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Abstract
This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed
memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on
parallel architectures are described. Our parallelization is based on equally partitioning photons
among the processors and uses the Message Passing Interface (MPI) library for interprocessor
communication and the Scalable Parallel Random Number Generator (SPRNG) to generate
uncorrelated random number streams. These parallelization techniques are also applicable to other
distributed memory architectures. A linear increase in computing speed with the number of
processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single
Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon
emitters, where explicit modeling of the phantom and collimator is required. For 131I, the accuracy
of the parallel code is demonstrated by comparing simulated and experimental SPECT images from
a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are
carried out to assess scatter and attenuation correction.
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1. Introduction
There has been renewed interest in quantification of 131I for internal dosimetry due to the recent
success of radioimmunotherapy (RIT) in treating B-cell non-Hodgkin’s lymphoma (NHL) here
at the University of Michigan and at other institutions [1,2]. 131I quantification is carried out
both by planar imaging [3,4] and by SPECT [5–7] but, the latter is the preferred method when
imaging tumors in the presence of significant activity in overlying tissue. The multiple high-
energy gamma-ray emissions of 131I make imaging and quantification more difficult compared
to common nuclear medicine isotopes such as 99Tcm. Monte Carlo simulation is a valuable
tool for assessing the problems associated with 131I imaging such as scatter, penetration and
attenuation. Monte Carlo codes typically used in nuclear medicine do not explicitly model
collimator scatter and penetration. Although computationally tedious, including collimator
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interactions is a prerequisite for accurate simulation of high-energy photon emitters such
as 131I. There have been a few recent codes that include complete photon transport through
both the phantom and collimator [8–11] but, one of the limitations of these codes is the speed
even when variance reduction is utilized.

All of the above mentioned Monte Carlo codes are serial codes, i.e. they have been developed
to run on scalar single processor computers with the exception of the code by de Vries et al.
which utilizes an array processor within a Unix workstation to perform some computations.
Due to the recent increase in accessibility of advanced computer architectures there has been
much interest in vectorized and parallel Monte Carlo codes. The Monte Carlo method for
particle simulation is inherently parallel because each particle history is independent of any
other particle’s history [12]. The conventional scalar Monte Carlo algorithm is history based,
that is, photon histories are computed sequentially one photon at a time. A parallel history
based algorithm can be developed with minimal changes to the existing serial code. A large
number of particles, needed to reduce the standard deviation in Monte Carlo simulations, are
distributed equally among available processors and are combined at the end to calculate the
final result. A critical part of a history based parallel algorithm is a good parallel random number
generator, which provides uncorrelated random number streams to each processor. Then each
processor’s simulation is statistically independent of one another, making the combined result
statistically equivalent to one large run with the same total number of histories. Unlike the
conventional Monte Carlo algorithms the vectorized algorithms are event based. In the event
based approach the simulation of many histories is broken up into a collection of events, such
as tracking and boundary crossing, which are similar and can be processed in a vectorized
manner [13]. Significant gains in performance can be attained with the vectorized algorithm
but total restructuring of the scalar Monte Carlo algorithm is required for compatibility with
the vector architecture. In review articles on Monte Carlo techniques in nuclear medicine
imaging [14] and in medical radiation physics [15], parallel processing is recognized as the
ideal solution for such simulations. However, development of either vectorized or parallel
Monte Carlo codes for nuclear medicine imaging applications has been very limited [16,17].

We previously reported on 131I simulations using the SIMIND Monte Carlo code combined
with a collimator routine which model scatter and penetration [18]. In this reference we quote
modest CPU times of 1–6 days on a 500 MHz DEC Alpha XP1000 workstation for SPECT
simulations of simple analytical phantoms. However even with this relatively fast code which
includes variance reduction, when modeling clinically realistic voxel-based phantoms the time
for obtaining statistically acceptable SPECT data becomes unrealistic (several months). Note
that in the case of SPECT, typically 60 projection sets must be simulated as opposed to the two
sets required in a planar study. In order to speed up SPECT simulations of higher energy photon
emitters the SIMIND Monte Carlo code was implemented on a distributed memory parallel
architecture as described here. Verification and applications of the parallel version of the code
are also presented here for 131I SPECT imaging with voxel based anthropomorphic phantoms.

2. Implementation of SIMIND on the parallel system
2.1. Parallel architecture

Parallel processing utilizes multiple CPUs operating independently and asynchronously on one
application. The two major parallel architectures are the shared memory multiprocessor and
the distributed memory multiprocessor. In the shared memory concept a collection of CPUs
share a common memory via an internal network, usually bus- or cross-bar based. In the
distributed memory concept each processor has its own local memory and communication
among processors takes place via message passing. The parallel SI-MIND code was
implemented on the RS/6000 Scalable Power Parallel 2 (SP2) system from IBM [19]. The
distributed memory architecture of the IBM SP2 is based on a ‘shared nothing’ model with
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each processor having its own CPU, memory and disk. The RS/6000 systems are
implementations of a Reduced Instruction Set Computer (RISC) architecture. The SP2 software
architecture is based on the AIX/6000 operating system, IBM’s implementation of Unix. The
SP2 system used in the present work is located at the Center for Parallel Computing at the
University of Michigan. This system has 48 160-MHz processors with 1 GByte of memory on
each processor. Each processor has a peak performance of 640 MFLOPS (millions of floating
point operations per second). A high-performance networking switch provides high-
bandwidth, low-latency inter-processor communication with a peak bi-directional data transfer
rate of 110 MB/s between each processor pair.

2.2. Parallel random number generator
Before explaining issues related to parallel random number generators it is worthwhile to
mention that an ideal serial random number generator should produce sequences that are
uniformly distributed, are uncorrelated, have a long period and are reproducible. For practical
purposes we only require that the period of the random number stream be larger than the total
number of random numbers needed by an application, and that the correlation be sufficiently
weak. There are many different iterative schemes to generate random number streams of which
the Linear Congruential Generator (LCG) is the most commonly used [20]. The linear recursion
underlying the LCG can be written as:

(1)

where m is the modulus, a the multiplier, and c the additive constant. The size of the modulus
constrains the period, and for implementational reasons it is chosen to be a prime or a power-
of-two. When a, c, and m are chosen appropriately, one can obtain a random number sequence
with a maximum period equal to m.

A parallel random number generator must satisfy all the criteria for an acceptable serial random
number generator. In addition, the parallel random number sequences should have no inter-
processor correlation, should be reproducible independent of the number of processors used,
and should be generated with minimal or no inter-processor communication. The most common
approaches to generating parallel sequences of random numbers from serial random number
generators are sequence splitting, Lehmer tree and parameterization. In the sequence splitting
method, a serial random number stream is partitioned into non-overlapping contiguous
subsequences that are then used on individual parallel processors. In the Lehmer tree approach,
N starting seeds are generated by one random number generator which are then used by each
of the N processors to generate random sequences with a second generator. Recent research
has focussed on development of parallel random number generators based on parameterization.
This method identifies a parameter in the underlying recursion of a serial random number
generator that can be varied. Each valid value of this parameter leads to a recursion that
produces a unique, full-period stream of random numbers [21].

In the present work, we use a parallel LCG from the recently developed software library
SPRNG which contains six different parallel random number generators [22]. The selected
generator is linked in at compile time. The period of the LCG in SPRNG is 248.
Parameterization is carried out by having different prime numbers as the addend c in Equation
1. The number of distinct streams is ~219. The independent, reproducible streams are produced
without performing any inter-processor communication. The same seed is used to initialize all
the streams in one particular computational run. In order to get a different sequence in a different
run, this common seed can be changed.
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2.3. Parallelization
When photon histories are independent of one another as in the present application there are
several ways to partition the photons among the processors. Here we use the simplest and most
efficient approach referred to as natural partitioning by Martin et al. [23]. The photons are
equally distributed among the processors in such a way as to equalize the workload and
minimize communication. Each processor performs the entire simulation for all the photons
assigned to it, and reports its results to one of the processors called the host processor. The host
processor sums up the results from all processors and calculates the final result. Since the
random number streams in the different processors are uncorrelated the standard deviation of
the combined results is improved by the ratio 1/√N, where N is the number of processors. The
natural partitioning approach may lead to excessive memory requirements since each processor
must know the entire problem domain. Two alternative approaches, partitioning by geometry
and partitioning by photon energy do reduce the memory requirements, but lead to increased
communications and increased difficulty in equalizing the workload among processors [23].

Our parallelization approach required minimal changes to the original serial SIMIND code
[24], which is written in Fortran90. The code was replicated in each processor since each
processor is performing the complete simulation. A simplified flow chart of the parallel
algorithm for generating a SPECT image is given in Fig. 1 with the diagram for the host
processor on the left and the diagram for all other processors on the right. The host contributes
a complete image set just like the other processors, but has the additional task of summing the
image sets to generate the global image. As the flow chart indicates there is no inter-processor
communication until the simulations are complete. For inter-processor communication we
utilized the MPI library for message passing which is available on almost all parallel machines
in C and Fortran [25]. At the start of the program each processor carries out the MPI
initialization which returns the total number of processors, N, and the processor’s rank (i.e.
identification number which goes from 0 to N−1). In the SPRNG initialization, each stream
number is associated with the processor’s rank and thus unique streams are produced on each
processor. The same number of histories specified in the input file is assigned to each processor.
Photon transport in the phantom, collimator and scintillation detector is carried out as in the
serial code, which is well described in the literature on the SIMIND code and in the literature
on the collimator routine [8]. When simulation of a projection angle is complete the host and
the other N−1 processors communicate via the MPI send and receive commands. Because the
processors operate asynchronously it is necessary for all processors to synchronize prior to
starting the simulation of a new projection angle. Synchronization is achieved by calling the
MPI_BARRIER command, which blocks the calling processor until all other processors join
at the barrier point of the code. Typically, SIMIND simulations include generation of energy
spectra and calculation of parameters such as sensitivity and scatter fraction, which are not
included in Fig. 1. When all SPECT projections have been completed there are send and receive
commands and a summation of partial results associated with each of these parameters.

It is worth noting that the MPI commands were implemented such that they are included only
at the linking stage. Therefore, it was possible to have only one version of SIMIND for both
the serial and parallel implementations which is convenient because the code is constantly been
developed. We are presently working on a another version of the parallel algorithm (not
described here), that would split the simulation of the different SPECT projection angles among
the processors.

3. Materials
For all of the 131I measurement and simulation results presented here the SPECT camera used
was a Picker Prism XP3000 equipped with an Ultra High Energy General-Purpose collimator.
The NaI crystal measured 24×40×0.95 cm. The measured energy resolution at 364 keV was

Dewaraja et al. Page 4

Comput Methods Programs Biomed. Author manuscript; available in PMC 2010 March 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



10.2% (FWHM). SPECT acquisitions employed 360°, 60 angles, a 64×64 matrix with a pixel
size of 0.72 cm and a 20% photopeak window at 364 keV. Reconstruction was by a space-
alternating generalized expectation-maximization algorithm, SAGE [26]. To carry out the
triple energy window (TEW) scatter correction two additional 6% windows were included
adjacent to the photopeak window. For attenuation correction a registered attenuation
coefficient map based on the voxel-man density images was used.

Included in SIMIND is access to the following two voxel-based anthropomorphic phantoms
which were utilized in the present work: (1) the voxel-man phantom [27]; and (2) the
Radiological Support Devices (RSD) heart/thorax phantom [28]. The voxel-man closely
resembles the anatomy of a typical male and consists of 243 byte-coded images, which include
58 organs. The RSD phantom is a computerized version of a commercially available fully
tissue-equivalent experimental phantom made up of a basic thorax, heart, lungs, liver and a
realistic skeleton. The computerized version of the phantom consisting of 132 byte-coded
images was created recently specifically to be used with the SIMIND code. SIMIND also
allows for activities to be assigned to spherical tumors, which can be superimposed onto the
activity distributions of the voxel man or the voxel RSD phantom. The organ and tumor relative
activity concentration ratios used in the phantom simulations below were realistic values
obtained from planar images of typical NHL patients who underwent 131I RIT at our clinic.

4. Results and discussion
4.1. Timing results

For the timing evaluation one SPECT projection of the voxel-man phantom was simulated.
Table 1 shows the performance results as a function of the number of processors and the
problem size (i.e. the number of photons simulated). The total time is the CPU time for the
entire simulation including the time required for I/O operations. The measured speed-up, SN,
and efficiency, εN, were defined as

(2)

and

(3)

Since SN ≤N, we have εN ≤1. When perfect speedup of SN =N, referred to as linear speed-up,
is achieved εN =1. In almost any algorithm there are operations that must be executed on one
processor at a time, thereby decreasing the efficiency. The fraction of such operations is referred
to as the ‘serial fraction’. Other factors that degrade speed-up include synchronization of tasks,
and communication between processors and are referred to as the ‘parallelization overhead’.

The results of Table 1 indicate near linear speed-up. This is to be expected because in the
present implementation, both the serial fraction and inter-processor communication is minimal.
There is a very small degradation in speed-up and efficiency with the number of processors
because of increased parallelization overhead. The speedup and efficiency values in Table 1
are somewhat better when the problem size is larger because the serial fraction gets smaller as
the photon histories increase while overhead for communication and synchronization remains
fixed.
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4.2. Validation of the parallel code
Validations for planar imaging were carried out by comparing 131I energy spectra and point
source images obtained with the parallel version of SI-MIND to those obtained with the serial
code and by experimental measurement. We have previously validated the serial code for planar
imaging by showing good agreement between measurement and simulation [18]. The parallel
code results were in close agreement with those obtained with the serial code but were not
identical because the two versions use different random number generators. The normalized
mean square error (NMSE) between the parallel code and serial code results for 131I was 0.12%
for the energy spectra and 0.18% for the point source images. Validation of the SIMIND code
for 131I SPECT imaging has not been carried out previously. Here we perform the SPECT
validation by carrying out both experimental measurement and simulation of the RSD heart/
thorax phantom. The physical phantom was augmented by inserting a 100-ml water filled
plastic sphere close to the liver to represent a tumor. In both the experimental measurement
and simulation 131I activities were distributed with the following relative concentration ratios:
tumor, 124; liver, 50; left lung, 17, right lung, 9; heart chambers, 94; myocardial wall, 122;
background (thoracic cavity), 6. We simulated 1.6×109 photons/projection using 16 processors
of the IBM SP2 with a run time of 214 h for the entire simulation consisting of 60 projection
images. Both the experimental data and the simulated data were reconstructed without scatter
and attenuation correction. There was good agreement between the measured and simulated
images as demonstrated in Fig. 2, which compares a typical reconstructed slice and line profile
across the center of the tumor. The figure also shows the true activity distribution corresponding
to the reconstructed slice. The NMSE between measured and simulated images calculated on
a pixel-by-pixel basis was 5.5%.

4.3. Anthropomorphic phantom simulations
Here we demonstrate an application of the parallel SIMIND code where simulations of the
voxel-man phantom was used to evaluate 131I SPECT scatter and attenuation correction. We
have previously used the scalar SIMIND code to evaluate SPECT quantification but due to the
prohibitive computational time the previous study was limited to a simple analytical elliptical
phantom with uniform scattering and attenuating media [18]. The speed-up achieved in the
present work made it feasible to model a highly realistic imaging situation using the voxel-
man phantom. In the abdominal region 131I activities were distributed in several organs
including three 200 ml spherical tumors according to the following concentration ratios: tumor
1, 100; tumor 2, 100; tumor 3, 100; kidneys, 81; liver, 26; lungs, 26; spleen, 53; blood-pool,
48. We simulated 1.1×109 photons/projection using 16 processors of the IBM SP2 with a run
time of 226 h for the entire simulation consisting of 60 projection images.

To evaluate scatter and attenuation two sets of projection data were obtained: (1) case with
scatter (phantom and collimator) and attenuation events included; and (2) ideal case with no
scatter or attenuation (primary events only). The first set of projections was reconstructed with
attenuation and scatter correction to obtain the corrected image while the latter set was
reconstructed without any correction to obtain the primary image. Slices of the reconstructed
images and the corresponding profile curves are compared qualitatively in Fig. 3. The
compensated images show good agreement with the primary images giving us confidence in
our clinical SPECT quantification procedure where TEW scatter compensation and patient
specific attenuation maps are used [5]. In a future study results from parallel simulations will
be used to optimize the window width and location for the TEW method as well as to carry
out a quantitative assessment of scatter correction methods for 131I. Activity quantification can
also be evaluated since the true simulated activities of the tumors are known.
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5. Summary and conclusions
In this work a parallel version of the SIMIND Monte Carlo code for planar and SPECT imaging
was successfully implemented and verified on the IBM SP2 distributed memory parallel
machine. Photons were equally partitioned among the processors and the measured speedup
was very close to linear. The present parallel code is easily portable to any other distributed
memory parallel computer system, which supports MPI and has an operating structure similar
to the SP2. Recently we successfully ran the code on a SGI Origin 2000 parallel system
configured with 100 300 MHz processors at Lund University, Sweden.

SPECT simulations of higher energy photon emitters are computationally tedious and can
greatly benefit from the speedup achieved by running the code in a parallel architecture. In this
work, we demonstrated the use of the parallel code in 131I SPECT simulations involving
clinically realistic voxel-based anthropomorphic phantoms. For these simulations even though
16 processors of the SP2 were used the computational time to obtain statistically acceptable
data was long (~10 days). However, as parallel processing speed and power are steadily
increasing, we can expect the computational time for such simulations to rapidly decrease. The
IBM SP2 at University of Michigan is presently being upgraded to 128 processors. Recently
the San Diego Supercomputing Center acquired the new IBM Teraflops RS/6000 SP
configured with 1152 Power3 processors, each running at 222 MHz. This new parallel machine
has a combined peak performance of 1 TFLOP (1012 floating-point operations per second).
The above supercomputing facilities are accessible to researchers at other institutions via the
National Partnership for Advanced Computational Infrastructure (NPACI) [29]. In conclusion,
the recent increase in availability of advanced computer architectures and the speed-up
demonstrated by the present parallel implementation makes it feasible to carry out accurate
clinically realistic SPECT simulations of higher energy photon emitters.
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Fig. 1.
Flow chart of the parallel simulation. The diagram for the host processor is on the left and the
diagram for all other processors is on the right.
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Fig. 2.
Images and profiles corresponding to a typical slice of the RSD heart/thorax phantom. The true
activity distribution as well as the measured and simulated reconstructed images are shown.
The line profile is across the center of the tumor.
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Fig. 3.
Images and profiles corresponding to two slices of the voxel-man simulation. The true activity
distribution as well as the primary and corrected images are shown. The line profiles are across
Tumor 1 and Tumor 3.
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