variables on study efficiency. In particular, it is useful to examine the correlation between the
biomarker and its auxiliary variable in the estimation precision of β ̂1. We only consider the
case of normal distributed X1. Through simulation, we investigate this issue by systematically
changing the variance of the normally distributed random error ε such that corr(X1, W) varies
from 0.0 to 0.9 with seven intermediate values while other simulation settings remain the same.
Figure 1 displays the relationship of the simulated standard deviation of β ̂1 and corr(X1, W) for
four estimators β ̂SM, β ̂WL, β ̂CL, and β ̂SMP, where each point corresponds to an average of 2,000
independent simulation runs.

The significant observations from Figure 1 are as follows. As the correlation between X1 and
W increases, the standard errors of β ̂1 constantly decrease, regardless of the distribution of
X1 and the definition of W. Substantial efficiency gain, say >30% of the maximum possible
gain, occurs when corr(X1, W) is moderate, say >0.25. Importantly, if there is no correlation
between X1 and W, i.e., W contains no auxiliary information on X1, the standard error of β ̂1 of
β ̂SM and those of β ̂CL and β ̂SMP are about the same. In other words, a noninformative auxiliary
variable will not improve the estimation precision of the biomarker effect, though it does
improve the precision in estimating the intercept (not shown in this figure). Also, β ̂SMP appears
at least as efficient as β ̂SM, β ̂WL, and β ̂CL in estimating β1 when the auxiliary variable W is not
informative on X1.

5. DATA EXAMPLE
The motivating lung cancer biomarker study is a concept to be approved by the consortium
and the data are not available for illustration. In this section, we illustrate the proposed method
using a dataset from the Collaborative Perinatal Project (CPP) (Niswander and Gordon,
1972). Women who were pregnant were enrolled through university-affiliated medical clinics.
In all, 55,908 pregnancies were registered, representing the experience of about 44,000 women.
The children born during the study were followed for various outcomes for up to 8 years. One
of the hypotheses is that the level of polychlorinated biphenyl (PCB), a pollutant, is related to
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performance on the Wechsler Intelligence Scale for children at 7 years of age (Longnecker et
al., 2002). Because of the cost associated with the blood serum assay, the PCB level is measured
for two supplemental subgroups of subjects in addition to a random sample of 1,000 subjects.
Two supplemental subgroups have 200 subjects each sampled from the subgroup defined by
the IQ scores that are one standard deviation above and below the mean of the cohort IQ scores.

The CPP is an ongoing study and the available dataset has 849 SRS subjects and 189 OADS
subjects. The OADS subsample is selected by the outcome only in the original CPP study
design. For the purpose of illustration, we resample the 849 subjects in the SRS subsample of
the available dataset and form a hypothetical cohort of size 7,500. We define a binary outcome
with Y = 1 if IQ is below normal and Y = 2 otherwise. We create a surrogate W for PCB by
letting W = 1 if PCB + ε ≤ 6.3 and W = 2 otherwise, where 6.3 is the 75th percentile of PCB
such that corr(PCB, W) = 0.44. Other covariates include race (white vs. black), socioeconomic
status of the child’s family (SES), the child’s sex (female vs. male), and the mother’s education
level (MEDU). Continuous variables, MEDU, SES, and PCB, are centered at their means
(Table 3).

The results of analysis in Table 4 confirm previous simulation findings. The estimators β ̂WL,
β ̂CL, and β ̂SMP yield more precise estimates as evidenced by their narrower 95% CIs on the
odds ratio for the PCB than those from β ̂CS and β ̂SM. Further, the β ̂SMP is the most efficient
among the estimators among β ̂WL, β ̂CL, and β ̂SMP, which use the cohort stratum size
information. It is observed that the efficiency gain of the estimators β ̂WL, β ̂CL, and β ̂SMP over
the estimators βCS and βSMP is only observed on the PCB effect, while the standard errors of
other covariates remain unchanged since the chosen auxiliary variable is not correlated with
other covariates in the model. The analysis suggests that the PCB level in the trimester blood
serum specimens is not significantly related to the abnormal IQ status for child at 7 years of
age. Those children who are white and have higher socioeconomic status and longer years of
mother’s education have better odds of having normal or high IQ scores.

6. DISCUSSION
We have proposed a semiparametric empirical likelihood-based method for efficient inference
on data from an outcome- and auxiliary-dependent subsampling design in which both a simple
random subsample (SRS) and an outcome- and auxiliary-dependent subsample (OADS) are
simultaneously observed. Adding an OADS subsample to the SRS subsample will improve the
efficiency on a rare disease. One can view the design a generalization of case-cohort study and
two-stage study. The advantage of the design is that when the cohort stratum size information,
as defined by the outcome and the auxiliary variable, is known, we may further increase study
efficiency. The proposed method is applicable to a generalized linear model with any link
function for categorical outcome data. This method is robust to misspecification of the
conditional distribution of the biomarker covariates, given the auxiliary variable. The proposed
estimator has asymptotic normality property. Simulation supports its small sample behavior.
It is superior to alternative methods. The proposed variance estimator yields a good nominal
coverage by the 95% confidence interval. Simulation also suggests that the OADS design is
most efficient when the correlation between the biomarker and the chosen auxiliary variable
has moderate or high correlation. We illustrate the proposed method by fitting a logistic
regression to a dataset from the CPP study.

Nonparametric estimation of the covariates distribution jointly with maximum likelihood
estimation of β has been studied by several authors in two-stage studies (e.g., Breslow and
Holubkov, 1997; Scott and Wild, 1997). In principle, these nonparametric maximum-
likelihood methods can be extended to our design setting. Since our method is fully likelihood-
based, the efficiency of these possible extensions are not expected better than our method. It
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should be pointed out that a binary outcome model with logit link is used to illustrate the
subsampling scheme as well as the proposed estimator, but the approach is equally applicable
to continuous outcome and linear regression model. In practice, multiple existing variables
may contain auxiliary information for the biomarker of interest. More auxiliary variables mean
more constraints to be used to derive the empirical likelihood-based estimator, and this may
create a convergence problem in the case of small sample size. We recommend not adding
auxiliary variables that lack correlation with the biomarker of interest. If multiple variables
exist as candidates for auxiliary variables, a dimension reduction procedure can be used to
summarize the auxiliary information. For example, in the EGFR lung caner study, we proposed
to predict the EGFR mutation likelihood using a logistic regression model with these variables
as predictive covariates and the predicted EGFR mutation likelihood is used as the sole
auxiliary variable for stratification. It is worth noticing that auxiliary variables are used to
establish the connection between the selected patients and the unselected patients. An omission
of auxiliary variable may cause loss of efficiency but will not complicate the consistency of
the proposed estimator. When the auxiliary variable is continuous, one has to categorize the
auxiliary variable into a categorical variable before applying the proposed method. Wang and
Zhou (2009) studied an estimated likelihood method in a similar sampling scheme, which
utilizes the auxiliary information from a continuous variable with help from a kernel smoother.
An empirical likelihood approach that handles a continuous auxiliary covariate is theoretically
possible, and it will be an interesting topic for future research.
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APPENDIX
The log profile score function consists of two parts:

Let ξ = (β′, π′, ν′)′ = (β′, π11, π12, ν1, ν2)′. The score equations of the profile likelihood in Eq.
(7) have the form
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In particular,

where

Let h = 0, 1 with 0 corresponding to the SRS subsample V0 and 1 corresponding to the OADS
subsample V1. When the sample size is large, n/N → ρV, nk/N → ρk, nhk/nk → ρhk, nhjk/nhk →
ρhjk, (ρ0jk ≡ πjk). All ρ’s are (0,1). We assume regularity conditions of maximum likelihood
estimator are satisfied. The following two results are useful in our proof.

Result 1
As Njk/Nk → πjk and n0jk/n0k → πjk, it holds

where

and
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And,  means asymptotically equivalent .

Result 2
For any continuous function g(k(x, θ)), at ξ = ξ*,

First, we can show  and  at ξ = ξ*.

In particular,

where n̄jk/nk → γjk as nk/N → ρk, Nk/N → πk.

We can easily show that  uniformly for ξ ∈ Ξ, and at the true parameter value,

it is invertible. Furthermore, we have shown that . Clearly,  is a continuous
function of ξ that maps Ξ into Rp+2K. Then we can apply the general version of Foutz’s
consistency theorem (Foutz, 1977) to conclude that ξ ̂ exists in the set Ξ with probability
approaching one as N → ∞, and since the size of Ξ is arbitrarily small, that .

To show asymptotic normality of ξ ̂ where ξ = (β′, π′, ν′)′, we consider a first-order Taylor series
expansion of the profile score function around the true parameter value ξ*:
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where |ξ* − ξ̃| ≤ |ξ*− β ̂|. To prove the asymptotic normality of , we need to study
the asymptotic behavior of each term on the right-hand side.

First consider the first derivatives with respect to ξ. By the law of large numbers, we have

When evaluated at ξ = ξ*, we have shown above . Recall . For i ∈
Vjk, the observations (yi, xi) are independent random draws either from the joint distribution
of (Y, X, W) for i ∈ V0 or from the joint distribution of (X | Y, W) for i ∈ V1, and they do not

depend on the random stratum size(Njk − n0jk). That is,  is independent of .

By applying the central limit theorem, we have

where

and

where
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Similarly,

Since S(ξ*) is invertible, it allows us to arrange Eq. (6) as

By Slutsky’s theorem,

where Σ = Nvar(ξ ̂) = S−1 (V + A)S−1, which has a sandwich form.
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Figure 1.
Estimation efficiency and corr(X1, W). Note: The Y-axis denotes the standard error of β ̂1. The
X-axis denotes the correlation between X1 and W with X1 ~ N(0, 1).
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Table 3

Data structure of the data example

Y W V0 V1 V ̄

1 1 18 20 419

1 2 3 20 79

2 1 228 20 5483

2 2 51 20 1139

300 80 7120
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