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Abstract
Antibacterial drug discovery and development has slowed considerably in recent years with novel
classes discovered decades ago and regulatory approvals tougher to get. This article describes newer
classes of antibacterial drugs introduced or approved after year 2000, their mechanisms of action/
resistance, improved analogs, spectrum of activity and clinical trials. It also discusses new
compounds in development with novel mechanisms of action as well as novel unexploited bacterial
targets and strategies which may pave the way for combating drug resistance and emerging pathogens
in the 21st century.
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Infectious diseases are one of the leading causes of death worldwide, especially in low and
middle income (LMIC) countries where second line antibacterial drugs against resistant
bacteria are generally unavailable or unaffordable. In upper income countries (UIC), the
emergence of multi-drug resistance in both community and hospital acquired infections has
outpaced development and delivery of new drugs to the clinic. Most recently, the emergence
of carbapenem resistance among Klebsiella sp. and related Gram negative bacteria illustrates
the magnitude of the problem, as these multi-drug resistant infections are associated with high
mortality rates and few treatment options 1. While the market potential for new antibacterial
drugs is estimated in the many billions of dollars 2, the discovery pipelines of most major
pharmaceutical companies run near empty. The paucity of new antibacterial drugs has led the
Infectious Disease Society of America (IDSA) and others to call for action in rebuilding
infrastructure and efforts to develop next generation drugs.

Despite the many grim predictions of failure in combating infectious diseases in the future 3,
4, all is not lost, as several classes of new antibacterial compounds as well as derivatives of
older therapeutics have emerged. In this review we examine some of these new antibacterial
drugs that have recently been approved by the FDA (and EMEA) or are in late stages (phase
II development or beyond) of the pipeline. These new drugs belong to the following classes of
compounds that include: oxazolidinones, glycopeptides, ketolides, glycylcyclines,
carbapenems and fluoroquinolones (Table 1). This article will describe in detail the mechanism
of action (novelty), spectrum of activity, selected in vivo efficacy and mechanisms of resistance
to these antibacterial drugs and also discusses briefly more new drugs in development (Table
2). We also have included unpublished information reported at the 48th Annual Interscience
Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the Infectious Disease
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Society of America (IDSA) 46th Annual Meeting in 2008 and here after noted as ICAAC/
IDSA. In addition, we also explore novel strategies such as targeting host infection response
pathways, anti-infective antibodies or the vitamin cofactors of selective microbial targets and
offer a glimpse into the anti-infective drug discovery pipeline of the future.

1. ANTIBACTERIAL DRUGS
1.1 Oxazolidinones

Mechanism of Action—Oxazolidinones are considered to be the first truly new class of
antibacterial drugs introduced in the past 3 decades. Linezolid was approved by the FDA in
2000 for adults and for pediatric use in 2005 5. The oxazolidinone linezolid inhibits bacterial
protein synthesis at the initiation/elongation step. In vivo drug-ribosome crosslinking studies
reveal that oxazolidinones bind to the peptidyl transferase center (PTC) of the 50S ribosomal
subunit 6, 7. Oxazolidinones also bind to LepA, a universal bacterial elongation factor which
back translocates ribosomes from a “POST” translocation state to a pre-translocation state 8.
Linezolid has been shown to bind to the A site of PTC (site of entry of the aminoacyl tRNA) ,
indicating that the drug interferes with the positioning of the aminoacylated-CCA end of the
A-tRNA, not the P-site tRNA (site where the peptidyl tRNA forms) 9. Thus, oxazolidinones
compete with PTC binding drugs chloramphenicol and lincomycin 7. Binding of
oxazolidinones to PTC is conformation dependent and requires a P-site ligand (P-tRNA).
However, it is unclear whether oxazolidinones are initiation or elongation inhibitors 10 as they
inhibit binding of the aa-tRNA to the A-site of the 70S initiation complexes, and also the POST
ribosomes which have P and E-sites filled. It is interesting to note that oxazolidinones bind
only to the mitochondrial 70S ribosomes and not the cytoplasmic 80S ribosomes, explaining
the myelosuppression and toxic optic neuropathy observed in patients treated with linezolid
for as little as 14 days 11, 12.

Spectrum of Activity/ Improved Analogs—Oxazolidinones have activity against Gram
positive bacteria, such as methicillin-resistant Staphylococcus. aureus (MRSA), vancomycin
resistant enterococci (VRE) and Streptococcus pneumoniae and Mycobacterium tuberculosis
13–16. Oxazolidinones also have activity against all Nocardia species 17, 18. In an attempt to
find newer oxazolidinones with improved potency, aqueous solubility and reduced toxicity,
modifications of the A, B and C rings of linezolid have been reported 19. Radezolid
(RX-1741) is a new oxazolidinone, discovered using the crystal structure of 50S ribosome
subunit and in a Phase II clinical trial with 150 patients for uncomplicated skin and skin
structure infections (uSSSI) a 97.4% clinical cure rate was achieved (450mg once a day)
compared to 97.4% with linezolid (600mg twice a day) 20. Torezolid (TR-700), a new oral
oxazolidinone is 4–8 fold more active than linezolid in linezolid-susceptible and resistant
strains of staphylococci and enterococci and upto 4-fold higher against anaerobes 21.
RWJ-416457, the pyrrolopyrozolyl-substituted oxazolidinone exhibits 2 to 4 fold greater
potency than linezolid against susceptible and multi-drug resistant staphylococci, enterococci,
and streptococci, Haemophilus influenzae and Moraxella catarrhalis and also the atypical
intracellular respiratory tract pathogens Chlamydia pneumoniae, Legionella pneumophila, and
Mycoplasma pneumoniae 22. RWJ-416457 had 2 to 4 fold lower MICs than linezolid against
linezolid resistant S. aureus and enterococci 23.

Mechanism of Resistance—Resistance to oxazolidinones results from mutations in
ribosomal RNA (rRNA), all of which map near the PTC. They cluster in the vicinity of the
central loop of domain V of 23S rRNA of the large ribosomal subunit 24. Linezolid resistance
is selected in vivo by prolonged drug treatment or reducing the dose. Most of the clinical
resistant mutants have the G2576T mutation in domain V of 23S rRNA. More than one 23S
rRNA gene must be mutated to confer resistance, leading to a rarity in resistance occurrence
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23, as most bacteria contain 4–6 copies. The potency of torezolid against linezolid-resistant
microbes is explained by additional hydrogen bond interactions with 23S rRNA (residues
A2451 and U2484) and lesser requirement for residues associated with linezolid resistance
25. Mutations in ABC transporter (efflux pump) genes causing overexpression as well as RNA
methyltransferase mutations have led to linezolid resistance in S. pneumoniae 26.

1.2 Glycopeptides
Mechanism of Action—Glycopeptide antibacterial drugs are natural products introduced
first in the 1950s (vancomycin) and are a heptapeptide core with an attached sugar moiety. Due
to the emergence of vancomycin resistance, newer derivatives of glycopeptides with potency
against the resistant microbes are being developed 27. Oritavancin is a phenyl glycopeptide
derivative and inhibits peptidoglycan biosynthesis by not only inhibiting transglycosylation,
but also transpeptidation 28, 29. This antibacterial drug blocks utilization of D-Ala-D-Ala or
D-Ala-D-Lac containing PG precursors. The selective action of glycopeptide antibacterial
drugs is due to strong intramolecular interaction with D-amino acid-containing PG residues,
not found in mammalian cells 30. The alkyl and fatty acyl lipophilic side chains of the new
glycopeptides cause effective membrane anchoring, increased dimerization (co-operative
effects) and prolonged half-life 31–33. Telavancin, another semisynthetic glycopeptide has an
additional mode of action : depolarization and permeabilization of the bacterial membrane
causing rapid bactericidal activity 34. The mechanism by which this occurs is through
interactions with lipid II 35.

Spectrum of Activity/Improved Analogs—These newer glycopeptides offer significant
advantages over vancomycin: in addition to improved in vitro potency (Table 3), their
pharmacokinetics allow less frequent dosing and possibly improved distribution. Oritavancin,
a semisynthetic glycopeptide and dalbavancin, a second-generation lipoglycopeptide are two
new glycopeptides in clinical development. The new glycopeptides show good potency
towards S. pneumoniae, and also staphylococci, though dalbavancin is highly potent against
S. aureus (MIC50 0.03–0.12 µg/ml) and coagulase-negative staphylococci (MIC50 0.03 µg/ml)
36, 37. Dalbavancin is not potent against vanA vancomycin resistant enterococci, but highly
potent (MIC50 of 0.06 µg/ml compared to MIC50 of 1 µg/ml for vancomycin) towards
vancomycin susceptible enterococci 38. Telavancin is very potent against MRSA, streptococci
and also VRE due to its optimized lipophilic tail 39, 40. Oritavancin is also potent against MRSA
but not as potent against vancomycin intermediate S. aureus (VISA) 41. Oritavancin, however,
exerts concentration-dependent cell killing activity against vancomycin-intermediate isolates
of S. aureus (VISA) including heterogeneous VISA (hVISA) 42, 43 and against vancomycin
resistant staphylococci and Enterococcus faecium (VRE) which correlates to disruption of
membrane integrity 44.

Dalbavancin is being developed for treatment of skin and soft tissue infections and catheter
related bloodstream infections. In a phase II clinical trial for catheter-related bloodstream
infection caused by staphylococci, 87% success rate in 75 adult patients was observed with
dalbavancin compared to 50% with vancomycin 45. In a phase III randomized, double blind,
non-inferiority study dalbavancin was non-inferior to linezolid in a total of 854 patients with
complicated SSTIs 46. However worldwide marketing application for dalbavancin has been
withdrawn as of September 2008 pending a global multicenter study for cSSTI, including those
caused by MRSA 47.

Two Phase III clinical trials were conducted with telavancin in patients with focus on MRSA
cSSTIs and were non-inferior compared to vancomycin 48. Two ATTAIN (Assessment of
Telavancin for Treatment of MRSA Pneumonia) Phase III studies have been conducted for
telavancin in nosocomial pneumonia caused by Gram positive bacteria compared to
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vancomycin. An overall clinical cure rate of 85% was observed for the telavancin group versus
76% for vancomycin group 49. Telavancin clinical cure rate was statistically significantly
higher for patients infected with S. aureus with a vancomycin MIC ≥1 µg/mL 50. Two
randomized, double-blind, multicenter, phase III trials have been completed for oritavancin in
cSSTIs and a total of 1763 patients received study medication (either oritavancin (3–7 days)
or vancomycin/cephalexin (10–12 days)). The clinical cure rate in the clinically evaluable
patients was 77.7% for the oritavancin group and 75.8% for the vancomycin group 51. However
the FDA Anti-infective drug advisory committee (AIDAC) decided that the data did not
demonstrate efficacy or safety of oritavancin 52 and requested another phase III trial for cSSTI
enrolling more patients with MRSA. Telavancin, on the other hand, received a favorable
recommendation from AIDAC for cSSTI, requiring no additional trials but requiring a risk
management strategy 53.

Mechanisms of Resistance—Bacteria that have a VanA or VanB resistant phenotype
synthesize an altered PG precursor with reduced vancomycin binding affinity 54, 55.
Vancomycin is unable to bind to D-Ala-D-Lac precursor substrate compared to D-Ala-D-Ala.
Oritavancin, however, due to its hydrophobic side chain, co-operativity due to dimerization
and binding to lipid II on the membrane, binds equally well to both substrates and therefore is
useful against vancomycin resistant bacteria. Oritavancin resistant clinical isolates have not
been reported. Telavancin is useful against vancomycin intermediate S. aureus (VISA),
heterogenous VISA and also vancomycin resistant enterococci VRE expressing vanB 40, 56.
Dalbavancin is potent against strains of VRE expressing vanB and vanC gene products but
inactive against VRE expressing vanA 38. Dalbavancin resistance did not develop in
staphylococci by direct selection and serial passage at subtherapeutic concentrations 57.

1.3 Ketolides
Mechanism of Action—Drug resistance in community acquired respiratory tract infections
(CA-RTIs) has driven the discovery and development of ketolides. Ketolides are derived from
14 membered ring macrolides and have a carbonyl group at the C3 position, which is crucial
in conferring sensitivity to macrolide resistant strains 58. Telithromycin was approved by the
FDA in 2004 for community acquired pneumonia, chronic bronchitis and acute sinusitis 5.
Crystal structure of macrolide bound to 50S ribosomal subunit revealed that this antibacterial
drug occupies and blocks the peptide exit tunnel without affecting the peptidyl transferase
activity 59. The macrolides form hydrogen bonds with the 23S rRNA at domains II and V and
thus inhibit bacterial protein synthesis. Ketolides are known to bypass macrolide resistant
mechanisms by improving ribosome binding affinity, especially binding to domain II and
evading macrolide efflux mechanisms 60, 61. The structure-activity relationship is paramount
in ketolide mechanism of action. For example, the aryl group enhances activity against
macrolide resistance caused by ribosome methylation erm phenotype 60, 62. The ketolides also
have longer post-antibacterial effects (PAEs), compared to erythromycin 63.

Spectrum of Activity/Improved Analogs—Telithromycin and cethromycin are two
ketolides derived from erythromycin. Cethromycin inhibits protein synthesis up to 50% at 2.5
ng/ml, in S. pneumoniae 61. It has a 67-fold higher binding affinity to 50S ribosomes from S.
pneumoniae than erythromycin and also accumulates at a higher rate within both susceptible
and cells resistant due to efflux mechanisms 60. Cethromycin has an MIC50 of 0.008 to 0.016
µg/ml for different isolates of S. pneumoniae and was also more potent than telithromycin
against macrolide-susceptible strains of S. pneumoniae, Streptococcus pyogenes, S. aureus,
Staphylococcus epidermidis, enterococci, Helicobacter pylori, and Mycobacterium avium
complex, and also against Corynebacterium spp., M. pneumoniae, Chlamydia trachomatis,
Borrelia burgdorferi, H. influenzae, M. catarrhalis, C. pneumoniae and Toxoplasma gondii
63, 64. Cethromycin was very potent against macrolide-resistant streptococci and enterococci
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irrespective of their macrolide resistance mechanism but had little detectable activity against
constitutively macrolide-resistant S. aureus 64. Upon erm induction of ribosome methylation,
cethromycin (at 100 µM) inhibited translation up to 75% compared to 25% by erthyromycin,
in an in vitro transcription-translation assay, suggesting that at higher drug concentrations
cethromycin has an affinity for methylated ribosomes, though 100 fold lower than for
unmethylated ribosomes 60.

The FDA withdrew its approval of telithromycin in December 2006 for acute exacerbation of
chronic bronchitis (AECB) and acute sinusitis because they determined that the balance of
benefits and risks no longer support approval of the drug for those indications and also cited
cases of safety risks (hepatotoxicity, visual disturbances and loss of consciousness), raising
concerns over the future of this antimicrobial drug class 65. In a phase III double blind,
randomized, multi-center clinical trial of cethromycin compared to clarithromycin, for mild to
moderate community acquired pneumonia, in 584 patients, non-inferior clinical cure rate was
observed with no safety concerns 66.

Mechanisms of Resistance—Ketolides do not induce MLSB (Macrolide Lincosamide
Streptogramin B) resistance phenotype which is attributed to the cladinose moiety in the C3
position of macrolides. MLSB resistance can arise by constitutive or inducible expression of
methyl transferases that methylate the 23S rRNA 67.

The first ketolide resistant mutation was identified by in vitro selection of mutated rRNA
operon and the U2609C mutation found in 23S rRNA was resistant to cethromycin 62.
Dimethylation of 23S rRNA at postion A2058 confers ketolide resistance in S. pyogenes which
express ermB 68. Ketolide susceptible strains of S. pyogenes that are macrolide resistant due
to erm induction have monomethylated rRNA, implicating dimethylation as a ketolide
resistance mechanism 68. In a macrolide resistance surveillance study in Europe, 13% of
erythromycin resistant S. pneumoniae isolates were telithromycin resistant by agar diffusion
method 69, but this incidence of telithromycin resistance has not been found in other studies.
A S. pneumoniae clinical isolate was found to be telithromycin resistant (MIC 8 µg/ml) due to
a deletion in the leader sequence for ermB, causing a constitutive phenotype, leading to rRNA
dimethylation 70. Laboratory generated mutants of S. aureus that are telithromycin resistant
were found to have mutations in rplV which led to amino acid duplications in L22 ribosomal
protein and also a few gene conversion events between rplV and rplB (encoding ribosomal
protein L2) 71.

1.4 Glycylcyclines
Mechanism of Action—Glycylcyclines are the newest member in the tetracycline class of
antibacterial drugs and one member (tigecycline) was approved by the FDA (June 2005) 5 for
complicated skin and skin structure infections and also for intra-abdominal infection. The
novelty about glycylcyclines is their ability to subvert the common tetracycline resistance
mechanisms acquired by genetically mobile element encoding the tet genes. The two major
resistance mechanisms are tetracycline efflux pumps or ribosomal protection 72. The
compound with t-butylglycylamido moiety at position 9 of minocycline (tigecycline) exhibits
potent antibacterial activity and also potency against tetracycline resistant bacteria 73, 74. The
glycylcyclines bind with a 5-fold to 100-fold higher affinity to 30S and and 70S ribosomes,
respectively, than tetracyclines 75 and also inhibit protein synthesis of Tet(M) and Tet(O)
tetracycline resistant bacteria 76, 77. Protein synthesis inhibition by tigecycline is 20-fold more
efficient than tetracycline 75.

Spectrum of Activity/ Improved analogs—Glycylcyclines have a broad spectrum of
antimicrobial activity ranging from aerobic to anerobic bacteria, gram positive and gram
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negative. Tigecycline is active against methicillin-resistant S. aureus (MRSA), vancomycin
resistant enterococci (VRE), drug resistant S. pneumoniae, respiratory gram-negative
pathogens such as H. influenzae, M. pneumoniae, M. catarrhalis and Enterobacteriaceae 73,
78. Tigecycline is also active against other aerobes like Neisseria gonorrhoeae, mycobacteria,
and anaerobes such as Clostridium spp.and Bacteriodes spp. 73, 79. Pseudomonas
aeruginosa is however resistant to tigecycline (MIC> 4 µg/ml) 80. Tigecycline is equally potent
against both tetracycline susceptible and resistant clinical isolates 81. Tigecycline was more
potent towards enterococci and streptococci (MICs<0.2 µg/ml) compared to staphylococci
81. Tigecycline was also effective against some carbapenamase producing Acinetobacter
baumannii and Enterobacteriaceae 82. Tigecycline is bacteriostatic in the rat and rabbit
endocarditis models of Enterococcus faecalis infection, including vancomycin resistant strains
83. Monotherapy with tigecycline (phase III, randomized, double blind clinical trials) have
exhibited non-inferiority to standard therapy for complicated skin/ skin structure (comparator:
vancomycin-aztreonam) and intra-abdominal infections (comparator: imipenem-cilastatin)
84, 85. Significant incidence of nausea and vomiting has been noted in patients in 2 days of
therapy and was a major reason for discontinuing treatment 84, 85. Tigecycline was found to
be safe, effective and non-inferior in a double blind, randomized phase III trial conducted for
community acquired pneumonia in 418 hospitalized patients given either intravenous
tigecycline or comparator levofloxacin 86. Two randomized phase III multi-center double-
blind clinical trials have been conducted to test i) the safety and efficacy of tigecycline
compared to vancomycin or linezolid in hospitalized patients with MRSA or VRE 87 and ii)
the safety and efficacy of tigecycline in hospitalized patients with serious infections caused by
resistant gram negative pathogens such as A. baumannii, K. pneumoniae and E. coli who were
unresponsive to previous antimicrobial therapy 88. In both the trials, tigecycline was found to
be effective in hospitalized patients with serious infections 87, 88. However side effects such
as nausea/vomiting were common in tigecycline treated patients (41% compared to 18% with
vancomycin) 87. PTK0796 is a new aminomethylcycline in development and has oral activity.
In a phase II trial (randomized, double blinded, multicenter), for complicated skin and skin
structure infection (cSSSI), PTK0796 had a clinical success rate of 98% compared to 93.2%
for linezolid in the clinically evaluable population 89.

Mechanisms of Resistance—Tigecycline resistance has been reported in Proteus and
Providencia species and in many strains of Morganella morganii due to the presence of
constitutively overexpressed multidrug efflux pump systems (eg. AcrAB) which can transport
tigecycline 90, 91. AcrAB belongs to the RND (resistance nodulation division) family of efflux
pumps found in Gram negative bacteria e.g. E. coli and K. pneumoniae 92. Tigecycline is also
substrate of MATE (multidrug and toxic compound extrusion) family MepA pump from S.
aureus 92 leading to reduced susceptibility.

1.5 Carbapenems
Mechanism of Action—Carbapenems are β-lactam antibacterial drugs related to penicillin
(penam) and cephalosporine (cephem). They differ from the penams by the presence of a carbon
at position 1 instead of a sulphur, and unsaturation in the 5-membered ring. Doripenem is the
newest member of the carbapenems and received FDA approval in October 2007 for
complicated urinary tract infections and intra-abdominal infections 93. Carbapenems bind to
penicillin binding proteins (PBPs) that are required for elongation and crosslinking the
peptidoglycan of the cell wall, in both Gram positive and Gram negative bacteria. Carbapenems
are capable of passing through porins in outer wall of Gram negative bacteria, have a high
affinity to PBPs and are stable against most Ambler class A, C and D β-lactamases 94, 95,
explaining their potency. Doripenem preferentially binds to PBP2 of E. coli and PBP2 and 3
of Pseudomonas aeruginosa, similar to meropenem 96.
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Improved Analogs/ Spectrum of Activity—Doripenem is unique in that it has a spectrum
against Gram-positive cocci similar to that of imipenem and activity against Gram-negative
bacilli, similar to meropenem 97. The presence of a side chain at position 2 leads to greater
activity against non-fermentative Gram-negative multi drug resistant bacilli such as P.
aeruginosa, Acinetobacter spp. and Burkholderia cepacia, unlike other antibacterial drugs 94,
97. Doripenem is active against staphylococci, enterococci and streptococci 97, 98. Doripenem
is also active against the Enterobacteriaceae such as E. coli spp. (non-producers and producers
of ESBLs), Klebsiella spp. (non-producers and producers of ESBLs), Enterobacter spp.,
Proteus mirabilis, Salmonella spp. and Shigella spp. 97, 98. Meropenem is a potent carbapenem
as well and sometimes is more potent than doripenem especially in respiratory tract pathogens
97. In addition to clinical trials conducted for diseases for which doripenem is FDA approved,
trials have been conducted for ventilator-associated pneumonia (VAP) and hospital-acquired
pneumonia (HAP). Multicenter, randomized, open-label Phase III trials for ventilator-
associated pneumonia and hospital-acquired pneumonia involving 1000 patients show that
intravenous doripenem was at least as effective as standard comparator agents such as
imipenem (68% vs 64% clinical cure rate in clinically evaluable patients) and piperacillin/
tazobactam (81% vs 80% clinical cure rate in clinically evaluable patients), respectively 99,
100. However, the FDA’s anti-infective drug advisory committee disagreed with the selection
of the noninferiority margins, not the margin that was met in the trial 101. The actual NI margin
that was achieved was more favorable than the margin for which the study was designed.
Razupenem (PZ-601) is a novel carbapenem with activity against multi drug-resistant Gram-
positive and Gram-negative (ESBL producers) bacteria 102 and is currently in Phase II clinical
trial for complicated skin and skin structure infections (cSSSI) 103.

Mechanism of Resistance—Carbapenems are susceptible to hydrolysis by serine
carbapenemases and metallo-β-lactamases (MBLs). KPC carbapenemases (Class A) are most
prevalent and are plasmid-borne in K. pneumoniae and in Serratia marcescens, Enterobacter
cloaecae and other Enterobacteriaceae 104. Class B carbapenemases are the metallo-β-
lactamases and are found increasingly in Enterobacteriaceae 105. Carbapenemase
dissemination has changed pattern from chromosomally encoded to plasmid-borne eg. IMP-1
a metallo-β-lactamase in P. aeruginosa (over 20 IMP variants of metallo-β-lactamases) 105.
Efflux pumps and porin mutations are also responsible for carbapenem resistance 106.

2. Additional Promising Antibacterial drugs in the pipeline
Natural products produced by certain micro-organisms to survive in their natural environment
(secondary metabolites) have been the stronghold of antibacterial drug discovery. Due to
rampant drug resistance that has developed for virtually all antimicrobial drugs, despite
antimicrobial conservation efforts, development of new drugs with novel mechanisms and
increased potency towards resistant microbes is desirable (Table 2). Some of these new
compounds have potent gram negative activity. Ceftobiprole and Ceftaroline are newer
cephalosporins and are discussed here because of improved mechanism of action than older
cephalosporins. Iclaprim, with improved mechanism of action compared to trimethoprim, is
also discussed here.

Ceftobiprole is a novel engineered cephalosporin with activity against MRSA and penicillin-
resistant streptococci. It was engineered to bind strongly to PBP2a (or PBP2’) of methicillin-
resistant Staphylococci 107. Ceftobiprole due to its strong binding to S. pneumoniae PBP2x
107 has an MIC of 0.5µg/ml against penicillin-resistant S. pneumoniae 108. Ceftobiprole is
stable against some enzymes (non-ESBL Class A) due to its C7 side chains, but is hydrolyzed
by ESBLs and carbapenamases 109. In two Phase III clinical trials for complicated skin and
skin structure infections (cSSSI), ceftobiprole had 82% activity (<=4µg/ml) against all baseline
pathogens, demonstrating its broad spectrum 110 and was as effective as comparator
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vancomycin-ceftadizime or vancomycin alone 111, 112. Ceftaroline is a novel cephalosporin
in Phase III development with broad spectrum activity against MRSA and multi-drug resistant
S. pneumoniae 113. Ceftaroline inhibits PBP-2a, explaining its potency against MRSA 114. A
double blind, randomized, phase III clinical trial has been conducted in 700 patients with cSSTI
for the safety and efficacy of intravenous ceftaroline against vancomycin and aztreonam.
Clinical cure rates were similar for both groups and ceftaroline was non-inferior to
vancomycin-aztreonam combination 115. Ceftaroline is synergistic with β-lactamase inhibitor
tazobactam (upto 500 fold) against multi-drug resistant gram negative pathogens such as ESBL
producing E. coli and K. pneumoniae 116.

Novel DHFR (Dihydrofolate reductase) inhibitors (e.g. iclaprim, a diaminopyrimidine) that
inhibit DNA/RNA synthesis are antibacterial agents designed with the knowledge of
trimethoprim resistance (transposon inserted DHFR isoforms) and have improved affinity to
S. aureus DHFR 117. Iclaprim has a broad spectrum of activity including trimethoprim and
methicillin resistant as well as vancomycin intermediate S. aureus (MIC90 is 0.5µg/ml) 118,
penicillin resistant S. pneumoniae and Gram-negative bacteria such as Enterobacter,
Salmonella, L. pneumophila, H. influenzae, C. pneumoniae etc. 118, 119. In a large surveillance
study including about 4500 S. aureus isolates (MSSA and MRSA), iclaprim was 16-fold more
potent than trimethoprim and had activity similar to TMP/SMZ (trimethoprim/
sulfamethoxazole) combination 120. Two Phase III trials for cSSSI with iclaprim and
comparator linezolid have concluded in 2700 patients and demonstrate that iclaprim has high
efficacy comparable to linezolid 121. However as of January 2009, the FDA requires additional
clinical data to demonstrate efficacy to gain approval 122.

NXL103 (XRP2868) is a mixture of modified forms of quinupristin/dalfopristin
streptogramins making it more water-soluble and permitting oral administration. NXL103 is
also more inhibitory than nine other antibacterial drugs tested against Gram-positive clinical
isolates including vancomycin, daptomycin, linezolid, clarithromycin, telithromycin,
clindamycin, ampicillin, quinupristin/ dalfopristin and pristinamycin 123. It is more effective
(2–5 fold lower MIC50 values) in inhibiting erythromycin resistant S. pneumoniae, methicillin-
resistant S. aureus (MRSA) and β-lactamase-positive H. influenzae, compared to quinupristin/
dalfopristin 124. NXL103 also inhibits vancomycin resistant enterococci (VRE) and cocci
harboring resistance to streptogramins by different mechanisms 125. E. faecalis is intrinsically
resistant to streptogramin A but NXL103 displays MICs less than 1µg/ml 125. Mutations in
ribosomal proteins L4 and L22 in S. aureus and streptococci are sufficient to reduce potency
of NXL103 and suppress in part the synergy between SA and SB 125.

Nitazoxanide, a nitro-thiazolide, exhibits broad spectrum activity against anaerobic bacteria
and against anaerobic intestinal parasites. Nitazoxanide (brand name Alinia, Romark
Laboratories Ltd, Tampa Florida) is FDA approved for the treatment of intestinal infections
caused by Giardia intestinalis and Cryptosporidium parvum in adults and children 126. This
drug is increasingly being used (off-label) to treat infections caused by Clostridium difficile
based on demonstration of clinical efficacy 127. In these studies, nitazoxanide was shown to
be equivalent to comparator drugs metronidazole and vancomycin. The drug also exhibits some
antiviral activity against rotavirus and hepatitis C 128, 129. The wide spectrum has raised
concerns of safety, but the drug is of low toxicity to humans, with few side effects, probably
due to its high affinity for serum proteins. The concerns of safety arise because at different
doses used to treat diseases caused by a variety of organisms, the drug will also inhibit other
organisms (eg. disruption of flora) with unknown consequences, unless highly specific analogs
are designed. Therefore, studying nitazoxanide’s mechanism of action against different
organisms is paramount.
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Several investigations have identified the pyruvate:ferredoxin oxidoreductase (PFOR) as the
major target for nitazoxanide and this enzyme is both common and essential to all of the
intestinal parasites and anaerobic bacteria, including C. difficile 130, 131. Other targets for this
drug include nitroreductases in Giardia sp. and protein disulfide isomerases in parasites 132,
133. Most microorganisms, systemic parasites and humans oxidize pyruvate via pyruvate
dehydrogenase, which is not a target for the drug. Recent studies on mechanism have provided
evidence to suggest that nitazoxanide inhibits an early step in the PFOR reaction by a non-
competitive inhibition of the interaction of pyruvate with the thiamine pyrophosphate (TPP)
cofactor 130. In this study it was determined that nitazoxanide is biologically active as an anion
which becomes protonated by abstraction of a proton from the TPP-pyruvate intermediate
resulting in no substrate catabolism and inactivation of the drug via protonation. Inhibition of
PFOR by nitazoxanide stops the conversion of pyruvate to acetate, a key component of fatty
acid biosynthesis, amino acid biosynthesis and energy production. This novel mode of action
by nitazoxanide illustrates several fundamental points that might be of value in the design of
future therapeutics. First, nitazoxanide interacts with the TPP vitamin cofactor and not with
the PFOR enzyme, thus diminishing mutation based drug resistance mechanisms and second,
PFOR is unique in mechanism to the target group of pathogens and not present in humans. In
over 10 years of clinical use there has been no reported drug resistance and attempts to produce
drug resistance under laboratory conditions have generally not met with much success.
Nitazoxanide may be the first antimicrobial drug for which the mechanism of action against a
small vitamin cofactor precludes development of drug resistance, a model that might hold
promise with enzyme targets containing other classes of vitamin cofactors. Fidaxomicin
(OPT-80) is a novel macrocycle which is non-absorbed systemically and has potency against
anaerobes such as C. difficile (MICs ranging between 0.016–0.25 µg/ml) 134. It demonstrated
a clinical cure rate of 91% in a Phase II clinical trial of patients with C. difficile infection 135.

Sulopenem is an orally active penem in current clinical development and is potent against
multi-drug resistant pathogens including penicillin-resistant S. pneumoniae and ESBL-
producing Enterobactericeae (MIC50 0.015–0.125 µg/ml) 136. Novel prodrugs of sulopenem
exhibit in vivo efficacy when administered orally in three different animal infection models of
organisms including ESBL+ K. pneumoniae, E. coli and H. influenzae 137.

New β-lactamase inhibitors such as imidazole-substituted 6-methylidene-penem molecules
have high in vitro activity against Class A and C β-lactamases and can be used with β-lactams
as combination therapy 104. BAL30376 is an antimicrobial combination of monobactam
BAL19764, Class C β-lactamase inhibitor BAL29880 and clavulanic acid (an oxapenem, a
class A β-lactamase inhibitor). It has in vitro activity against carbapenem-resistant strains of
P. aeruginosa, among other multi-drug resistant gram-negative bacteria and in in vivo murine
lethal peritonitis and sepsis models 138. BAL30072 is a new siderophore monobactam that
bypasses porin mutations and inhibits PBPs and has broad spectrum Gram-negative activity
including multidrug resistant Acinetobacter, Burkholderia, Pseudomonas and
Stenotrophomonas spp. 139, 140. NXL104 is a small molecule that inhibits serine β-lactamases
and is potent in combination with extended-spectrum cephalosporins and aztreonam against
Gram negative infections (including Klebsiella) 141. It is in clinical trials in combination with
ceftazidime in patients with complicated urinary tract infections 142. NXL104 is the first β-
lactamase inhibitor to be studied in clinical trials since tazobactam in the 1980s. The novel
bicyclic penem inhibitor, BLI-489 has demonstrated activity as an inhibitor against Class A
(including ESBLs), and Class D as well as Class C β-lactamase enzymes and in vitro potency
of BLI-489:Piperacillin combination against several bacteria, including ESBL and AmpC
producing strains, makes BLI-489 a strong candidate for further development 143.

JNJ-Q2 is the newest member of the fluoroquinolone family of type II topoisomerase
inhibitors. It is 8-fold more potent than moxifloxacin against Gram-positive pathogens,
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including MRSA and levofloxacin-resistant S. pneumoniae. It also has Gram-negative activity
against H. influenzae, E. cloacae and K. pneumoniae 144. Finafloxacin is a novel 8-cyano
fluoroquinolone exhibiting optimal activity at acidic pH and is potent against urinary tract
pathogens and can be used for H. pylori eradication 145.

Bacterial cell division inhibition is an unexploited antibacterial target. PC190723, identified
by structure based molecular docking, binds to FtsZ (analogous to anti-cancer drug Taxol
binding to tubulin), inhibiting septum production during cell division and has activity against
S. aureus in mice 146, 147. Structure based design has also led to the discovery of novel
pyrimidine-based compounds (Rx100472) with Gram positive antibacterial activity that target
methionyl-tRNA synthetase (MetRS) 148. Components of membrane biogenesis in bacteria
such as FabI involved in fatty acid biosynthesis have several identified inhibitors 149. Novel
aryloxy-phenol Fab I inhibitors derivatized from triclosan (eg. MUT7307) have potent Gram-
positive (MIC 0.06µg/ml against MRSA) and Gram-negative activities (MIC 0.003–0.5 µg/
ml) 150. Pyrrolamides are novel DNA gyrase inhibitors discovered by structure guided design
and are bactericidal againt MRSA, S. pneumoniae and respiratory tract pathogens, making
pyrrolamides a potential drug for the treatment of nosocomial pneumonia 151. Antimicrobial
peptides (eg. Omiganan) with direct killing action or a host modulatory effect during innate
immunity hold promise as an entirely new class of antibacterial drugs which would mitigate
the growing problem of drug resistance. Several peptides and peptidomimetics are in
commercial development and resolving their issues of poor pharmacokinetics and toxicity
could be in sight 152. Some other attractive antibacterial compounds include quorum-sensing
blockers (such as LED209, read below), lipid II binding compounds, bacterial efflux pump
inhibitors and bacterial 2- component signal transduction inhibitors 153.

3. New Targets for the Next Generation of Antimicrobial drugs
While most antimicrobial drugs in current clinical use inhibit essential processes such as protein
or cell wall biosynthesis, many of these drugs are also bacteriostatic, which may contribute to
development of resistance. One way of developing novel antibacterial drugs with minimal
potential for resistance development could be to target bactericidal functions of bacterial
proteins (eg. essential enoyl-ACP reductase FabI required for fatty acid biosynthesis) 149.
Targeting of essential proteins must take into consideration the structural constraints within
substrate binding and catalytic domains and the mitigating effects of mutations on enzyme
function. Alternatively, targeting virulence factors 154 or host-microbial response pathways
might lead to rapid clearance of infecting organisms. An example of virulence factor based
therapy arises by the recent discovery of a cholesterol reducing agent (BPH-652, a
phosphonosulphonate) which is an inhibitor of MRSA 155. CrtM from S. aureus is an enzyme
required for biosynthesis of staphyloxanthin, a virulence factor which acts as an antioxidant to
evade host reactive oxygen species response. Interestingly BPH-652 inhibits CrtM which is
structurally related to SQS (squalene synthase), being targeted by cholesterol lowering drugs
155. Fungi possess a nuclear receptor-like pathway that activates multi-drug resistant efflux
pumps and could be a new therapeutic target against multidrug resistant pathogenic fungi
156. These examples illustrate the analogies of mammalian pathways to microbial pathways
which can be targeted for therapeutic purposes. However, the drugs must be stringently
designed to specifically inhibit only the bacterial target to prevent toxicity eg. novel linkers or
scaffolds in bacterial proteins. Precedent exists in the design of antibacterial drugs against
targets also found in humans, eg. iclaprim selectively inhibits bacterial DHFR at
submicromolar concentrations with no inhibition of the human enzyme at over 5-fold higher
concentrations 157.

Type III secretion system (T3SS) of Gram negative pathogens such as Chlamydia, Escherichia
coli, Pseudomonas, Salmonella, Shigella, and Yersinia play an essential role in virulence by
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evading the host innate immune response. Salicylidene acylhydrazines are small molecule
inhibitors of T3SS that affect invasion-associated SPI1 effector proteins in Salmonella and the
related enterobacterial flagellar motility system 158. These small molecules were originally
identified in a bacterial reporter assay as inhibitors of expression of Yop effector proteins in
Yersinia 159. Another interesting example of antivirulence targeting is to target bacterial
defences that render it vulnerable to the host innate immune response 160. In Gram-negative
organisms, the outer bacterial membrane composed of LPS is required for resistance to
complement and cationic peptides. RfaE is a core LPS biosynthesis enzyme and pathogenic
E. coli rfaE mutants are sensitive to complement killing, but fully colonize mouse intestine.
Inhibitors of RfaE have been identified that inhibit synthesis of LPS but do not affect bacterial
growth. Antivirulence drugs can have an in vivo antibacterial effect as demonstrated by
inhibitors of DltA, an enzyme which causes D-alanylation of lipotechoic acid in Gram-positive
pathogens. This D-alanylation is correlated to survival of bacteria against cationic peptides,
cell killing and cell invasion. Inhibitors of Streptococcus agalactiae and S. pyogenes DltA are
ineffective in vitro unless a cationic peptide is present. In an experimental model of systemic
infection of mice by S. agalactiae, the DltA inhibitors were able to affect the bacterial
multiplication in the host, as shown by a dose dependent decrease of bacteremia. The in vivo
antibacterial effects of the compounds were at doses that are comparable to the effective doses
of classic antibacterial drugs 160. Inhibition of signaling is another proposed strategy; a bacterial
adrenergic receptor QseC histidine kinase is a target for antibacterial compound LED209
which blocks QseC-dependent virulence gene activation in S. typhimurium and Francisella
tularensis 161.

Bacterial infections such as tuberculosis are difficult to treat due to dormant bacteria that are
50-fold resistant to antibacterial drugs that target growth and division. Mycobacterium
tuberculosis is 8-fold more sensitive to ATP synthesis inhibitors than standard anti-TB drugs,
since they reduce ATP synthesis while adjusting to the hypoxic conditions while establishing
an infection. Disruption of the PMF (proton motive force), by specific inhibitors, which is
necessary for ATP generation, is also bactericidal 162. TMC207 is a novel anti-mycobacterial
drug belonging to the diarylquinoline class of compounds and is an ATP synthase inhibitor
163. In a phase II randomized clinical trial with 47 patients with newly diagnosed multi-drug
resistant pulmonary tuberculosis, addition of TMC207 to the standard second-line 5 drug anti-
TB regimen reduced the time of conversion to negative sputum and increased number of
patients with sputum conversion (48% vs 9%) 164.

A growing trend in antimicrobial drug targets has been the host response pathways; modulating
them could reduce the persistence and severity of infectious disease. The TLR (Toll-like
receptor) family of proteins is activated during innate immune response and leads to production
of antimicrobial peptides and activates the adaptive immune response to combat infection
165. TLR activators and modulators could potentially have an antimicrobial role. Along the
same line, macrolides such as clarithromycin have immunomodulatory properties in sepsis in
experimental models and clinical trials. In a rabbit model of sepsis and acute pyelonephritis
caused by multi-drug resistant P. aeruginosa, increased animal survival was seen upon
treatment with clarithromycin which was attributed to its anti-TNFα and antioxidant properties
166. In a clinical trial conducted in patients with sepsis due to Ventilator-associated pneumonia
(VAP), intravenous clarithromycin was beneficial as it hastened resolution of VAP and
prolonged life 167.

Intracellular pathogens such as S. typhimurium and M. tuberculosis are capable of activating
a host kinase network around Akt/PKB by virulence factors eg. SopB 168. Some Akt kinase
inhibitors have antibacterial properties, while other inhibitors are currently in clinical trials as
anticancer drugs. Kinase inhibitors are being developed as anticancer drugs because of aberrant
kinase signaling in cancerous cells, however due to the importance of certain host kinases in
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intracellular infection, host kinase inhibitors that specifically inhibit intracellular bacterial
growth but not host cell proliferation during anticancer drug discovery will also be found. Thus,
it is expected that the development of anticancer drugs against these host pathways controlled
by Akt may lead to future discovery of antibacterial drugs 168. Moreover, chronic infections
sometimes lead to development of cancers eg. Salmonella typhi infections cause gallbladder
cancer 169, H. pylori infections cause gastric cancer 170, and therefore development of
anticancer drugs against these cancers would also lead to discovery of antibacterial inhibitors.

4. New Strategies for Antibacterial Drug Discovery
Most of the current antibacterial drugs were discovered between 1940 and 1980 by traditional
approaches which are now saturated, and the emergence of drug resistance as well as the
emergence of new pathogens calls for new strategies in antibacterial drug discovery due to the
inadequacies of screening libraries for novel antibacterial compounds as described in this
section 171. Antibacterial drugs have unique physicochemical properties which are dependent
on their spectrum of activity 172. Natural products are proposed to be an optimal antibacterial
drug screening library as they have optimal cellular penetration and privileged structures to
interact with finite structural spaces in protein folds 173. Identifying feasible drug targets given
the vast microbial genomics information by comparing different pathogen genomes and
narrowing the targets based on essentiality, novelty of target or mechanism, absence of human
homolog and low likelihood of resistance development is a failed strategy, and requires a
chemically diverse compound collection 171. Improving the quality of synthetic libraries by
using core scaffolds to introduce natural product like characteristics could be a way to generate
a chemically diverse compound collection. Comparative bacterial genomics has yielded
knowledge of previously unknown biosynthetic pathways absent in humans which can be
specifically targeted to discover antibacterial drugs for a specific microbe 174. New microbial
species from marine sediments or associated with plants are an untapped source of novel
antibacterial drugs 175. Harnessing “unculturable” micro-organisms in the laboratory has
yielded novel quinone and glycosylated macrolactam antibacterial drugs 176. A new trend in
antibacterial drug discovery is the resurrection of undeveloped antibacterial drugs and
overcoming their previously attributed physicochemical/pharmacokinetic deficiencies 175.
One such example is the increasing use of colistin, a polymyxin antibiotic, as a last-line
therapeutic option in critically ill patients despite nephrotoxicity, because of its efficacy against
multi-drug resistant P. aeruginosa and A. baumanii infections 177–179. However, modern
clinical trials would provide insight into the dosing regimen and the extent of adverse effects.

Discovery of lytic phages specific to pathogenic bacteria especially MRSA has potential as
natural and ecological treatment against pathogens 180. Systemic administration of
bacteriophage therapy is efficacious in a mouse Burkholderia cepacia lung infection model
181. Inactivation of antibacterial drugs by enzymatic hydrolysis or formation of inactive
derivatives causes widespread drug resistance 182. This natural phenomenon has been taken
advantage of in the following strategy and follows the principle of antibacterial drug
conservation: A combination of β-lactamase enzyme and a β-lactam antibacterial drug can
significantly reduce emergence of resistant microbes 183. In a Phase II study of 112 patients
treated for serious respiratory infections, 54 patients treated with P1A (β-lactamase product)
and ampicillin had a 20% change in gut microflora compared to 50% in patients treated with
ampicillin alone 180. The β-lactamase would inactivate any unused β-lactam antibacterial drug
in the GI tract, thus maintaining the gut microflora. Emergence of ampicillin resistance was
also 7-fold lower in patients treated with the enzyme/lactam combination compared to
antibacterial drug alone 180. Another strategy would be if antibacterial drugs were engineered
(prodrug or anti-antibacterial drug) such that a highly potent drug would result upon enzymatic
action within a microbe, then common resistance mechanisms could be bypassed.
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Antibacterial drugs could also be engineered to introduce two pharmacophores for high potency
against two targets. Examples of such hybrid antibacterial drugs include the mutilin-quinolone
hybrid AM-3005 which is a Type II topoisomerase inhibitor and also a protein synthesis
inhibitor 184. CBR-2092 is a rifamycin-quinolone hybrid which is a RNA polymerase inhibitor
and also a DNA gyrase and topoisomerase IV inhibitor and demonstrates potency against gram
positive cocci 185, 186. Improved formulations of alternative drug delivery methods such as
inhaled anti-infectives (Amikacin nanoscale liposome formulation) show potential for
treatment of chronic P. aeruginosa lung infections in cystic fibrosis patients by offering
advantages such as biofilm penetration and sustained release from liposomes 187. MP-376 is
a new formulation of levofloxacin for inhalation and is effective in mouse models of acute and
chronic lung infections caused by P. aeruginosa. The high concentrations of drug delivered to
the lung tissue causes increased bacterial clearance than inhaled tobramycin or aztreonam
leading to increased mice survival 188. Inhaled ciprofloxacin/levofloxacin is in phase II clinical
trials for chronic lung infections in cystic fibrosis patients 189, 190.

Passive immunization is a strategy which activates the host immune response leading to
pathogen clearance by attacking the organism directly, enhancing phagocytosis or altering the
immune system, but this strategy is yet to encounter success in clinical trials 191. Finally, host
factors/ enzymes that play an important role in host innate immunity could be engineered for
stability and used for antimicrobial therapy.

5. Conclusion
The number of new antibacterial medicines entering the clinic has been declining for years,
while the emergence of drug resistance and especially multi-drug resistance continues to rise
at an alarming rate 1. The more traditional approaches of generating new derivatives of old
drugs or finding new ecosystems to mine for natural products are giving way to more innovative
non-traditional strategies to develop next generation drugs 154, 175, 176. The future does not
seem bleak as several promising antibacterial drugs with novel mechanisms of action are in
development and new types of targets (Type III secretion systems) have emerged 158. The
scourge of drug resistance in microbes will have to be fully understood and the choice of “good
targets”, both new and old will be vital to the discovery of new antibacterial drugs as we
progress forward into the 21st century.

6. Expert Opinion
Finally, since anti-infective research over the past 15 years has underperformed other
therapeutic areas, there is little incentive to throw good money after bad. Since the new biology
“genomics” has failed, augmented by development of resistance to antibacterial drugs in a short
time period compared to decades of drug development and short courses of infectious disease
treatment, there is considerable reluctance by the industry to initiate new strategies 192. In the
absence of the pharmaceutical industry, it is now left to government sponsored research in
universities and small biotech companies to produce next generation therapeutics. However,
the pace of discovery in these venues will be slow when compared with the resource rich
pharmaceutical industry. If society regards new life saving medicines as beneficial, then should
society contribute to such discovery efforts? In an attempt to bridge this issue, as an incentive,
the U.S. Congress proposed a 2-year wild card patent extension on existing blockbuster drugs
to increase protected sales; and, under the US Bioshield II legislation, a drug company would
qualify for a wildcard patent if the antimicrobial is licensed for military or antiterrorism use
5. The revenue from such sales would support an antimicrobial development program. The
STAAR (Strategies to Address Antimicrobial Resistance) Act, a recent public health bill was
introduced in November 2007 in the U.S. Senate and addresses management and monitoring
of antimicrobial resistance, prevention and control and increasing federal funding for research
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and development of new antibacterial drugs 193. The Infectious Diseases Society of America’s
Antimicrobial Availability Taskforce (AATF) has reported a lack of antimicrobials for
emerging pathogens as well as those displaying multi-drug resistance 3. While the antibacterial
drug market is expected to grow to over US$ 45.0 billion by 2012, worldwide, 2 advances in
other areas of medicine will contribute to an ever increasing population of individuals
susceptible to infectious disease that will drive up demand, and the need for newer and better
antibacterial drugs will continue to rise.

In view of the fact that new compounds for multi-drug resistant Gram-negative bacilli
(MDRGNB) will unlikely be available for more than 10 years, infection control measures to
limit spread of these organisms within institutions, and potentially into the community, are
paramount. In addition, antimicrobial stewardship programs should be put in place to preserve
the few remaining compounds with some activity against MDRGNB, e.g. colistin or tigecycline
etc, through surveillance, monitoring, and restriction policies at all inpatient facilities.
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Table 2

Overview of new antibacterial drugs in development with novel mechanism of action

DRUG NAME TARGET/
MECHANISM OF
ACTION

SPECTRUM OF
ACTIVITY

PHASE OF
DEVELOPMENT

DRUG
COMPANY OR
INNOVATOR

Ceftobiprole Tight binding to
PBP2a

Gram-positive,
Gram-negative

Phase III Johnson & Johnson

Ceftaroline Tight binding to
PBP2a

Gram-positive,
Gram-negative

Phase III Forrest Laboratories

Iclaprim Increased affinity to
bacterial DHFR

Gram-positive,
Gram-negative

Phase III Arpida

Sulopenem Binding to PBPs Gram-negative preclinical Pfizer

BAL30376 Monobactam/β-
lactamase inhibitor
combination

Multi-drug
resistant
Gram-negative

preclinical Basilea

Rx100472 Methionyl tRNA
synthetase inhibitor

Gram-positive preclinical Trius Therapeutics

PC190723 Cell division protein
FtsZ

S. aureus preclinical Prolysis

MUT7307 Enoyl-ACP FabI
reductase (fatty acid
biosynthesis)

Gram-positive,
Gram-negative

preclinical Mutabilis

Nitazoxanide Inhibits vitamin
cofactor of
pyruvate:ferredoxin
oxidoreductase
(PFOR)

C. difficile Phase II Romark
Laboratories

Fidaxomicin
(OPT-80)

Inhibits RNA
synthesis

C. difficile Phase II Optimer
Pharmaceuticals

LED209 Quorum sensing S. typhimurium
F. tularensis

preclinical University of Texas
South Western
Medical Center,
Dallas

BPH652 Virulence factor
(antioxidant)

MRSA preclinical University of
Illinois, Chicago

Omiganan Antimicrobial
peptide; Depolarizes
cytoplasmic
membrane of
bacteria

Gram-positive,
fungi

Phase III MIGENIX, Cadence
pharmaceuticals

TMC207 ATP synthase
inhibition

M. tuberculosis Phase II Johnson & Johnson,
Tibotec

CBR2092 Dual pharmacophore Gram-positive Phase I Cumbre

Amikacin Novel drug delivery:
inhaled nano-
liposomes

P. aeruginosa
biofilm

Phase II Transave Inc.
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Table 3

Newer Glycopeptides

Dalbavancin Telavancin Oritavancin

Potency against
Vancomycin
resistant microbes

VRE (VanB, VanC) VISA/hVISA, VRE (VanB) VRE (VanA, VanB), VRSA,
VISA, hVISA

MIC range (µg/ml) 0.03–0.25 0.125–1, 0.06–2 0.008–0.5, 0.12–1,
0.5–4, 0.12–2

Reference for MICs 38 40, 56 42, 44

VRE: Vancomycin-resistant enterococci; VISA: Vancomycin-intermediate S. aureus; hVISA: heterogenous Vancomycin-intermediate S. aureus
VRSA: Vancomycin-resistant S. aureus
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