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Abstract
As the primary consumers of oxygen within all aerobic organisms, mitochondria are a major source
of cellular reactive oxygen species (ROS) derived from the in vivo chemistry of oxygen metabolism.
Mitochondrial ROS have been traditionally implicated in aging and in a variety of pathologies,
including cancer, neurodegeneration, and diabetes, but recent studies also link controlled
mitochondrial ROS fluxes to cell regulation and signaling events. Progress in the development of
mitochondrial-targeted fluorescent small-molecule indicators that detect specific ROS with high
selectivity offers a promising approach for interrogating mitochondrial ROS production, trafficking,
and downstream biological effects.

Introduction
Reactive oxygen species (ROS) have emerged as prevalent and important components of both
physiological and pathological states of living organisms [1–9]. Classically, the presence of
ROS in biological systems has been associated predominantly with disease and form the
underpinning for the “free-radical theory of aging” (FRTA) [10]. Indeed, oxidative stress is
connected to many diseases where age is a risk factor [11], including cancer [12,13] and
neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases
[14,15]. On the other hand, the controlled release and compartmentalization of ROS is also
critical to maintaining normal physiology. For example, macrophages engulf invading
pathogens into phagocytic vesicles and then produce a variety of ROS inside the vesicles to
help neutralize the threat. Moreover, the production of certain ROS, such as hydrogen peroxide
(H2O2), has been detected in a variety of tissues, and mounting evidence suggests this ROS is
utilized as a signaling molecule for a wide range of healthy physiological events [16–22].

The complex biology of ROS is patently dictated by the chemical properties of each specific
oxygen metabolite as well as the localization and trafficking of that metabolite at the cellular
level. In this context, mitochondria are the major consumers of cellular oxygen and hence play
a central role in ROS biology. Harman’s FRTA focused on mitochondria as the “biologic
clocks” of the cell that possess the primary generators and targets of ROS [23]. Figure 1 outlines
various potential sources of mitochondrial ROS [24–26], and extensive reviews have been
written on this topic [25] [27,28]. The balance between the production and destruction of ROS
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in the mitochondria has critical in vivo implications [29], as the overexpression of either
superoxide dismutase (SOD) [30] or catalase [31] enzymes that consume O2

− and H2O2,
respectively, can increase the lifespan of various model organisms. Excess ROS can clearly
have aberrant consequences, but the fact that aerobic organisms have conserved the ability to
generate a basal level of mitochondrial ROS suggests that a minimum threshold of these oxygen
metabolites is beneficial and provides some form of evolutionary fitness.

The complex interplay between mitochondrial ROS and health, aging, and disease provides
motivation for developing new tools to study the chemistry and biology of ROS in living
systems with high spatial and temporal resolution. Fluorescence imaging with mitochondrial-
targeted reporters for monitoring ROS offers a potentially powerful methodology to achieving
this goal, and this review will summarize selected recent examples of small-molecule probes
that simultaneously localize to the mitochondria and respond to various ROS molecules.
Although outside the scope of this review, we note that protein-based fluorescent reporters
provide a complementary approach to targeted mitochondrial ROS imaging and several elegant
examples have been published [32–37].

Designing small-molecule probes that target to mitochondria
Figure 2 outlines various approaches to deliver small-molecule probes to cellular mitochondria.
The most common way to target molecules to the mitochondria of living cells is through the
use of lipophilic cations, which are attracted to the negative potential caused by the proton
gradient across the inner mitochondrial membrane. For example, rhodamine and the
MitoTracker dyes possess an overall positive charge that is delocalized through resonance,
allowing for passage through plasma membranes and subsequent accumulation within
mitochondria [38]. Through the same general mechanism, Murphy and colleagues have
championed the use of triphenylphosphonium (TPP) head groups to deliver a variety of cargoes
to the mitochondria, including antioxidants such as vitamin E [39], coenzyme Q [40], S-
nitrosothiols [41], as well as SOD and peroxidase mimics [42]. A newer approach developed
by Kelley and co-workers utilizes mitochondria penetrating peptides (MMPs). By balancing
charge and liophilicity through a combination of natural and synthetic amino acids, various
cargoes can be delivered to the mitochondria, including a singlet-oxygen generating
fluorophore [43] that allows the localized generation of this ROS. We refer the reader to more
comprehensive reviews for TPP [44] and general mitochondrial targeting [45] that have
appeared in the recent literature, and the remainder of this review will present a brief survey
of probes for various mitochondrial ROS molecules.

A fluorescent probe for mitochondrial superoxide
Derived from the one-electron reduction of oxygen, superoxide (O2

−) is a marker for early
ROS generation in primary or secondary chemical reaction cascades and a major ROS leaking
from the respiratory chain. The most widely used fluorescent indicator for O2

− is
hydroethidium (HE), a two-electron reduced form of the nucleic acid stain ethidium. HE has
been employed to detect ROS production during phagocytic respiratory bursts [46] and
intracellular oxidative stress [47]. Appending a TPP targeting group to HE yields MitoSOX;
the TPP successfully directs the probe away from the nucleus and to the mitochondria of living
cells (Figure 3a). A major experimental complication for applying HE probes to monitor
O2

− specifically is that HE can be oxidized by multiple ROS to yield multiple fluorescent
species; however, only O2

−-dependent oxidation can generate a hydroxylated product (2-OH-
E) that has a unique excitation at 396 nm in addition to the typical ethidium excitation at 510
nm [48]. Results obtained using only ethidium excitation at 510 nm must be interpreted with
caution as they are likely to overestimate the contributions of O2

− while underestimating the
roles of other ROS. Careful control experiments and/or direct excitation of the 2-OH-E product
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are necessary to distinguish whether O2
− is the dominant participating ROS in a given situation

[49].

Mitochondrial-targeted probes for free radicals
Oxygen-derived free radicals are frequently associated with aging and disease, and
mitochondria are a major source and target of these damaging molecular oxidants. Electron
paramagnetic resonance (EPR) spectroscopy is a useful way to detect free radical ROS and
other molecules possessing unpaired electrons [50]. In particular, spin trapping with nitrones
like TEMPO can generate, upon reaction with ROS, persistent nitroxide adducts that are
detectable by EPR. Several laboratories have described the use of mitochondrial-targeted
nitrone traps for EPR detection or antioxidant treatments using TPP (Figure 3b, left) [51] or
hemigramicidin fragments of the membrane-active antibiotic Gramicidin S for cargo delivery
[52,53]. A trifunctional reporter combining a TPP for mitochondrial targeting, a TEMPO
derivative for spin trapping, and a fluorescein moiety for optical tracking has been reported
(Figure 3b, right) [54]. Confocal microscopy experiments show that this probe accumulates
within the mitochondria of live RAW264.7 macrophages, but more studies are needed to
validate this potential free radical imaging strategy.

Fluorescent mitochondrial probes for highly reactive oxygen species
Highly reactive oxygen species (hROS), including hydroxyl radical (•OH), peroxynitrite
(ONOO−), and hypochlorous acid (HOCl), are potent oxidants that are capable of directly
oxidizing nucleic acids, proteins, and lipids. hROS are generated in secondary cellular ROS
reaction cascades involving O2

− and H2O2. For example, H2O2 can trigger uncontrolled Fenton
chemistry in the presence of iron or copper centers that are prevalent in the mitochondria to
make the exceedingly reactive and damaging •OH species. Likewise, nitric oxide (NO)
generated by plasma membrane or mitochondrial nitric oxide synthases can combine with
O2

− to make the nitrating oxidant ONOO−. In addition, myeloperoxidases (MPOs) catalyze
the transformation of H2O2 to HOCl, which can then potentially diffuse into and damage the
mitochondria. To monitor mitochondrial hROS, Nagano and co-workers have exploited
rhodamine-like fluorophores capped with either a 4-aminophenyl aryl ether (MitoAR) or a 4-
hydroxy aryl ether group (MitoHR) (Figure 3c). The ether capping groups quench the
fluorophore emission by photoinduced electron transfer (PET). Reaction with hROS cleaves
off the PET quenching moiety, resulting in the highly fluorescent rhodamine type reporter
[55]. MitoAR responds mainly to •OH and HOCl, whereas MitoHR is most sensitive to •OH.
Both probes react with ONOO−, but at a slower rate. Fluorescence imaging experiments
establish that MitoAR can accumulate selectively within the mitochondria of live HeLa cells
and respond with increased fluorescence to exogenously added HOCl. Importantly, treatment
of MitoAR-loaded HeLa cells, which are lacking MPO, with H2O2 does not result in a
fluorescence turn-on. However, addition of H2O2 to MitoAR-loaded HL-60 cells, which do
possess MPO, causes a turn-on fluorescence increase.

A targetable fluorescent probe for mitochondrial hydrogen peroxide
Major chemical pathways to cellular H2O2 production include the incomplete reduction of
O2 to H2O during mitochondrial electron transport, the two-electron, two-proton reduction of
O2 by oxidase activity, or the reduction of O2

− by spontaneous or SOD-catalyzed processes.
Aberrant H2O2 fluxes within mitochondria can trigger apoptosis, but controlled bursts of
H2O2 elicited by specific ligand-receptor interactions are beneficial to metabolic function. To
help disentangle the diverse contributions of H2O2 to mitochondrial biology, we sought to
create new chemical tools for monitoring H2O2 levels within this subcellular locale. Previous
work from our laboratory established that the H2O2-mediated conversion of aryl boronates to
phenols can provide a chemospecific, biologically compatible reaction method for detecting
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endogenous H2O2 production [56–60]. Appending a TPP moiety onto a boronate-masked
hybrid fluorescein/rhodamine reporter gives MitoPY1 (Figure 3d), which shows good
localization to the mitochondria of a variety of mammalian cell types, including HeLa,
HEK293, Cos-7, and CHO.K1 [61]. MitoPY1 can respond selectively to rises in H2O2 levels
by a turn-on fluorescence increase as determined by both confocal imaging and flow cytometry
experiments (Figure 4). Furthermore, MitoPY1 can detect mitochondrially-derived H2O2 in a
neurodegenerative oxidative stress model; treatment of HeLa cells with paraquat, an uncoupler
of the mitochondrial electron transport chain and small-molecule model for Parkinson’s
disease, causes a robust, mitochondrial-localized fluorescence enhancement due to elevated
generation of H2O2.

Conclusions and outlook
The foregoing examples have highlighted a select but growing number of targeted small-
molecule chemical tools for studying the biology of mitochondrial ROS. These indicators,
along with emerging approaches toward detecting peroxynitrite [62], superoxide [63], nitric
oxide [64,65], hypochlorous acid [66,67], ozone [68], and reversible redox changes [69],
presages the possibility that one can help elucidate the dynamic cascades involving
mitochondrial ROS metabolism using a family of targeted reagents that detect different ROS
molecules. In addition, one can also envision using a set of probes with selectivity for a specific
ROS to construct a multicolor calibration scale for the mitochondrial redox environment.
Combining parallel advances in the delivery of molecular cargoes to the mitochondria with the
development of highly specific and selective molecular switches would be of potential broad
utility in further deepening our understanding of mitochondria redox biology, as well as
delineating their contributions to the more complex oxidation biology of living cells, tissue,
and organisms.
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Figure 1.
A simplified scheme for mitochondrial ROS metabolism. The primary source of ROS in the
mitochondria is derived from the one-electron reduction of molecular oxygen (O2) by the
electron transport chain (ETC) to form superoxide (O2

−). O2
− can then be converted to

hydrogen peroxide (H2O2) either spontaneously or catalyzed by superoxide dismutases (SOD).
H2O2 can also be produced by monoamine oxidases (MAO), which catalyze the oxidative
deamination of dietary and neurotransmitter amines. Mitochondrial nitric oxide synthases
(NOS) produce nitric oxide (NO) that can potentially react with superoxide to produce
peroxynitrite (ONOO−). H2O2 can either be destroyed by peroxiredoxins (PRX), glutathione
peroxidases (GPx), or catalases (Cat), converted to a hydroxyl radical (•OH) by iron or copper-
mediated Fenton chemistry, or transformed into hypochlorous acid (HOCl) by
myeloperoxidase (MPO) catalysis.
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Figure 2.
General methods for delivering molecular cargo to the mitochondria. Small molecules can be
delivered to the mitochondria through the use of lipophilic cations such as rhodamine dyes (a)
and triphenylphosphonium moieties (b), which take advantage of the proton gradient and
subsequent electrochemical potential generated within the matrix of mitochondria. Recently,
mitochondria-targeted peptides (c) that can contain both natural and unnatural amino acids
have been rationally designed and screened as mitochondrial delivery vehicles [45].
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Figure 3.
Selected mitochondrial-targeted probes for detection of reactive oxygen species (ROS). (a)
MitoSOX is a dihydroethidium-based probe bearing a triphenylphosphonium (TPP) targeting
moiety. This probe reacts with several ROS, but the product from superoxide oxidation can be
distinguished from other potentially formed oxidized products by selective excitation of the 2-
hydroxylethidium product. (b) Two examples of mitochondrial-targeted nitrone spin-trap
probes that utilize TPP localization groups. (c) MitoAR and MitoHR are rhodamine-like probes
that react with highly reactive oxygen species (hROS) including hydroxyl radical (•OH),
hypochlorous acid (HOCl), and peroxynitrite (ONOO−). (d) MitoPY1 is a boronate-based
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hybrid rhodamine/fluorescein probe with a TPP targeting group for chemospecific detection
of hydrogen peroxide (H2O2).
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Figure 4.
Confocal fluorescence images of live Cos-7 cells with varying levels of mitochondrial H2O2
as visualized using MitoPY1. Cos-7 cells incubated with 5 µM MitoPY1 for 60 minutes at 37
°C and imaged with either MitoPY1 (a), MitoTracker Deep Red and Hoechst (overlay, b),
MitoPY1 with MitoTracker Deep Red (overlay, c), or in brightfield mode (d). Cos-7 cells
incubated with 5 µM MitoPY1 with 300 µM H2O2 added for the final 40 minutes and imaged
with either MitoPY1 (e), MitoTracker Deep Red and Hoechst (overlay, f), MitoPY1 with
MitoTracker Deep Red (overlay, g), or in brightfield mode (h) with a 20 µm scale bar.
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