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Abstract
Cytochrome P450 (CYP) 24A1 catalyzes the side-chain oxidation of the hormonal form of vitamin
D. Expression of CYP24A1 is up-regulated to attenuate vitamin-D signaling associated with calcium
homeostasis and cellular growth processes. The development of therapeutics for disorders linked to
vitamin D-insufficiency would be greatly facilitated by structural knowledge of CYP24A1. Here we
report the crystal structure of rat CYP24A1 at 2.5 Å resolution. The structure exhibits an open cleft
leading to the active site heme prosthetic group on the distal surface that is likely to define the path
of substrate access into the active site. The entrance to the cleft is flanked by conserved hydrophobic
residues on helices A′ and G′ suggesting a mode of insertion into the inner mitochondrial membrane.
A docking model for 1α,25-(OH)2D3 binding in the open form of CYP24A1 is proposed that clarifies
the structural determinants of secosteroid recognition and validates the predictive power of existing
homology models of CYP24A1. Analysis of CYP24A1's proximal surface identifies the determinants
of adrenodoxin recognition as a constellation of conserved residues from helices K, K″ and L that
converge with an adjacent lysine-rich loop for binding the redox protein. Overall, the CYP24A1
structure provides the first template for understanding membrane insertion, substrate binding, and
redox partner interaction in mitochondrial P450s.
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Introduction
Mitochondrial P450 enzymes catalyze highly specific reactions in the biosynthesis and
degradation of hormones [1,2]. Mitochondrial P450s, i.e. CYP11, 24 and 27 families, cluster
into a single evolutionary clan; CYP24A1 itself has less than 40% sequence identity with other
P450s [3]. An N-terminal leader sequence targeting these P450s to the mitochondrion is cleaved
during import; the mature enzymes bind monotopically to the matrix side of the inner
membrane. Mitochondrial P450s exhibit the same monooxygenase activity as the microsomal
enzymes (R-H + NADPH + H+ + O2 → R-OH + NADP+ + H2O), but are coupled to a two-
component electron transfer system comprised of the soluble iron-sulfur ([2Fe-2S]) protein
adrenodoxin (Adx), and adrenodoxin reductase (Adr), a FAD-containing flavoenzyme which
binds NADPH [2,4]. In this respect, mitochondrial P450s resemble the soluble bacterial P450
CYP101 from Pseudomonas putida, which utilizes a comparable putidaredoxin (Pdx) and
putidaredoxin reductase (Pdr) system [5]. Adrenodoxin is expected to bind to the proximal
surface of the enzyme adjacent to the heme prosthetic group [6,7].

Because CYP24A1 degrades vitamin D, it is a target for inhibitor development for treatment
of diseases linked to vitamin D insufficiency, such as bone disorders, kidney disease, and cancer
[8-11]. Regulation of vitamin D activity is crucial to human health, as the active hormone,
1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3 or calcitriol), controls gene-expression and
signal-transduction processes associated with calcium homeostasis, cellular growth, and the
maintenance of heart, muscle, immune, and skin function [12,13]. Evidence suggests that
vitamin D insufficiency, due to tissue specific CYP24A1 overexpression, contributes to
development of diabetes [14] and cancers of the prostate, breast, colon and lung [15-18]. A
number of promising vitamin D analogs have been developed [19], but their administration
often induces hormonal resistance. Therefore, a complementary strategy for combating vitamin
D insufficiency is to develop specific CYP24A1 inhibitors to retard degradation of the
endogenous hormone.

The primary circulating form of vitamin D3 (25-hydroxyvitamin D3, 25-(OH)D3) is converted
to calcitriol by mitochondrial CYP27B1 (the 25D3-1α-hydroxylase) under hypocalcemic
conditions. Calcitriol elicits pleiotropic effects, in part via the vitamin D nuclear receptor
(VDR). The CYP24A1 promoter contains multiple vitamin D response elements (VDREs) that
respond to VDR signaling; CYP24A1 expression results in side-chain cleavage and elimination
of circulating 25-(OH)D3 and 1α,25-(OH)2D3 by catalyzing hydroxylation at the 23 and 24
positions [12,20]. The mechanism of CYP24A1's six step oxidation pathway for production of
calcitriol remains poorly understood [21-22]. Structural knowledge of CYP24A1 would
elucidate the basis for secosteroid specificity, and facilitate the rational design of inhibitors,
an approach complementary to the synthetic analog design already exploiting structural studies
of the VDR [23]. Here we report the crystal structure of the rat CYP24A1 determined to 2.5
Å resolution.

Results
We developed a bacterial over-expression system for mature rat CYP24A1 lacking the
mitochondrial import signal (Δ2-32) to enable biochemical characterization of the purified
enzyme [24]. Subsequent affinity-labeling studies identified a stabilizing mutation for
recombinant CYP24A1 (Ser-57-Asp) that does not alter catalytic function [25], and site-
directed mutational analysis using P450 homology modeling established functional roles for
conserved residues involved in substrate recognition and catalysis [26]. Recombinant
preparations (Δ2-32, S57D) were solubilized from bacterial membranes and purified in the
presence of CHAPS (0.8% w/v) by affinity chromatography using adrenodoxin linked to
sepharose, yielding monodisperse samples that crystallize readily by vapor diffusion
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(Supplemental Methods). Detergent exchange from CHAPS into CYMAL®-5 afforded
crystals of CYP24A1 which diffracted to 3.0 Ǻ resolution in space group C2 on SSRL beamline
9-2. The structure was solved by molecular replacement (MR) with Phaser [27] using an
ensemble of microsomal P450 structures (Supplemental Methods). A model with two
molecules in the asymmetric unit was built using COOT [28] and MiFit [29], and refined using
the CCP4 suite [30]. Concurrently, an improved “mixed-detergent” method for growing
CYP24A1 crystals was developed that eliminated the need for CYMAL®-5 exchange by
utilizing a second detergent together with CHAPS. CYP24A1 in mixed-detergent micelles with
CHAPS (0.5% w/v) and common detergents (e.g. CYMAL®-5, Foscholine®-12) at 0.5-2-fold
their critical micelle concentration, grew readily, but diffracted no better than 4 Å resolution.

However, a novel class of detergents, termed facial amphiphiles (FA) [31], are effective in
improving CYP24A1 crystal quality in combination with CHAPS; single, rod-like crystals
grown in the presence of CHAPS and the FA, 231-chol (3α-hydroxy-7α,12α-bis[(β-D-
maltopyranosyl)ethyloxy]cholane), show diffraction to 2.0 Å resolution. A 7.6-fold redundant
2.5 Å data set was collected on SSRL beamline 12-2 [32], and used to complete and refine the
CYP24A1 model including residues 51-514 (Table S1). Residues 33-50 of the S57D construct
were not visible in the electron density. The two copies of CYP24A1 in the asymmetric unit
are very similar with a root mean square deviation between Cα atoms of 0.62 Ǻ.

The open form structure of rat CYP24A1 displays the canonical P450 fold, including the 12
α-helices (A-L) and four β-sheet systems (β1-β4), as well as additional helices A′, B′, and G′
on the distal surface, and K′ and K″ between β2 and the conserved heme binding motif (Figs.
1A, S1). The F-helix of CYP24A1 extends for 18 residues and lacks a well defined F′-helix
seen for example in structures of microsomal CYP3A4 [34,35]. The structural elements
defining the substrate binding cavity, including the β1 and β4 sheets, the B-C loop, and helices
E, F, G, I and K surrounding the heme, exhibit lower than average B-factors (Fig. 1A). The B-
C loop contains a 3-turn B′ helix that packs closely with helices G and G′. A distinct
arrangement of aromatic residues from helices B′ (Trp134, Tyr137), F (Phe249), and G
(His271, Trp275, Phe279) cluster together with extensive interactions (Fig. 1A, inset),
contributing to the lower B-values in this region of the structure. The interaction between
residues of helix G with helix B′ entraps a water molecule hydrogen bonded with the carbonyl
oxygen of Trp134 and the side chain of Arg138; the latter residue engages in a salt bridge with
Glu322 on the adjacent I helix. The aromatic cluster effectively blocks access to the active site
via the solvent-accessible-channel (pw2c) along the I-helix [36]. At the same time, these
residues contribute significantly to the hydrophobicity of the active-site interior. The eight
residues comprising the aromatic cluster and salt bridge are conserved across all mitochondrial
P450s (Fig. S2). Hence, the aromatic cluster is a distinctive feature of CYP24A1, and may be
a general feature of mitochondrial P450s, stabilizing the open form.

The substrate access channel apparent in CYP24A1 is occupied by detergent molecules (Figs.
1B, S4) and lies among the B-B′ segment of the B-C loop, the β1-sheet and the F-G loop (pw2a);
this channel appears to partially merge with a secondary channel that also lies between the B-
B′ loop and the β1-sheet, and enters from below the F-G loop (pw2b) [36]. A similar substrate
access channel, oriented towards the membrane, is present in the structure of the microsomal
P-450, CYP46A1, which is a cholesterol 24-hydroxylase [37]. This feature distinguishes
CYP24A1 from the non-specific microsomal vitamin D 25-hydroxylase, CYP2R1, which
contains a pw2c substrate binding channel typical of enzymes from the CYP2 family [38].

Among currently available structures, the overall topology of structural features that form the
substrate binding cavity in CYP24A1 is most similar to that of CYP3A4 [34,35]. A comparison
of the two structures suggests that the open cleft observed for CYP24A1 results from the close
packing of helix F with helix G and the elevated pitch of both helices that separates helix F
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from the β4 sheet. This separation is increased by the conformation of the β1-4 sheet region
which is similar to that seen in CYP3A4. This conformation exposes a larger portion of the
heme surface and a widening of the substrate binding cavity close to the catalytic center, relative
to structures of mammalian P450s of families 1 or 2 [34]. In structures of CYP3A4, the helix
F does not extend over the substrate binding cavity and the polypeptide chain exhibits a coil
structure as it passes across the cavity and connects with helix F′. In contrast, the helix F of
CYP24A1 extends across the structure toward helix G′ without a well defined helix F′.

Analysis of the CYP24A1 structure [39-40] identified hydrophobic surfaces of helices A′ and
G′ as potential anchors to the mitochondrial inner membrane; together, these short helices flank
the substrate access channel (Figs. 1A,1B). The corresponding A′-A-helix and F-G loop regions
of microsomal P450s are also implicated in membrane association [42-45]. Computational
prediction of CYP24A1 insertion into a simulated lipid bilayer confirms this analysis (Figs.
2A,2B). The predicted protein:membrane association transfer free-energy (-9.0 kcal/mol) is
within the range of values predicted from other P450 crystal structures (e.g. CYP3A4 (1TQN)
[34] = -20.7 kcal/mol; and CYP46A1 (2Q9F) [37] = -4.7 kcal/mol) [46]. This analysis also
suggests that residues on helices A′ and G′ can penetrate approximately 7 Å into the alkyl chain
region of the bilayer, or up to 22 Å into the outer leaflet (Fig. 2A) [47].

Alignment of the A′ and G′ segments with other mitochondrial P450 sequences identifies each
as a membrane insertion sequence (MIS), implying a conserved membrane binding architecture
within mitochondrial CYPs 11, 24, and 27 (Fig. 2C, 2D). In MIS-1, the conserved proline-rich
(PGP) region is followed by a hydrophobic segment of 9-12 residues bracketed by aromatic
amino acids (Trp64 and Trp75, Fig. 2C). MIS-2 encompasses the amphipathic G′-helix, a
distinctive feature of the structure (Fig. 1A), in which polar residues are oriented back towards
the protein and hydrophobic residues point outward. MIS-2 is delimited by a conserved proline
in the F-G loop region (Pro256), and a tryptophan at the N-terminus of the G-helix, present in
all mitochondrial P450s (Trp268, Fig. 2D). The alignment in Fig. 2D suggests that the
amphipathic nature of the G′-helix is a conserved feature of mitochondrial P450s. A number
of conserved, basic residues are also arrayed in the vicinity of the A′ and G′ hydrophobic
regions, consistent with interactions with phospholipid head groups (Fig. S3).

Four molecules of CHAPS were observed in copy A of the 2.5 Å structure of CYP24A1. Two
molecules are associated with membrane binding regions (MIS-1 & 2) and structural lattice
contacts, one is bound in the substrate-access channel and a fourth is positioned above the heme
in a non-productive binding orientation (Fig. 1B). Alternatively, two molecules of CYMAL®-5
occupy the pw2a access channel in the independent 3.0 Å structure of CYP24A1 (Fig. S4).
The arrangement of either CHAPS or CYMAL®-5 in isomorphous CYP24A1 structures
suggest that the open form of CYP24A1 is a biologically-relevant conformation that is not
dependent on the specific details of detergent binding. Additionally, the presence of trapped
detergent molecules is consistent with the hydrophobic nature of the access channel and binding
pocket, and illustrates a potential pathway for lipophillic substrates to transit from the
membrane to the active site.

There is well defined electron density for a CHAPS molecule (CPS-600, 3K9V) close to the
heme within the substrate-binding pocket of CYP24A1 (Fig. 3), but density for the zwitterionic
side-chain extending out from the cavity is weaker. The hydrophobic face of the cholate ring
is oriented toward the heme surface and non-polar residues of helices B′ and F, whereas the
polar face of CHAPS is oriented toward polar protein groups, allowing three hydrogen bonds
to be formed. In solution, CHAPS does not inhibit the catalytic function of CYP24A1 and does
not induce a Type-I spectral perturbation of the heme typical of a proper substrate [24-26]. So
while detergent association in the active-site appears strong, it likely represents a non-
productive interaction that does not promote the enzyme's closed-form. Nevertheless, CHAPS
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binding is illustrative of the hydrophobic nature of the active site, and its ability to provide
specific interactions with amphipathic molecules.

Residues surrounding the active site cavity are contributed from nine regions of the CYP24A1
fold: B-B′ region (Leu129, Ile131), B′-helix (Trp134), B′-C region (Met148), F-helix (Met245,
Met246, Phe249), G-helix (His271, Trp275), I-helix (Leu325, Ala326, Glu329, Thr330), K-
helix/β1-4 loop (Val391), β1-4 sheet (Phe393, Thr394, Thr395), and the β4-1/β4-2 turn
(Gly499, Ile500) (Fig. 3). Mutational analysis of CYP24A1 based on P450 homology modeling
studies have attributed roles in substrate-binding and catalysis for 13 of the residues identified
in the structure: Ile131, Trp134, Met148, Met245, Met246, Phe249, Ala326, Glu329, Thr330,
Val391, Thr394, Gly499, and Ile500 [26,48,49]. Structural analysis also supports predicted
roles for Ala326 (I-helix) and Ile-500 (β4-1/β4-2 loop) in modulating regiospecificity of
hydroxylation in CYP24A1 [50,51]. A residue from the β1-3 strand (Thr416) is also linked to
this process [50], but is found outside the CHAPS binding site in the open channel. However,
this location could be relevant for secosteroid binding by analogy to cholesterol-3-sulfate
binding in CYP46A1 [37].

A hybrid homology model for CYP24A1 based on the structures of mammalian CYP2C5 and
bacterial CYP102, successfully predicted multiple residues in the CYP24A1 binding pocket,
including Met246, Phe249, Val391, Thr394, and Ile500 [26]. However, this model does retain
some template bias as it predicts substrate-access and binding similar to CYP2C5, via the
solvent-accessible pw2c channel that is occluded in the structure. A P450 structural-motif
based method of homology model building utilized by Masuda et al. appears to be highly
effective at predicting key elements of the CYP24A1 tertiary structure [48]. This 3D model
has been used to make strong predictions concerning the positioning, and putative role, of
conserved residues in the CYP24A1 active-site, including: Ile131, Trp134, Met148, Met246,
Ala326, and Gly499. To clarify the functional role of putative substrate-binding residues in
the open form, flexible ligand docking simulations with CHAPS (as a control) and 1α,25-
(OH)2D3 were conducted against the rat CYP24A1 structure (Table S2) using Autodock 4.0
(see Materials and Methods) [70-72]. As illustrated in Fig. 4,1α,25-(OH)2D3 docks in the open
form of CYP24A1 with computed nanomolar affinity (Ki=2.65 nM) in a reproducible
conformation stabilized by two hydrogen bonds (between the 3-OH group of the vitamin D A-
ring and the B-B′ loop (Leu129), and the 25-OH of the side chain and the I-helix (Leu325))
and multiple hydrophobic interactions among key conserved residues (Ile131, Trp134, Met246,
Phe249, Ala326 Val391, Thr394, Thr395, Gly499, and Ile500). The docking calculations
confirm that the open form of CYP24A1 is well organized to bind 1α,25-(OH)2D3, in accord
with predictions made by homology modeling concerning residues likely to bind the A-C-D
ring system (Leu129, Ile131, Trp134, Phe249, Thr394, Val391) or side chain (Leu325, Ala326,
Met246 and Ile500) of the vitamin D hormone. In this configuration, the secosteroid is well-
positioned to interact with the aromatic cluster of residues among helices B′, F and G via
interactions with the B-C loop (Leu129, Ile131, Trp134, Met148) and helix F (Met246,
Phe249). However, it is unlikely that this result represents the substrate's terminal binding
configuration relevant for the catalytically-active enzyme; the C21 methyl group of 1α,25-
(OH)2D3, and not the target C23 or C24 carbons, is positioned over the heme iron, where it is
superimposed with an ordered water molecule (WAT10, 3K9V). This result implies that in the
open form secosteroid substrates bind over the heme in a fashion that brings the C21-methyl
group into position to perturb the water-bound, heme iron (Figs. 4,S5). Further, when WAT-10
is included in the docking simulations a similar solution for 1α,25-(OH)2D3 is obtained (Table
S2,Fig. S6), but here the C21-methyl is forced to rotate away from WAT10, forming a
hydrophobic interaction with the important catalytic residue Ala326 [51]; the hydrogen
bonding network is also altered as the 3-OH group is repositioned to interact with the β1-4
sheet (Thr395), rather than the B-B′ loop (Leu129) (Fig. S6). These derived results suggest
that electrostatic interactions between the 25-OH group and the I-helix (Leu325), and
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hydrophobic interactions among the hormone's C-D ring system and the B′-C loop (Met148)
and the K-helix/β1-4 loop (Val391), are essential for high-affinity substrate binding in the open
form. This analysis validates published CYP24A1 homology modeling studies concerning the
composition of residues in the active-site, and supports our hypothesis that the open form is a
biologically relevant conformation, useful for studying substrate binding in mitochondrial
P450s.

The CYP24A1 structure also reveals structural elements and key residues for interacting with
the [2Fe-2S] electron transfer protein, adrenodoxin (Adx) (Fig. 5A). Four basic residues from
helices K (Lys378, Lys382) and L (Arg465, Arg466), involved in Adx recognition and electron
transfer in CYP27B1 [52], are juxtaposed on the proximal surface. These basic residues are
conserved in mitochondrial P450s, but divergent in microsomal forms (Fig. S7). Structural
elements on the proximal surface include segments of helices B, C, D, and K, helices K′ and
K″ flanking the meander region, and the Cys loop (Fig. 5B), all of which are implicated in
redox partner binding [52-55] and circumscribe the four basic residues. Compared to
microsomal P450s, all mitochondrial CYPs contain a tryptophan (Trp440 in CYP24A1) in the
conserved motif PxRWL in the K″-helix (Fig. S7). Trp440 interacts with the K-helix via
another conserved residue, Glu383, within the invariant KExxR motif (Figs. 5B,S7). This
conserved tertiary interaction, which anchors the lysine rich loop (residues 442-446, QKEKK),
and is next to Lys378 and Lys382, appears to be important for Adx interaction. For example,
it links a substrate recognition sequence (SRS5, K-helix/β1-4 sheet [56]) with the lysine rich
loop, which mediates redox protein interaction in P450cam [67]. It also displays the conserved
residue Leu441 on the protein surface, providing a complement to electrostatic interactions in
CYP24A1-Adx recognition.

Discussion
Mitochondrial CYP24A1 is a monotopic membrane protein that binds tightly to, but does not
span, the lipid bilayer [47,58,59]. The CYP24A1 structure indicates that CYP24A1 associates
with the membrane using hydrophobic membrane insertion sequences and conserved basic
residues surrounding helices A′ and G′ (Figs. 2,S3). Prior studies of both microsomal (CYP2C2,
CYP3A4) and mitochondrial (CYP11A1, CYP27A1) P450s have established roles for the N-
terminal proline rich motif, A′-A-helix region, and the F-G loop in membrane binding
[42-45,60]. The CYP24A1 structure is consistent with these results and clarifies the key role
of the conserved membrane-insertion elements (MIS) encompassing helices A′ and G′.
However, the MIS-1 and -2 features of CYP24A1 are not shared by bacterial P450-BM3
(CYP102), a fatty acid metabolizing, soluble P450 that otherwise shares common features with
mitochondrial P450s [61,62]. MIS elements could also mediate protein:lipid interactions, as
postulated for other monotopic membrane proteins [58], such as the C2 domain of cytosolic
phospholipase A2 [63]. Penetration of CYP24A1 up to 22 Å into the bilayer could account for
the roles of specific lipids, e.g. cardiolipin, in altering mitochondrial P450 function [64,65].

The open conformation of CYP24A1, compatible with substrate diffusion from within the
membrane, is uniquely stabilized by a cluster of conserved aromatic amino acids from helices
B′, F, and G. The aromatic cluster blocks the solvent accessible channel (pw2c) formed by
helices B′, G, and I, and promotes formation of a pw2a channel directed toward the membrane
[66]. Stabilization of an open conformation may also contribute to substrate specificity in
CYP24A1. Active site collapse to a closed state, as required to exclude solvent during catalysis,
may be triggered by solvent displacement and stabilized by the enthalpy of specific interactions
with the biological substrate. Hence, the open form would disallow efficient, non-specific
oxidation of improper substrates which are not able to stabilize the closed state, defining at
least one mechanism by which CYP24A1, and perhaps mitochondrial P450s, may achieve their
exquisite specificity. Docking analysis supports this hypothesis, as 1α,25-(OH)2D3 is
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computed to bind deep within the active-site where it can interact with the heme group and
presumably accommodate the cavity collapse required for catalysis. In contrast, the non-
substrate CHAPS, which also docks the enzyme with computed nanomolar affinity (Ki=5.79
nM), is bound in a shallow conformation with limited access to the heme that would not be
predicted to inhibit secosteroid accessibility. These studies provide new insight into the
enzyme's active-site organization before substrate-binding, providing testable hypotheses
concerning the determinants of secosteroid recognition. These contributions should prove
useful in the evaluation and design of vitamin D analogs and CYP24A1-specific-inhibitors.

The proximal surface of CYP24A1 interacts with Adx and is rich in basic residues, including
the invariant arginine pair (Arg465, Arg466) at the N-terminal end of the L-helix (Fig. 5A).
These side chains protrude below the heme and are within 8-10 Ǻ of the conserved K-helix
residues, Lys378 and Lys382. Mutational analysis of the arginine pair in CYP11A1 and
CYP27B1 suggested that the first arginine contributes to protein folding events and/or heme
binding, as mutations abolish enzyme function and promote the P-420 form [52,53]; an Arg465
mutant of CYP24A1 (R465F) showed a similar dysfunction [26]. Hence, Arg465 may play a
dual role. The second arginine (Arg466) has been more clearly linked to catalytic function and
is thought to mediate both electron and oxygen transfer steps [52]. In CYP24A1, Arg466 is
positioned to promote electron transfer between Adx and the heme iron via main chain
interactions with Cys462, as modeled for the CYP101:Pdx complex [67]. Conserved residues
from the K-helix (Lys378, Lys382) and the lysine rich loop are also positioned to interact with
the very acidic surface of Adx that surrounds the [2Fe-2S] cluster [5,68]. The link between the
K and K″ helices provided by the conserved Glu383-Trp440 tertiary structure interaction
suggests that presentation of the PxRWL motif is another key aspect of Adx recognition.

In summary, we have solved the first structure of a mitochondrial P450, CYP24A1, which
defines key features for this important class of enzymes. A membrane-directed (pw2a)
substrate access channel is stabilized in an open conformation by an aromatic cluster formed
among conserved residues on helices B′, F, and G. Two conserved membrane insertion
sequences overlap hydrophobic features on the distal surface near helices A′ and G′. Membrane
insertion and orientation of the enzyme's hydrophobic channel shows how a lipophillic
substrate, in this case vitamin D, can be transferred from the bilayer to the active site. Conserved
surface features from helices K, K″ and L, and the lysine-rich proximal loop of the meander
region, define components of the basic, adrenodoxin binding site. The composition of residues
in the active site is consistent with prior biochemical, mutagenesis, and homology modeling
data for CYP24A1, and related mitochondrial P450s, and docking simulations with 1α,25-
(OH)2D3 clarify the structural determinants of secosteroid recognition in the enzyme's open
conformation.

Materials and Methods
Recombinant rat CYP24A1 enzyme (Δ2-32, S57D mutant) was purified using established
protocols [24-26]. Some modifications to our original procedure were required for
crystallization (as detailed in Supplemental Methods). In short, a secondary chromatography
step was added that allows CYP24A1 samples prepared in CHAPS (Anatrace) to be exchanged
into alternative detergents, like CYMAL®-5 (Anatrace), as described by Wester et. al [69].
Detergent-exchange experiments identified conditions for growing a CYMAL®-5-based
crystals that diffract to 2.8 Å, and allowed the CYP24A1 structure to be solved by the molecular
replacement method using Phaser [27]. Later a mixed-detergent method was established for
improving CYP24A1 crystal quality without the need for detergent exchange. Facial
amphiphile detergents developed at Scripps [31] were found to produce high-order CYP24A1
crystals that diffracted to 2.0 Å resolution when mixed with CHAPS. Diffraction data for all
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CYP24A1 crystal forms were collected at the Stanford Synchrotron Radiation Laboratory
(SSRL BL9-2 and BL12-2) [32].

Detailed methods for structural determination & refinement, computational (surface and
membrane binding) analysis, and flexible-ligand docking studies with Autodock 4.0 [70-72],
are provided in the Supplementary materials. All sequence alignments were developed using
the program CLUSTALX2 [73]; labeling and format are explained in Supplemental methods.
All figures for this manuscript were generated using Pymol [74].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1. The Crystal Structure of CYP24A1
A) The structure of CYP24A1 refined at 2.5 Ǻ resolution (R=0.206, Rfree=0.252) shown
colored by B-factor from high (red) to low (violet) temperature. P450 structural elements (α-
helices, β-sheets) are labeled. Conserved residues from helices F (M245, F249), G (H271,
W275, F279) and B′ (W134, Y137, R138) participate in an “aromatic cluster” centered on a
water-molecule bound to R138 that promotes a membrane-directed (pw2a) substrate access
channel. B) The distal surface of CYP24A1 is shown colored from negative (cyan) to positive
(yellow) hydrophobicity (GES scale [41]) revealing the open channel between the A′-A helix
& F-G loop regions. CHAPS molecules (pink sticks) from the crystal structure are overlaid to
illustrate a model for substrate diffusion from the membrane-associated channel (pw2a) to a
putative exit channel (pw3) between the D-E helix region & E-F loop [36].
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Fig 2. Adaptations for Monotopic Membrane Binding
A) Interactions between CYP24A1 and the lipid-bilayer were studied computationally with
the OPM server [46] and our model for membrane-binding is shown colored by hydrophobicity
(GES [41]). Two membrane-insertion-sequences (MIS) are predicted for CYP24A1 that
correspond to hydrophobic surface regions (helices A′ and G′) that are modeled to penetrate
into the membrane's carbonyl core (∼17-22 Å) with polar lipid head groups reaching deep into
the substrate-access channel between the A′-A helix and F-G loop regions. B) An orthogonal
view of the OPM model illustrates the width and depth of the hydrophobic substrate access
leading to the heme center. C.) Primary sequence alignments of predicted MIS-1 and D) MIS-2
binding regions demonstrate the conservation of membrane binding features across key
membrane-bound P-450 forms.
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Fig 3. The Active Site of Rat CYP24A1 Bound to CHAPS
A) The electron density for CHAPS (cyan carbons) (σA−weighted 2|Fo−Fc|-composite-omit
map, 1.0σ) is shown in the heme-centered active-site of CYP24A1; important secondary
structural elements (tan), CHAPS binding residues (grey carbons), the heme prosthetic group
(pink carbons), and notable bond distances (Ǻ, red) are noted. Amino acid residues from the
B-C loop (I131, M148) and Helices B′, F, G & I (W134, M246, F249 & T330) the K-helix/
β1-4 loop (V391, F393) and the β4-1/β4-2 turn (Ile-500) mediate hydrophobic interactions
with CHAPS. Polar/charged residues from the I-helix (E329), β1-4 sheet (T394, T395) and the
β4-1/β4-2 turn (G499) mediated bonds to the polar face of CHAPS. The negatively charged
tail of CHAPS is bound outside the active site and interacts with residues from the helices D
(Y204) and F (K243).
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Fig 4. Secosteroid Docking in the Open Form of Rat CYP24A1
A model for 1α,25-(OH)2D3 (yellow) binding in the heme-centered (pink) active-site of
CYP24A1 was developed with a crystal structure-calibrated docking protocol, using Autodock
4.0 (see methods). Amino acid residues that flank the secosteroid docking site are shown from
the B-B′ loop (L129, I131) B′-C loop (M148), helix F (M246, F249), helix I (L325, A326,
E329, T330), the K-helix/β1-4 loop (V391, F393), the β1-4 sheet (T394, T395), the β1-3 sheet
(T416), and the β4-1/β4-2 turn (G499, I500), and notable hydrogen bond distances (Ǻ, red)
are given with respect to the computed H atom positions. Individual carbon atoms on 1α,25-
(OH)2D3 are labeled for reference. Multiple hydrophobic interactions and two hydrogen bonds
between the 3-OH group and the B-B′ loop (L129) and the 25-OH group and helix I (L325)
are predicted to stabilize secosteroid binding in the open form. In this configuration, the C21-
methyl group superimposes with a structural water (WAT-10) bound to the heme (shown as
red-dotted sphere); this water molecule was excluded from the calibrated docking experiment
shown here (Table S2, Fig. S5). An alternative docking model derived using control
parameters, which include WAT-10, is presented in Supplemental Fig. S6.
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Fig 5. Adaptations for Adrenodoxin Binding
A) CYP24A1's proximal surface is shown below the heme prosthetic group with key structural
elements implicated in adrenodoxin binding noted. Basic residues from helices B, C, D, J, K
and L, the Cys-Loop and the (bacterial) meander region line the positively-charged Adx
binding. Fully-conserved residues from helices K (K378,K382) and L (R465,R466) known to
mediate adrenodoxin binding and electron transfer in related P450s are labeled [52-55]. B) A
conserved tryptophan residue (W440), from the K″ helix of mitochondrial P450s, forms a salt-
bridge to the K-helix via a fully-conserved glutamate residue (E383) that may contribute to the
display of the meander's lysine-rich, proximal loop, that is associated with Adx binding [57].
Residues from the L-helix (R465,R466) and Cys-loop (M462), implicated in the electron
shuttle process are shown below the heme in close proximity to the K-helix. The lower portion
of the active-site is also shown with CHAPS (pink) positioned above the water (WAT6) bound
heme iron.
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