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Abstract
We have previously reported that therapeutic immunization by intramuscular injection of optimized
plasmid DNAs encoding SIV antigens effectively induces immune responses able to reduce viremia
in antiretroviral therapy (ART)-treated SIVmac251 infected Indian rhesus macaques. We subjected
such therapeutically immunized macaques to a second round of therapeutic vaccination using a
combination of plasmids expressing SIV genes and the IL-15/IL-15 receptor alpha as molecular
adjuvant, which were delivered by the more efficacious in vivo constant-current electroporation. A
very strong induction of antigen-specific responses to Gag, Env, Nef, and Pol, during ART (1.2-1.6%
of SIV-specific T cells in the circulating T lymphocytes) was obtained with the improved vaccination
method. Immunological responses were characterized by the production of IFN-γ, IL–2, and TNFα
either alone, or in combination as double or triple cytokine positive multifunctional T cells. A
significant induction of CD4+ T cell responses, mainly targeting Gag, Nef, and Pol, as well as of
CD8+ T cells, mainly targeting Env, was found in both T cells with central memory and effector
memory markers. After release from ART, the animals showed a virological benefit with a further
∼1 log reduction in viremia. Vaccination with plasmid DNAs has several advantages over other
vaccine modalities, including the possibility for repeated administration, and was shown to induce
potent, efficacious, and long-lasting recall immune responses. Therefore, these data support the
concept of adding DNA vaccination to the HAART regimen to boost the HIV-specific immune
responses.
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Introduction
Although the introduction of highly active antiretroviral therapy (HAART) resulted in a
remarkable decrease of AIDS related deaths, the current pharmacological regimens to treat
HIV infection fail to eradicate the virus and are associated with several problems, including
drug toxicity, and development of resistance with viral rebound. In this context, new strategies
to control viral replication and to restore immune functions are needed. During the period of
antiretroviral therapy (ART), due to efficient control of viral replication, the virus specific
cellular immune responses in the periphery are strongly reduced. After interruption of ART
treatment, there is a rapid increase of viremia within 10 days. The introduction of new
therapeutic interventions that boost immune responses would be beneficial for the clinical
management of HIV-infected individuals. Towards this goal, studies were designed to boost
the immune system of SIV-infected macaques during ART using DNA immunization. It was
previously observed that vaccination during ART using DNA plasmids (Lisziewicz et al.,
2005; Lori et al., 2005; Fuller et al., 2006; Lisziewicz et al., 2007; von Gegerfelt et al.,
2007; Halwani et al., 2008; Zur Megede et al., 2008), pox-virus vectors (Hel et al., 2000;
Tryniszewska et al., 2002), antigen-pulsed dendritic cells (Lu et al., 2003) or peptide-pulsed
blood (De Rose et al., 2008) in SIVmac251-infected macaques was able to evoke SIV-specific
recall immune responses. After release from ART, variable results regarding virological benefit
were reported from no control (Zur Megede et al., 2008), temporal control (Hel et al., 2000;
Tryniszewska et al., 2002; Fuller et al., 2006), to long-lasting control (Lori et al., 2003; Lu et
al., 2003; Lisziewicz et al., 2005; von Gegerfelt et al., 2007; De Rose et al., 2008). Using DNA
only as vaccine, two reports showed successful immunological and virological benefit, which
are intramuscular injection (von Gegerfelt et al., 2007) and topical administration of DNA-
based Dermavir (Lori et al., 2003; Lisziewicz et al., 2005). Importantly, the ability to induce
immune responses able to reduce viremia could therefore offer an opportunity to use
vaccination as an additional component to antiretroviral therapy. The use of DNA only as
vaccination method is a promising immunization strategy that has advantages (production,
stability, repeated use) over other vaccination modalities. Therapeutic vaccination in humans
against HIV-1 has given mixed results. Some studies have reported an immunological and
sometimes also a virological benefit, whereas others did not (Rosenberg et al., 2000; Markowitz
et al., 2002; Lu et al., 2003; Lu et al., 2004; Kinloch-De Loes et al., 2005; Levy et al., 2005;
Tubiana et al., 2005; Andrieu and Lu, 2007; Hardy et al., 2007; Connolly et al., 2008; Pialoux
et al., 2008; Wilson et al., 2008). Several studies suggest that vaccination during highly active
antiretroviral therapy (HAART) induces HIV-specific recall responses. The efficacy of
therapeutic vaccines may be variable, and it is hypothesized that more consistent
immunological and virological benefits could be achieved by improving the vaccination
approaches.

We focused on DNA vaccination, since previous data in macaques have been encouraging and
demonstrated strong immunogenicity, long-term decrease of viral load and a survival benefit
in the animals with robust response to the therapeutic vaccination (Lori et al., 2003; Lisziewicz
et al., 2005; von Gegerfelt et al., 2007). Recent developments to improve DNA delivery include
in vivo electroporation (Aihara and Miyazaki, 1998; Mathiesen, 1999; Rizzuto et al., 1999;
Selby et al., 2000; Widera et al., 2000; Mir, 2001;Wang et al., 2004b; Prud'homme et al.,
2006; Draghia-Akli et al., 2008), which showed to be more efficient than traditional
intramuscular injection in SIV/HIV DNAs vaccinating rhesus macaques and induced
significantly increased antigen-specific immunity (Selby et al., 2000; Otten et al., 2004; Otten
et al., 2006; Luckay et al., 2007; Hirao et al., 2008; Rosati et al., 2008; Zur Megede et al.,
2008).

In this study, we examined whether repeated immunotherapeutic vaccination is of further
virological benefit. We used macaques animals previously immunized during ART with
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plasmid DNAs encoding SIV antigens (von Gegerfelt et al., 2007) and, after release from ART,
showed a long-lasting partial control of viremia without any signs of progression towards
immunodeficiency. Of the eight control animals that were ART-treated only without receiving
vaccination (von Gegerfelt et al., 2007), none controlled viremia after ART release and they
subsequently developed AIDS. In this report, we tested whether macaques that benefited from
the first cycle of immunotherapy could further benefit from a 2nd round of immunotherapeutic
immunization using the combination of improved plasmid DNAs and DNA delivery by
electroporation. Here, we report, the induction of strong and potent increases in SIV-specific
immune responses in the immunized macaques followed by a further significant virological
benefit after release from ART.

Materials and Methods
Animals

The Indian rhesus macaques (Macaca mulatta) included in the study were housed and handled
in accordance with the standards of the Association for the Assessment and Accreditation of
Laboratory Animal Care International. Screening for MHC alleles was performed by PCR (D.
Watkins, Wisconsin Regional Primate Center). Monkey 538L was Mamu A*01 positive and
B*17 negative, whereas the monkeys 920L and 965L were both negative for Mamu A*01 and
B*17. These SIVmac251 infected animals were previously involved in a therapeutic SIV DNA
vaccination study (von Gegerfelt et al., 2007). Approximately 3 years after release from ART,
the animals were enrolled into the present study and subjected to a 2nd round of therapeutic
vaccination. During this second antiretroviral treatment period (31 weeks), the animals
received the following therapeutic regimen: 20 mg/kg ((R)-9-(2-phosphonylmethoxypropyl)
adenine (PMPA), and 50 mg/kg FTC, both injected subcutaneously once daily, and 5 mg/kg
Didanosine (ddI), injected intravenously once daily. After two weeks, ddI was discontinued,
and the dose of PMPA was reduced to 10mg/kg/day.

DNA vectors
All plasmids used in the study contain the human CMV promoter without an intron, the bovine
growth hormone polyadenylation site, and the kanamycin resistance gene, pCMV.kan (Rosati
et al., 2005). The RNA/codon optimized genes (Schwartz et al., 1992a; Schwartz et al.,
1992b; Nasioulas et al., 1994; Schneider et al., 1997) for gag, pol, and env were generated
upon introduction of multiple silent point mutations not affecting the sequence of the encoded
proteins. The animals were vaccinated with a mixture of DNAs producing secreted and
intracellularly degraded variants of the SIV Gag generated by N-terminal fusion with either
IP10-MCP3 (Biragyn et al., 1999) (MCP3-p39gag, 21S) or with a beta-catenin-derived peptide
(aa 18-47) (Aberle et al., 1997) (CATEgagDX, 2S) as previously described (Rosati et al.,
2005; von Gegerfelt et al., 2007). The authentic SIVmac239 Env protein sequence (native Env,
99S) and a fusion of Env to IP10-MCP3 replacing its native signal peptide with IP10-MCP3
(MCP3-Env, 73S) were used. The optimized pol with inactivating mutations in PRT, RT and
INT was inserted into pCMVLAMP.kan between the human LAMP-1 luminal domain and the
LAMP-1 transmembrane and cytoplasmic (TM/cyt) tail domain (Chikhlikar et al., 2004),
generating the plasmid LAMPpol (103S). Plasmid LAMP-NTV (147S) expresses a LAMP-
Nef-Tat-Vif fusion protein. LAMP targets the antigen to lysosomes and lysosome-like
compartments, which in antigen presenting cells also contain MHC molecules and was shown
to affect the trafficking and immunogenicity of HIV-1 gag (Valentin et al.; Marques et al.,
2003; De Arruda et al., 2004; Chikhlikar et al., 2006). The rhesus macaque (rm) IL-15 plasmid
(AG65) contains the optimized IL-15 DNA sequence expressing a stable mRNA encoding an
IL-15 that has the native signal peptide replaced by the tPA signal and propeptide (Jalah et
al., 2007). Plasmid rmIL15Rα (AG120) expresses the optimized rhesus IL-15 receptor alpha
(Bergamaschi et al., 2007) chain.
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Therapeutic immunization
Highly purified, endotoxin-free DNA plasmid preparations were produced using the Qiagen
kit (Hilden, Germany). The 1 ml DNA mixture contained 100 μg of each SIV plasmid and 200
μg of the cytokine plasmids, respectively (a total of 1 mg of plasmid DNA). These DNAs were
injected intramuscularly (0.5 ml per injection) at the left and right thighs using in vivo
electroporation by the CELLECTRA® adaptive constant-current electroporator (VGX
Pharmaceuticals, Inc., The Woodlands, TX).

Flow cytometric analysis
Flow cytometric analysis was performed as described (Rosati et al., 2008). To determine the
number and phenotype of SIV-specific cells, isolated PBMCs were incubated at a density of
106 cells/ml in RPMI-1640 supplemented with 10% FBS, 100 U/ml penicillin/streptomycin
and 2 mM L-glutamine, in the presence of pools of 15-aa peptides overlapping by 11 aa, derived
from SIV Gag, Pol, Env, Nef, and Tat at a final concentration of 1 μg/ml for each peptide. Cells
were treated overnight with monensin to prevent protein secretion, and cell surface staining
was performed using the following antibody cocktail: CD3-APCCy7, CD4-PerCPCy5.5,
CD45RA-PE, CD28-biotin and Streptavidin-APCCy5.5 (BD Pharmingen, San Jose, CA) and
CD8-AF405 (Caltag, Carlsbad, CA). Cells were washed twice, fixed, and permeabilized with
Cytofix/Cytoperm (BD Pharmingen). Staining for intracellular cytokine detection was
performed using the following antibody mixture: IFN-γ-FITC, IL-2-APC and TNF-α-PECy7
(BD Pharmingen). In some experiments, surface staining was performed with a different
antibody cocktail including CD95-FITC, CCR7-APC, CD3-APCCy7, CD4-PerCPCy5.5,
CD45RA-PE, CD8-AF405, CD28-Biotin and Streptavidin-APCCy5.5, and the presence of
antigen specific cells was monitored in permeabilized cells by intracellular staining with anti-
IFN-PECy7 mAb. This second staining allows the comparison of memory cell populations
defined by CD28/CD45RA or CD28/CD95 expression. After intracellular staining, the cells
were washed twice and the samples were analyzed in a FacsAria or LSRII flow cytometers
(BD Pharmingen). All data analysis was performed using the FlowJo platform (Tree Star, Inc.,
Ashland, OR).

Humoral immune responses
Antibody production against Gag and Env was measured in serial dilutions of plasma by
separate ELISA assays. The plates were analyzed at the absorbance of 450 nm (A450). The
negative cutoff value was twice the mean A450 values obtained with non-immune sera. All
samples with A450 value higher than the cutoff were considered positive. The binding antibody
titers are reported as the reciprocal of the highest positive dilution.

Viral load analysis
SIV RNA copy numbers were determined by a real-time nucleic acid sequence-based
isothermal amplification (NASBA) assay using SIVmac251-specific primers (Romano et al.,
2000) with a threshold of detection of 50 copies/ml.

Results
Study design

We used SIVmac251-infected Indian rhesus macaques (538L, 920L, 965L), which were
previously subjected to one round of therapeutic vaccination (von Gegerfelt et al., 2007).
During the previous study, the animals received three DNA immunizations, using
intramuscular needle injection, which resulted in a strong virological benefit as demonstrated
by decreased viral loads. These animals were kept and were monitored following the 1st cycle
of therapeutic immunization (3.1, 3.7 and 3.8 years for monkey 920L, 965L and 538L,
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respectively), and their viral loads remained below the levels measured prior to treatment,
demonstrating a long-term benefit of therapeutic DNA vaccination.

In the present study, we report data obtained after a 2nd round of therapeutic vaccination (ART/
DNA) outlined in Fig. 1A. The animals were subjected to ART for 31 weeks using PMPA,
FTC and ddI as described previously (von Gegerfelt et al., 2007). Starting at week 14 of ART
(time point 0), the animals received 4 DNA vaccinations (week 0, 4, 8, and 15) by
electroporation (EP) using the in vivo CELLECTRA® adaptive constant-current electroporator
(VGX Pharmaceuticals, Inc.). Two weeks after EP4, ART treatment was terminated and the
animals were monitored for another 16 wks (termination of the study).

The SIV DNA mixture contained optimized expression vectors for different SIV antigens;
antigen sequences were modified to alter their intracellular trafficking by fusions to either
MCP-3, catenin (CATE) or human lysosomal membrane associated protein 1 (LAMP) (Rosati
et al., 2005; von Gegerfelt et al., 2007; Rosati et al., 2008). The plasmid DNAs in vaccine
mixture expressed Gag (MCP3gag, CATE-gag), Pol (LAMP-pol), Env (native and MCP3env),
and the a Nef-Tat-Vif fusion to LAMP (LAMP-NTV) (Rosati et al., 2005; von Gegerfelt et
al., 2007; Rosati et al., 2008). A combination of rhesus IL-15 and IL-15Rα expression plasmids
(Bergamaschi et al., 2007; Jalah et al., 2007) was used as a molecular adjuvant. During the
course of this study, the animals were monitored for the development of SIV-specific immune
responses and changes in the viral loads.

Virological benefit of the 2nd therapeutic vaccination
Figure 1B shows the viral load data of the vaccinated macaques prior, during and after ART.
During the period preceding the start of second ART (13 weeks), the animals showed mean
viral loads ranging from 3.6 to 5.1 log10. All animals responded immediately to ART treatment,
resulting in persistent control of viremia (<50 copies/ml plasma). After ART release, we
observed a pattern of fluctuating viral loads as previously observed (von Gegerfelt et al.,
2007). After the initial virus rebound, the viral load fluctuations were at levels lower than before
ART/DNA, resulting in additional partial control of viremia. Importantly, the improved control
of viremia was maintained during the 16 weeks of follow-up (Fig. 1B). At this point, the animals
were enrolled in another study.

The mean viral loads during the 13 weeks before ART (PRE) and the 16 weeks after ART
release (POST) were compared. Figure 1C shows the differential in viral loads (ΔVL) of the
three animals as a result of the 2nd therapeutic vaccination. This analysis revealed a significant
decrease (P=0.0356) in viremia with an average of ∼1 log10 in viral load reduction. A similar
benefit in viremia reduction was found by comparing viral loads during 39 weeks PRE and 16
weeks POST ART. In conclusion, the reduction in plasma viral loads demonstrates that the
2nd round of therapeutic vaccination provides an additional virological benefit in these animals.

Increase of cellular immune responses
We studied the development of SIV-specific cellular immune responses in the peripheral blood
from the immunized macaques using flow cytometric analysis. Figure 2A outlines the strategy
used for the flow cytometric analysis to detect antigen-specific IFN-γ positive T cells using as
example PBMC from animal 965L at 3 weeks post EP3. CD3+ T cells were identified within
the main lymphocyte population, which was defined by forward and side scatter characteristics.
The presence of SIV-specific T cells was determined by intracellular cytokine staining upon
stimulation with peptide pools (15-aa peptides overlapping by 11 aa) or medium only, as
negative control.
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Figure 2B shows the frequency of IFN-γ secreting T cells of the vaccinated animals determined
upon stimulation with peptide pools spanning five of the six SIV proteins used for vaccination
(Gag, Pol, Env, Nef, and Tat). At the day of the first vaccination, none of the animals showed
detectable cellular immune responses, consistent with the absence of replicating SIV due to
successful ART treatment. The first DNA vaccination by electroporation (EP1) immediately
induced strong immune responses in all animals, at the range of ∼4,000-6,000 SIV-specific
IFN-γ producing T cells/106 T cells. These high immune responses persisted for 4 weeks up
to the day of EP2. After the 3rd vaccination, the SIV specific immune responses were further
boosted to ∼12,000-16,000 IFN-γ producing T cells/106 T cells or 1.2-1.6% of SIV-specific T
cells among the total circulating T lymphocyte population. After EP4, we only analyzed the
2-week post vaccination sample, since the animals were released from ART at this point of
time. As observed for EP1, subsequent vaccinations not only boosted the recall of cellular
immune responses, but these immune responses persisted.

We noted that individual animals responded to the different vaccine antigens to different
extents. The recall immune responses in 538L were mainly targeted to Gag, whereas 965L had
similar Env and Gag responses. In contrast, animal 920L had primarily an Env response and
a very poor immune response to Gag (peak 790 and mean 460 IFN-γ+ T cells/106 T cells). The
vaccination was unable to induce recall or de novo Gag-specific immune responses in this
macaque. This observation suggests that the ability of 920L to respond to Gag may be
exhausted, since this animal had shown higher Gag responses in the previous ART/DNA
treatment (von Gegerfelt et al., 2007). All animals showed significant immune responses to
the Nef peptide stimulation, while the responses to the Pol peptide pool were lower. We did
not detect any significant immune responses to Tat and the responses to Vif were not analyzed.

To evaluate the efficacy of the DNA delivery by in vivo electroporation, we compared the
responses in these animals to the data obtained previously after direct intramuscular DNA
injection (von Gegerfelt et al., 2007). Immune responses after the 1st round of vaccination were
measured by the ELIspot assay, therefore the comparison can only be approximate, comparing
the cells producing IFN-γ per million (we could not repeat this measurements using
intracellular cytokine staining because no frozen samples were available from the first DNA
therapeutic vaccination). We noted that DNA vaccination via electroporation resulted in at
least ∼10× higher levels of cellular immune responses compared to the direct IM injection.
Therefore, in agreement with observations by us and others (Otten et al., 2004; Otten et al.,
2006; Luckay et al., 2007; Hirao et al., 2008; Rosati et al., 2008; Zur Megede et al., 2008),
vaccination with SIV/HIV DNA plasmids using electroporation is a potent method to achieve
high immune responses in macaques.

After release from ART, we found a persistence of long-lasting SIV-specific cellular immune
responses (∼4,000-14,000 IFN-γ+ T cells per million T cells) without any significant changes
in the distribution of the antigens recognized by the T cells for at least 2 months (Fig. 2B).
While the levels of cellular responses in animals 538L and 920L remain similar during ART
and after release, the cellular immune responses in animal 965L decreased immediately after
release from ART. We noted that the animals with higher levels of antigen-specific T cell
responses showed lower mean viral loads, indicating control of viremia by the vaccine-elicited
immune responses.

Characterization of T cell subsets induced by DNA vaccination
We next analyzed the phenotype of the antigen-specific IFN-γ producing T cells in more detail.
The gating strategy is shown in Figs. 3A and 3B for animal 965L (3 weeks post EP3). Subsets
of memory T cells were identified based on the staining with CD28 and CD45RA:
CD3+CD45RA-CD28+ represents the population of central memory (CM) T cells and
CD3+CD28- represents effector memory (EM) T cells (Fig. 3A). Cells with an EM phenotype
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were mainly CD8+ T cells (91% in macaque 965L), while the majority of CM cells were
CD4+ T cells. These subsets were further examined for the presence of antigen-specific
subpopulations as shown in the dot plots in Fig. 3B for the same animal (965L) and the data
are summarized in Fig. 4 for all the animals.

A second strategy to define CM and EM cells was also used, employing the CD28 and CD95
markers in parallel to the CD28 and CD45RA markers in samples stained with all three
antibodies (Fig. 5). We also analyzed the frequency of the CD4+ and CD8+ T cells within each
population. The comparison of the antigen-specific cells using either definition
(CD3+CD45RA-CD28+ versus CD3+CD95+CD28+ for CM and CD3+CD28- versus
CD3+CD95+CD28- for EM) showed no significant differences. Thus, both staining strategies
give similar results for circulating T cells. These data indicate that either approach can be used
to define CM and EM T cell subsets in macaque PBMC (Valentin et al.).

The responses against Gag (Fig. 4A) were dominated by CD4+ T cells with central memory
phenotype, whereas the predominant T cell responses against Env (Fig. 4B) consisted of
CD8+ T cells with effector phenotype. Low levels of CD8+ cells with CM phenotype could be
detected in all three animals in response to both Gag and Env peptide stimulation. Similar to
Gag, Nef responses (Fig. 4C) were predominantly produced by CD4+ T cells, which for 538L
and 965L were almost exclusively cells with CM phenotype. The responses to Pol (Fig. 4D)
were quantitatively the lowest and were predominantly CD4+ with CM phenotype in 965L and
920L, and a mixture of CD4+ and CD8+ with CM and EM phenotype in macaque 538L. In
conclusion, vaccination by in vivo electroporation during ART potently induced SIV-specific
recall immune responses in different T-cell subsets. The nature of the response was also
influenced by the specific antigen, as shown by comparison of the Gag and Env responses
(predominantly CM CD4 for Gag versus EM CD8 for Env).

Vaccination by electroporation induces SIV-specific T cells producing IL-2 or TNFα
We further asked whether the antigen-specific T cells in these vaccinated animals produce
other cytokines, such as IL-2 or TNFα (Fig. 6), in addition to IFN-γ production shown above
(Figs. 2 through 5). Although we found high levels of IFN-γ-producing SIV-specific T cells
after EP1 (Fig. 2B), we failed to detect SIV-specific T cells producing either IL-2 (Fig. 6A) or
TNFα (Fig. 6B) until 3 weeks post EP3. From this time point on, a significant number of SIV-
specific T cells producing IL-2 (Fig. 6A) and to a lesser extent TNFα (Fig. 6B) could be
detected. We found these responses to be induced by all the peptide pools tested (Gag, Env,
Pol, Nef, Tat). We observed that in comparison to IFN-γ (see Fig. 2B), the ratio of the responses
to the individual antigens is changed for the IL-2 and TNFα producing cells, i.e. there are
proportionally less responses to Gag and Env. As noted for the IFN-γ responses, animal 920L
showed predominant Env-specific IL-2 and TNFα responses, further supporting the conclusion
that this animal could no longer respond to Gag.

Vaccination by electroporation induces multifunctional SIV-specific T cells
Having established that vaccination by in vivo electroporation induces SIV-specific T cells
able to produce significant levels of IFN-γ, IL-2 or TNFα, we further analyzed the population
of antigen-specific T cells producing 2 or more cytokines. First, we analyzed double positive
cells secreting IFN-γ in combination with IL-2 (Fig. 7A) and with TNFα (Fig. 7B), respectively.
We found dual cytokine producing T cells induced by the Gag, Env and Nef peptide pools,
respectively, in all three animals. We noted that the levels of IFN-γ+IL-2+ cells were
significantly higher, reflecting the respective higher single-positive levels. The dual cytokine
producing T cells responded mainly to Gag, Env, and Nef, and no significant responses were
induced upon stimulation by the Pol and Tat peptide pools. As observed for the single cytokine
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producing T cells, the nature of the responses varied among the animals with a major focus on
Gag in animals 538L and 965L and on Env in animal 920L.

In addition to dual positive cells, DNA vaccination also induced SIV specific triple cytokine
positive cells. Figure 8 shows a comparison of the levels of the double and triple cytokine
producing SIV-specific (Gag, Env and Nef) T cells. For all animals, dual (IFN-γ plus IL-2;
IFN-γ plus TNFα) as well as triple (IFN-γ, IL-2 and TNFα) positive cells were induced.
Together, these findings indicate that vaccination by electroporation using the optimized DNA
mixture is effective and potently induces SIV specific recall responses in T cells with
multifunctional phenotypes. After ART release, the polyfunctional responses persisted in 2 of
the 3 animals, but not in animal 965L that also had a significant drop of single IFN-γ responses
(see Fig. 2B).

Humoral immune responses
We also monitored the humoral immune responses before, during, and after release from ART/
DNA. Figure 9 shows the reciprocal levels of binding antibody against Env (Fig. 9A) and Gag
(Fig. 9B), respectively. Our results show that the humoral immune responses decline during
ART and the vaccination period, resulting in a reduction of ∼0.5 log10 for Env (A) and ∼1-2
log10 for Gag (B). These data indicate that immunization with DNA only is insufficient to
maintain or boost the humoral immune responses, and this is likely due to the relative low
levels of protein produced upon vaccination. After release from ART, the animals showed
anamnestic humoral immune responses to Gag and Env reaching the pre-ART levels as
response to the replicating SIV after ART release. Therefore, DNA electroporation maintained
the T helper type 1 nature of DNA vaccination.

Discussion
DNA based immunization is an attractive vaccination approach because its production is simple
and cost effective, it can be repeatedly administered and it can be combined with other vaccine
modalities and molecular adjuvants. Although several trials of DNA vaccination in humans
have shown encouraging, though variable results (Mwau et al., 2004; Graham et al., 2006;
Catanzaro et al., 2007; Eller et al., 2007; Tavel et al., 2007; Bansal et al., 2008; Gorse et al.,
2008; Jaoko et al., 2008; Kutzler and Weiner, 2008; Wang et al., 2008; Wilson et al., 2008),
it appears that naked DNA delivery and expression is inefficient in primates compared
nonhuman primates and rodents, which is one key drawback for using DNA vaccination.
Different strategies are being developed to improve the efficiency of DNA gene delivery
include the combination of antigen expressing plasmids with vectors producing cytokines, or
the use of DNA as prime in combination with recombinant virus or protein boost [(Hartikka
et al., 2001; Fuller et al., 2002; Lori et al., 2003; Bertley et al., 2004; Wang et al., 2004a;
Lisziewicz et al., 2005; Dale et al., 2006; Duerr et al., 2006; Girard et al., 2006; Hokey and
Weiner, 2006; Liu et al., 2006; Lori et al., 2006; Lu, 2006; Mcmichael, 2006; Rodriguez-
Chavez et al., 2006; Brave et al., 2007; Hinkula, 2007; Thorner and Barouch, 2007; Kutzler
and Weiner, 2008; Manrique et al., 2008; Wang et al., 2008)]. The development of DNA
delivery by in vivo electroporation is an important advance for DNA delivery (Aihara and
Miyazaki, 1998; Mathiesen, 1999; Rizzuto et al., 1999; Selby et al., 2000; Widera et al.,
2000; Mir, 2001; Wang et al., 2004b; Prud'homme et al., 2006; Draghia-Akli et al., 2008), and
initial studies with DNAs producing HIV and SIV antigens have shown great improvement in
gene expression as shown in this report and by others (Selby et al., 2000; Widera et al.,
2000; Otten et al., 2004; Otten et al., 2006; Luckay et al., 2007; Halwani et al., 2008; Hirao
et al., 2008; Rosati et al., 2008; Zur Megede et al., 2008).

Using DNA only as vaccination modality, we had previously demonstrated a significant
virological benefit in a group of SIVmac251 infected animals (von Gegerfelt et al., 2007),
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resulting in ∼1 log10 drop in viremia. Importantly, the animals had maintained this reduced
viral loads for more than 3 years. None of the control animals, which were subjected to ART
treatment only without DNA vaccination, showed reduction of viral loads after release from
ART (von Gegerfelt et al., 2007) and subsequently developed AIDS and were no longer
available. Based on the success of the first therapeutic vaccination (von Gegerfelt et al.,
2007), the current study was designed to examine the efficacy of a 2nd round of therapeutic
immunization using macaques from that study. We decided to apply the 2nd therapeutic DNA
vaccination by using the more potent in vivo electroporation as DNA delivery methodology,
that further allowed detailed measurement of the development of SIV-specific immune
responses.

We show that combination of optimized DNA vectors and in vivo electroporation induced high
levels of SIV-specific cellular immune responses in the ART-treated SIV-infected animals. It
is noteworthy that direct DNA intramuscular immunization into SIV-infected ART-treated
rhesus macaques induced recall responses to all the antigens produced by the DNA mixture,
but to a lower extent (von Gegerfelt et al., 2007; Halwani et al., 2008) when compared to the
more effective in vivo electroporation, as shown in this report and by others (Widera et al.,
2000; Otten et al., 2004; Otten et al., 2006; Luckay et al., 2007; Hirao et al., 2008; Rosati et
al., 2008; Zur Megede et al., 2008). Thus, in vivo electroporation of plasmid DNAs producing
SIV antigens induces higher and longer-lasting primary as well as recall immune responses in
macaques. We typically observed that immune responses peaked at 4 weeks post immunization.
The large increase in immune responses revealed up to 1.6% of SIV-specific IFN-γ-producing
T cells in the blood. Importantly, the efficient immunization method led to the induction of
high levels of both CD4+ and CD8+ antigen-specific T cells. A large proportion of these SIV
antigen-specific cells had markers of effector memory. Although DNA vaccination resulted in
both CD4+ and CD8+ T cell memory and effector cells, we noted that the type of antigen
affected the responses: Gag, Pol and Nef induced mainly CD4+ T cell responses, whereas Env
induced a higher CD8+ T cell response. Importantly, the vaccination effects were long-lasting
and also led to significant development of multifunctional SIV-specific immune responses.
These findings demonstrate the potency of DNA vaccination in inducing broad and diverse
cellular immune responses. In contrast to the changes in the cellular immune responses, we
observed no increase in the humoral immune responses. On the contrary, we found a rather
significant decline for both Gag and Env binding antibody titers during ART/DNA vaccination,
as reported during the 1st immunotherapy cycle (von Gegerfelt et al., 2007). Thus, DNA
vaccination by in vivo electroporation in SIV-infected macaques continues to produce a
polarized Th1 immune response. It is likely that the combination of DNA with a protein boost
is necessary to activate higher antibody responses in chronically infected ART-treated animals.

Upon release from ART, the animals showed an initial virus rebound, followed by several viral
load fluctuations, resulting in viral loads lower than before ART/DNA. We previously reported
such fluctuations in virus levels that ultimately resulted in reduced viremia (von Gegerfelt et
al., 2007). This manifestation is indicative of active immune control. Although the underlying
reason for the fluctuation is not known, we anticipate that the initial virus rebound is eliminated
by the immune system and a new homeostasis is achieved, usually after 2-3 fluctuations,
resulting in reduced virus loads compared to pre-ART levels.

It is important to note that the animals involved in this study were infected by SIV for long
periods of time. ART treatment only was reported to lead to complete or partial virus control
after ART discontinuation uniquely in animals treated very early after infection (Tsai et al.,
1998; Van Rompay et al., 1999; Emau et al., 2006), which is different than the experience with
chronically infected macaques (Hel et al., 2000; Tryniszewska et al., 2002; Lisziewicz et al.,
2005; Fuller et al., 2006; von Gegerfelt et al., 2007) and humans (Chun et al., 1999; Davey et
al., 1999; Garcia et al., 1999; Neumann et al., 1999; Ortiz et al., 1999; Ortiz et al., 2001;
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Oxenius et al., 2002), where the virus rebounds rapidly to levels similar to those prior to ART.
This may be a critical difference with a recently reported study (Zur Megede et al., 2008) in
which the animals were treated with ART early after infection and DNA vaccination failed to
show a virological benefit over the benefit achieved by ART only.

Important for the success of the immunotherapeutic vaccination is not only the quality of the
DNA and the DNA delivery, but also the successful control of viremia during ART. Animals
partially controlling viremia (median viral load of 4.9 log10) and not receiving ART during
the DNA vaccination period did not show immunological or virologic benefit even with the
more efficient EP DNA vaccination method. This observation is in agreement with previous
studies (Hel et al., 2000; von Gegerfelt et al., 2007), which reported that animals that lost
control of viremia due to development of drug resistance or non-adherence to drug treatment
did not benefit from immunotherapy. Therefore, potent control of viremia using effective ART
treatment is an essential part of the regimen in addition to the use of optimized DNA and
efficient DNA delivery to induce high and long-lasting recall immune responses.

An important conclusion of our study is that rhesus macaques chronically infected with SIV
benefited from a 2nd round of immunotherapy during ART. The combination of a cocktail of
optimized SIV DNA plasmids and of efficient DNA delivery by in vivo electroporation was
critical for achieving high levels of long-lasting recall immune responses. Furthermore DNA
vaccination provided a virological benefit, since the therapeutically vaccinated macaques were
able to further lower viremia upon release from ART. The 2nd round of immunotherapy
demonstrated that an additional virological benefit can be obtained by repeated ART/DNA
vaccination. In summary, our data provide support for a novel immunotherapeutic vaccination
approach, which could be an addition to anti-retroviral drug therapy.
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FIG. 1.
Virological benefit from 2nd round of ART/DNA. (A) Study Outline. SIV-infected macaques
were subjected to a 2nd round of ART/DNA after more than 3 years of infection. Previously,
we reported the data obtained from the 1st cycle of ART/DNA (von Gegerfelt et al., 2007).
After 3.1 to 3.8 years, the animals were subjected to a 2nd round of ART/DNA. The duration
of the 2nd ART/DNA was 31 weeks and the animals were vaccinated by in vivo electroporation
four times (EP1 to EP4) initiated at week 14 of ART. The animals were released from ART
and monitored for another 16 weeks. (B) Viral loads of the three macaques during 2nd round
of ART/DNA. Viral load data are shown for 39 weeks prior to ART (PRE), 31 weeks of ART/
DNA and 16 weeks post release from ART (POST). (C) Mean virus loads and decrease in
mean virus load (ΔVL) comparing 13 weeks PRE and 16 weeks POST treatment. The
differences are statistically significant (paired T-test).
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FIG. 2.
Increased SIV-specific IFN-γ producing T-cells in DNA immunized macaques during ART.
(A) Identification of IFN-γ producing antigen-specific T cells by flow cytometry. PBMC
stimulated with different peptide pools of SIV antigens were stained with a cocktail of cell
surface antibodies as described in Material and Methods. The main lymphocyte population
was gated based on forward and side scatter, and T cells were identified according to CD3
staining. Dot plots show the frequency of IFN-γ+ T cells upon stimulation with Env, Gag or
Nef peptide pools. The background of the assay in the presence of medium alone is shown
(data is from macaque 965L at week 3 post EP3). (B) The numbers of IFN-γ producing T cells
of the three animals after stimulation with Env, Gag, Nef, Pol and Tat peptide pools,
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respectively, expressed per million circulating T lymphocytes are shown during ART/DNA
and after release from ART.
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FIG. 3.
Flow cytometric analysis of T cell subsets. (A) Identification of the subsets of CD4+ and
CD8+ T cells. The T cells were divided in central memory (CM) and effector memory (EM)
cells based on the pattern of CD28 and CD45RA expression: CD3+CD28+CD45RA- for CM
T cells and CD3+CD28- for EM T cells. The two subsets of antigen experienced T cells were
further divided in CD4+ and CD8+ populations. Cells with an EM phenotype were mainly
CD8+ T cells (91% in macaque 965L), while the majority of CM cells were CD4+ T cells.
(B) Identification of SIV-specific IFN-γ+ CM and EM T cells by flow cytometry. Dot plots
show the presence of CD4+ and CD8+ T cells with CM and EM markers producing IFN-γ in
the presence of Gag and Env SIV peptide pools or medium alone. Numbers inside the gates
represent the percentage of IFN-γ+ T cells within the respective parent population. The data
shown were obtained from the same animal 965L (3 weeks post EP3) as used in Fig. 3A.
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FIG. 4.
Comparison of SIV-specific IFN-γ producing T cell subsets induced by immunization during
ART. Frequency of SIV-specific CD4+ and CD8+ T cells with central memory (CM) or effector
memory (EM) markers were determined as outlined in Fig. 4. Numbers indicate IFN-γ
producing T cells after stimulation with Gag (A), Env (B), Nef (C), and Pol (D) peptide pools,
expressed per million circulating T lymphocytes.
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FIG. 5.
Flow cytometric analysis of SIV-specific memory T cell responses using different surface
markers. This analysis shows that the frequency and phenotype of the antigen specific cells
and of the memory T cell subsets are similar irrespective of the use of the combination of CD28
and CD45RA or CD28 and CD95 markers to define these T cell populations. Briefly, PBMC
of macaque M538 (at 7 weeks post EP3) were analyzed by flow cytometry after peptide (env)
stimulation and staining with monoclonal antibodies against different sets of markers as
described in Materials and Methods. (A) The main lymphocyte population was gated based on
forward and side scatter, and T cells were identified according to CD3 staining. These T cells
were classified as effector memory (EM) and central memory (CM) cells based in the pattern
of staining with CD28 and CD45RA (EM1 and CM1) or CD28 and CD95 (EM2 and CM2)
(lower plots). (B) Phenotypic analysis of the antigen-specific (IFN-γ+) T cells. The frequency
of Env-specific T cells was determined based on IFN-γ production. The cells were classified
as EM1 and EM2 and CM1 and CM2 T cells according to the expression of either CD28 and
CD45RA or CD28 and CD95, respectively, and the frequency of CD4+ and CD8+ T cells within
each of these populations was determined. (C) Analysis of the frequency of IFN-γ+ Env-
specific T cells, as well as the CD4+ and CD8+ distribution within the memory subsets as
defined in panel A.
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FIG. 6.
Induction of SIV-specific IL-2- and TNFα-producing T cells induced by DNA vaccination
during ART. The analysis was performed using similar strategy as described for Fig. 3. IL-2
(A) and TNFα (B) producing T cells after stimulation with Env, Gag, Nef, Pol, and Tat peptide
pools, respectively, were expressed per million circulating T lymphocytes. The ART and
release periods are indicated. *, Tat-specific immune response was not determined.
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FIG. 7.
Induction of dual cytokine positive SIV-specific T cells in vaccinated animals. The dual IFN-
γ plus IL-2 (A) and IFN-γ plus TNFα (B) producing SIV-specific (Gag, Env, Nef) T cells are
indicated.
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FIG. 8.
Induction of multifunctional SIV-specific T cells. A comparison of the levels of double positive
(from Fig. 7; light grey IFNγ+IL-2+; dark grey and IFNγ+ TNFα+) and triple positive (IFNγ+

IL-2+ TNFα+; striped bar) total SIV specific T cells is shown.
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FIG. 9.
Humoral immune responses during ART and DNA vaccination and the period after release
from ART. The presence of binding antibodies to Env (gp120) (A) and to Gag p27 (B) was
measured in plasma prior, during and after therapy.
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