Table 4.
Analysis of the data example
Methods | β̂ | SE(β̂) | OR | 95% CI | |
---|---|---|---|---|---|
CS | int | −2.726 | 0.390 | 0.066 | (0.030, 0.141) |
PCB | 0.035 | 0.074 | 1.036 | (0.896, 1.198) | |
MEDU | −0.425 | 0.091 | 0.654 | (0.547, 0.781) | |
SES | −0.104 | 0.121 | 0.902 | (0.712, 1.142) | |
RACE | −1.680 | 0.453 | 0.186 | (0.077, 0.453) | |
SEX | 0.297 | 0.379 | 1.346 | (0.640, 2.831) | |
SM | int | −2.469 | 0.344 | 0.085 | (0.043, 0.166) |
PCB | 0.045 | 0.051 | 1.046 | (0.946, 1.156) | |
MEDU | −0.346 | 0.078 | 0.707 | (0.607, 0.824) | |
SES | −0.121 | 0.113 | 0.886 | (0.710, 1.106) | |
RACE | −1.637 | 0.394 | 0.195 | (0.090, 0.421) | |
SEX | −0.045 | 0.334 | 0.956 | (0.496, 1.840) | |
WL | int | −2.418 | 0.265 | 0.089 | (0.053, 0.150) |
PCB | 0.020 | 0.066 | 1.021 | (0.896, 1.163) | |
MEDU | −0.318 | 0.076 | 0.727 | (0.626, 0.845) | |
SES | −0.161 | 0.114 | 0.851 | (0.681, 1.064) | |
RACE | −1.570 | 0.411 | 0.208 | (0.093, 0.465) | |
SEX | 0.012 | 0.345 | 1.012 | (0.515, 1.988) | |
CL | int | −2.419 | 0.261 | 0.089 | (0.053, 0.148) |
PCB | 0.044 | 0.040 | 1.045 | (0.966, 1.131) | |
MEDU | −0.347 | 0.078 | 0.707 | (0.606, 0.825) | |
SES | −0.121 | 0.112 | 0.886 | (0.711, 1.104) | |
RACE | −1.637 | 0.393 | 0.195 | (0.090, 0.420) | |
SEX | −0.046 | 0.333 | 0.956 | (0.498, 1.835) | |
SMP | int | −2.390 | 0.254 | 0.092 | (0.056, 0.151) |
PCB | 0.029 | 0.038 | 1.029 | (0.955, 1.109) | |
MEDU | −0.349 | 0.079 | 0.705 | (0.604, 0.824) | |
SES | −0.116 | 0.112 | 0.890 | (0.714, 1.110) | |
RACE | −1.644 | 0.395 | 0.193 | (0.089, 0.419) | |
SEX | −0.051 | 0.336 | 0.951 | (0.492, 1.836) |
Note: The outcome is below-normal IQ scores for children at 7 years of age. PCB is the effect of interest. SES is the socioeconomic status of the family; SEX and RACE are the gender and race of the child. MEDU is the mother’s education level. Continuous covariates including PCB, MEDU, and SES are centered at their means.