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BIRDS OF A FEATHER, OR FRIEND OF A FRIEND? 
USING EXPONENTIAL RANDOM GRAPH MODELS TO 
INVESTIGATE ADOLESCENT SOCIAL NETWORKS*

STEVEN M. GOODREAU, JAMES A. KITTS, AND MARTINA MORRIS

In this article, we use newly developed statistical methods to examine the generative processes 
that give rise to widespread patterns in friendship networks. The methods incorporate both traditional 
demographic measures on individuals (age, sex, and race) and network measures for structural pro-
cesses operating on individual, dyadic, and triadic levels. We apply the methods to adolescent friend-
ship networks in 59 U.S. schools from the National Longitudinal Survey of Adolescent Health (Add 
Health). We model friendship formation as a selection process constrained by individuals’ sociality 
(propensity to make friends), selective mixing in dyads (friendships within race, grade, or sex catego-
ries are differentially likely relative to cross-category friendships), and closure in triads (a friend’s 
friends are more likely to become friends), given local population composition. Blacks are generally 
the most cohesive racial category, although when whites are in the minority, they display stronger 
selective mixing than do blacks when blacks are in the minority. Hispanics exhibit disassortative 
selective mixing under certain circumstances; in other cases, they exhibit assortative mixing but lack 
the higher-order cohesion common in other groups. Grade levels are always highly cohesive, while 
females form triangles more than males. We conclude with a discussion of how network analysis may 
contribute to our understanding of sociodemographic structure and the processes that create it. 

he structure of social relations in a population emerges from both the distribution of 
personal attributes and the dynamics of interaction. For example, the frequency of inter-
racial marriage refl ects both the proportion of a population within each race and the norms 
infl uencing selection of marriage partners. When individuals can have multiple partners 
(e.g., friendships), the partnerships may be interdependent, generating complex social 
network structures. These population-level structures channel the spread of information, 
norms, disease, support, and other socially exchanged goods. The fl ow of such entities can 
in turn generate behavioral change in individuals and demographic change in populations. 

A long line of research has examined the infl uence of social networks on  individuals’ 
demographic attributes and behaviors: fertility decline and contraception use (Kohler 
1997, 2000; Kohler, Behrman, and Watkins 2001; Valente et al. 1997; Watkins and Danzi 
1995), educational attainment (Mare 1991), migration (Massey 1988; Massey et al. 1987), 
health behavior (Alexander et al. 2001; Valente 2003), and infectious disease transmission 
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(Morris and Dean 1994; Morris and Kretzschmar 1997). This literature provides evidence 
that social networks affect such outcomes and yields novel predictions about the nonlinear 
nature of these effects.

The reverse causal path is also evident: attributes and behavior may in turn affect 
selection of network partners. Thus, another branch of social network analysis examines 
the patterns of relations. Much of this work is descriptive, capturing structural regularities 
through summary parameters for network concepts such as mean partnership counts (May 
and Anderson 1988), core-periphery structure (Borgatti and Everett 1999), or clustering 
(Watts and Strogatz 1998). In other cases, the analysis is explicitly generative, positing a 
micro-level behavioral model that produces population-level network structure. Examples 
include “affect balance” in friendships (Davis 1967; Heider 1958) and “assortative mix-
ing” in friendships (Hallinan and Williams 1989; Kandel 1978), marriage (Mare 1991), and 
sexual partners (Morris 1991) that produce population clustering.

Researchers have typically examined each generative process in isolation; for example, 
to evaluate triad closure (one’s friend’s friend is likely to become one’s friend), researchers 
measure the preponderance of relational triangles (three persons are all friends). While this 
correspondence of process to outcome may seem straightforward, we show in this article 
that the signatures of different generative processes are not independent. A single statistic 
(e.g., the triangle count) may refl ect multiple processes, all of which need to be considered 
jointly for proper inference. 

The main obstacle to joint inference for multiple network processes has been the lack 
of a general, tractable framework for statistical estimation. The potential dependence in tie 
formation leads to endogeneity, which complicates both estimation and intuition. While the 
formal representation of these processes has been well understood for decades (Frank and 
Strauss 1986; Wasserman and Pattison 1996), the estimation diffi culties were only recently 
solved (Handcock 2003a; Snijders et al. 2006). Much network analysis has thus been de-
scriptive in nature, relying on models for specifi c combinations of network processes with 
limited generalizability (Fershtman 1985; Snijders and Stokman 1987; Wasserman 1977) 
or on approximations (Frank and Strauss 1986; Wasserman and Pattison 1996) with poor 
statistical properties (Geyer and Thompson 1992; Handcock 2003a).

We review recent advances in statistical network analysis that surmount these problems 
and apply them to friendship data from the National Longitudinal Study of Adolescent 
Health (Add Health). Our goal is to identify the determinants of friendship formation 
that lead to pervasive regularities in friendship structure among adolescent students. We 
consider persons’ overall propensity to make friends (sociality) as well as their propensity 
to make friends based on their attributes (selective mixing) and based on their friends’ 
choice of friends (triad closure), given the constraints induced by local population com-
position. These mechanisms operate at different levels—individual, dyadic, and triadic, 
respectively—while population composition is a community-level constraint. Together, 
these form a natural set of predictors for the micro-level foundations of population-level 
relational structure. Analyzing dozens of schools allows us to explore how these effects 
operate within different population compositions and whether the friendship processes are 
general or idiosyncratic. Finally, we assess model fi t, using both traditional measures and 
new network-specifi c diagnostics.

BACKGROUND
Population-level structure emerges as a result of interacting micro-level processes. Con-
sider the observation that the number of triangles in friendship networks is typically 
greater than expected if ties were generated randomly. This pattern could be produced 
by a direct propensity for triad closure. However, by concentrating ties within attribute 
categories, assortative mixing can also create more triangles than in a random network. 
Variation in sociality can also produce this pattern, as a network with few active and 
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many less-active persons will have more triangles than one with the same ties distributed 
randomly. A single population-level signature can thus be produced by processes operat-
ing at individual, dyadic, or triadic levels. This illustrates a general challenge for infer-
ring social dynamics from cross-sectional networks; there is rarely a neat correspondence 
of process and pattern, and statistical methods are needed to tease apart the micro-level 
foundations of structure.

Statistical methods for generalized network inference have evolved from simple 
models examining relational reciprocation (mutuality; see Holland and Leinhardt 1981) 
and assortative mixing (Fienberg and Wasserman 1981; Marsden 1981; Morris 1991) to 
a general fl exible framework for estimation and inference in arbitrarily complex models. 
Known as exponential random graph (ERG) or p* modeling, this approach models the 
probability that a relation exists (in logit form) as a linear function of predictors. This 
formulation looks similar to logistic regression, but in fact each tie is on both sides of the 
equation and often in multiple predictors, making tie probabilities recursively dependent. 
This dependence is not a weakness of ERG models but is an inherent feature of relational 
data, and we model it explicitly rather than treating it as a nuisance parameter. Recent 
advances in computationally intensive statistics provide practical methods for solving the 
resulting estimation problems.

What Leads to Sociodemographic Clustering in Networks?
Though there are more than 6 billion people on Earth, we all still live in relatively “small 
worlds.” There is a much better than average chance that our friends know each other, as re-
lations tend to form discernible clusters, linked together by sparse “weak ties” (Granovetter 
1973). This clustering impacts almost every aspect of our lives, from marriage choices and 
job opportunities to disease exposure. Sociologists have long noted that this clustering tends 
to connect sets of actors near one another in a space of sociodemographic attributes such as 
race or education (Blau 1977; McPherson, Smith-Lovin, and Cook 2001), a phenomenon we 
will call “sociodemographic clustering.” A variety of generative mechanisms may underlie 
local clustering in networks and its relationship to sociodemographic attributes. We will 
consider three mechanisms: sociality, selective mixing, and triad closure.

Sociality. There is heterogeneity among individuals in their propensity to establish 
friendship ties. We refer to this propensity as sociality and to individuals as more or less 
social. Sociality is not synonymous with degree, an individual’s number of ties, which is 
the outcome of a stochastic process shaped by both sociality and other factors. When social-
ity correlates with sociodemographic categories, highly social categories are disproportion-
ately represented within partnerships, infl uencing population-level mixing patterns.

Selective mixing. Selective mixing is a dyad-level process by which pairs form (or 
break) relationships based on their combination of individual attributes. A common form is 
the greater propensity to partner with others having attributes similar to one’s own (assorta-
tive mixing). For example, romantic partners are often selected based on religious similar-
ity. The opposite tendency (disassortative mixing) also exists, as in heterosexual mating. 
Other patterns of selective mixing are also found, such as asymmetric age matching among 
heterosexual partners. We distinguish process from outcome by the terms selective mixing 
and mixing pattern, respectively.

Assortative mixing is the most studied form of selective mixing. This process may oc-
cur because individuals are attracted to similar others (Byrne 1971) or because interaction 
with similar others (such as those who share a language) is easier (Carley 1991; Rogers and 
Bhowmik 1970). In the social network literature, the pattern resulting most directly from 
assortative mixing—a predominance of within-category ties—is often called homophily 
(Lazarsfeld and Merton 1954; McPherson et al. 2001). The term homophily is sometimes 
used to describe both process and outcome; here we restrict its use to outcome, since ho-
mophily may be affected by processes other than assortative mixing.
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Triad closure. A triad is any set of three persons. The classic process of triad closure 
(Rapoport 1957) implies that triads containing two ties will tend to form the third, thus 
creating a triangle (a set of three persons who are all tied). This may be due to propinquity 
(two people encounter each other through their shared time with a third) or cognitive pro-
cesses causing two people to value each other because of their agreement on a third (cf. 
structural balance theory; Cartwright and Harary 1966; Heider 1958). Again, we differenti-
ate process and outcome, calling the former triad closure and the latter transitivity.

Assortative mixing can induce transitivity, since increasing the likelihood of within-
category ties enhances the opportunity for completed triangles within categories, espe-
cially when groups are small. Conversely, triad closure may amplify homophily if there 
is already a tendency toward assortative mixing (Feld and Elmore 1982). If two ties A-B 
and B-C are both within an attribute category, the tie created by triad closure (A-C) will 
also be within-category (see Figure 1, panel a). Either assortative mixing or triad closure 
can contribute to this triad being closed (in contrast to the triad in Figure 1, panel b). 
Thus, an accurate estimate of either generative process requires controlling for the other, 
using information about the attribute composition of all relationships and the count of all 
triangles. Methods have been developed for generating null models for transitivity that 
condition specifi cally on individual variation in sociality (Fershtman 1985; Wasserman 
1977) or actor attributes (Snijders and Stokman 1987), but they do not have the generality 
and fl exibility of the ERG framework.

Researchers must also consider population composition when estimating the underly-
ing network processes (Hallinan 1982), as the opportunity for partner selection is con-
strained by the available pool of partners. Among adolescents, for example, friendships 
generally form within schools, which are often relatively homogeneous for attributes like 
socioeconomic status when compared with the overall population. Even if students pick 
friends at random in each school, attribute homophily will result in the population as a 
whole. In our case, the Add Health sample represents U.S. adolescents attending 7th–12th 
grades, but the age, race, and sex composition in each school often differs from the sample 
as a whole. Since our analysis focuses on the network processes within schools, we condi-
tion on their composition.

In summary, we account for patterns in network structure by focusing on the generative 
dynamics of tie formation given the constraints of population composition. We examine 
three generative processes—sociality, selective mixing, and triad closure. The methods we 
use do not assume a simple correspondence between these micro-level processes and the 

Figure 1. Triad Closure and Assortative Mixing
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population outcomes of degree, homophily, and transitivity, respectively (Figure 2). Rather, 
the ERG models allow us to tease these apart. 

DATA
We use the friendship data from the fi rst wave of Add Health, a sample of more than 90,000 
U.S. students in grades 7 through 12, obtained in 1994–1995 through a stratifi ed sample of 
schools. Subsequent waves include data on various outcomes of interest to demographers 
(marital and parental status; geographical, educational, and economic mobility; and health 
outcomes). Add Health offers an unprecedented opportunity to examine how adolescent 
social networks affect lifelong outcomes; understanding basic processes in these networks 
is an important fi rst step. 

The primary sampling units for Add Health were schools containing an 11th grade. 
If necessary, researchers randomly selected one or more feeder schools to obtain a school 
group comprising 7th–12th grades. For simplicity, we use the term school to describe a 
full 7th–12th grade confi guration. All students were asked to complete the “in-school” 
questionnaire, giving an approximate census within school. The questionnaire provided a 
school roster and asked students to identify their fi ve best male and fi ve best female friends, 
in order of closeness. Students were allowed to nominate friends outside school or missing 
from the roster, or to stop before nominating fi ve friends of either sex. Most students listed 
fewer friends than the maximum,1 but for the remainder, there may be some truncation. 
The methodology is detailed in Resnick et al. (1997) and Udry and Bearman (1998) and at 
http://www.cpc.unc.edu/projects/addhealth. Some schools fell far short of the goal of a cen-
sus of students; we focus on the 59 schools that came closest. This subset is (with one ex-
ception) the same as the subset used for the offi cial public-access Add Health network fi les 
(for details, see National Longitudinal Study of Adolescent Health [2001] and our online 
supplement: http://www.statnetproject.org/papers/published/GoodreauKittsMorris2008).

We consider the network of mutual friendships, those dyads in which students nomi-
nate each other. Because they are reciprocated, mutual friendships are cross-validated and 
are likely to be stronger than one-way friendship nominations.2 Focusing on mutual ties 

1. Forty-nine percent nominated fewer than 5 female friends; 49% nominated fewer than 5 male friends; 73% 
nominated fewer than 10 total friends.

2. Other researchers (Adams and Moody 2007; South and Haynie 2004) have considered symmetrized 
or asymmetric relations in Add Health, which are interesting topics in their own right, but which represent 

Figure 2. Process and Outcome in Social Network Models
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may thus reduce the truncation induced by the cap on fi ve nominations of each sex. Given 
that the question asked for friends in order of closeness, any names that might have been 
nominated after the fi rst fi ve would presumably represent the weakest friendships and be 
less likely to represent the mutual friendships that we study here. 

The Add Health survey collected substantial information on students’ socio demographic 
attributes and behaviors. To minimize the potential for endogeneity between attributes and 
friendship formation, we focus on the exogenous attributes of sex, race, and grade level. 
These are widely recognized bases of adolescent friendship clustering, but there is virtually 
no infl uence by friends on these attributes. We defi ne “race” based on two questions about 
race and Hispanic origin: Hispanic (all races), black (non-Hispanic), white (non-Hispanic), 
Asian (non-Hispanic), Native American (non-Hispanic), and other (non-Hispanic). We ab-
breviate these to Hispanic, black, white, Asian, Native American, and other. The survey 
also gathered data on participation in clubs and activities. One might expect additional 
selective mixing on some of these variables, although determining the direction of causality 
is diffi cult. (For an analysis of these data that incorporates other person- and school-level 
variables, see Moody [2001].)

The survey contains multiple forms of missing data, including students who were not 
on the roster, did not fi ll out the survey, or left individual questions blank. We exclude the 
fi rst two categories from our analysis; for the last, we allow an extra “NA” (not applicable) 
category for each attribute. More elaborate methods for handling missing data in networks 
are now in development (see Discussion). These methods leave us with a total of 63,408 
students (71 to 2,209 students per school).

METHODS
ERG models originated in spatial statistics and network analysis (Besag 1974; Frank and 
Strauss 1986; Holland and Leinhardt 1981; Strauss and Ikeda 1990; Wasserman and Pat-
tison 1996). Although the general theory is now established, applications have been limited 
for technical and theoretical reasons. The modeling class is little known in demography, so 
we provide some expositive detail here. We then describe the problem of model degeneracy 
and detail the specifi c models we examine.

The ERG Model Class
Social network data comprise a set of persons, their attributes, and their pairwise relation-
ships (ties). We consider a binary relationship: presence or absence of a mutually nominated 
friendship. We defi ne Yij as the random variable for the tie between persons i and j (Yij = 
1 when i and j share a relationship, and 0 otherwise). These ties can be represented as an 
n × n matrix (n = population size) called Y; diagonal entries Yii are undefi ned. For mutual 
friendship, a tie from i to j implies one from j to i; thus, Y is symmetric.

The ERG modeling class specifi es the probability of a set of ties Y given a set of per-
sons and their attributes:

( (

   
P Y = y n actors( ) =

exp θk zk y( )
k=1

K
∑

c
.  (1)

The zk(y) terms represent model covariates, any set of K network statistics calculated on y 
and hypothesized to affect the probability of this network forming. Examples of possible z 
statistics include the number of ties, the number of ties between sixth graders, or the num-
ber of triangles. The θ coeffi cients determine the impact of these statistics for a specifi c set 

 substantively different phenomena than the mutual friendships we explore. The methods introduced in this article, 
however, can be used to analyze such cases as well.
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of data. These are unknown parameters to be estimated. The denominator c represents the 
quantity from the numerator summed over all possible networks with n persons, constrain-
ing the probabilities to sum to 1.

Eq. (1) can be reexpressed as the conditional log-odds (logit) of individual ties:

  
logit P Yij n actors, Yij

c( )( ) = θkδzk y( )
k=1

K
∑ ,=1  (2)

where Y c
ij denotes all dyads other than Yij, and δzk(y) is the amount by which zk(y) changes 

when Yij is toggled from 0 to 1. The presence of Y c
ij in the conditional refl ects the mutual 

dependence of ties. The logit formulation clarifi es the interpretation of the θ vector: if form-
ing a tie increases zk by 1, then ceteris paribus the log-odds of that tie forming increase by 
θk. Note that a single tie may affect multiple z statistics.

The above formulations assume that both the number of actors and individual actor 
attributes are fi xed. Although these assumptions can be relaxed, they are appropriate for 
these data.

The homogeneity assumption. In its most general form, this model could include 
d – 1 terms, where d is the number of dyads in the network. That would be a saturated 
model with every tie having its own probability. As in any statistical model, the goal is 
to fi nd a parsimonious representation, and proposing homogeneous classes of dyads is 
a common form of parsimony. Any z statistic counting the aggregate number of some 
 confi guration (e.g., triangles) makes an implicit homogeneity assumption, that is, that all 
counted  instances are equiprobable. This is similar to the assumption in linear regression 
that a covariate’s effect is the same for all observations. In a demographically structured 
population, one may expect heterogeneities in social relations among persons to be associ-
ated with actor attributes. In this case, attribute-specifi c confi gurations may be included, 
such as the number of ties made by ninth graders or the number of ties between two ninth 
graders. Although the importance of age or other attributes in tie formation may seem ob-
vious to demographers, the network literature has tended to focus on endogenous network 
effects like triad closure (for exceptions, see Burt 1990; Morris 1991).

Dyadic dependence and independence. When a model includes only terms that repre-
sent the composition of node attributes within ties, it is similar to traditional logistic or log-
linear models for contingency tables (Koehly, Goodreau, and Morris 2004). Such models 
are said to exhibit dyadic independence because the probability of any tie does not depend 
on the value of other ties, only on the attributes of the two actors involved. As a result, Y c

ij 
can be removed from the conditional in Eq. (2), yielding a set of independent observations 
amenable to standard statistical analysis.

A model positing an endogenous process of tie formation, by contrast, involves dyadic 
dependence. Examples include the triad closure models discussed in this article and the 
Markov model of Frank and Strauss (1986), which assumes that ties sharing an actor are 
dependent. These recursive dependencies require the conditional to remain in Eq. (2), ren-
dering standard statistical analysis inappropriate. The full ramifi cations of a specifi c model 
for dependence may not be obvious; they can be derived, however, using methods described 
by Besag (1974), Frank and Strauss (1986), and Snijders et al. (2006). 

Estimation and model degeneracy. Given a proposed model (set of z statistics), one 
would like to identify the θ vector maximizing model likelihood. However, the normalizing 
constant c in Eq. (1) is impossible to calculate for all but the smallest networks, prevent-
ing direct evaluation of the likelihood function. Approximations using logistic regression 
have been used (Besag 1974; Frank and Strauss 1986; Geyer and Thompson 1992; Strauss 
and Ikeda 1990; Wasserman and Pattison 1996), including an analysis of Add Health data 
(Moody 2001). In the special case of dyadic independence models, this approach (called 
maximum pseudolikelihood estimation, MPLE) is equivalent to maximum likelihood esti-
mation (MLE). For dyadic dependence models, however, MPLE tends to perform poorly 
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(Geyer and Thompson 1992), and its theoretical properties are poorly understood (Hand-
cock 2003a). 

The likelihood can be approximated using Markov chain Monte Carlo simulation 
methods (MCMC; Geyer and Thompson 1992; Snijders 2002), which generate a sample 
from the space of possible networks to estimate the θ vector. This approach has additional 
benefi ts: the same algorithm may be used to simulate network realizations for a given θ 
vector with appropriate probability. A sample of such realizations provides a means for ex-
amining model fi t (Hunter, Goodreau, and Handcock 2008). With some modifi cations, the 
algorithm may also be used to simulate a dynamic network, with partnerships forming and 
dissolving over time in ways consistent with the expected values of model statistics. It thus 
may be used to simulate the fl ow of information, disease, or other entities over networks 
described by the model. 

Specifying a sensible model for dyadic dependent processes can be diffi cult; a seem-
ingly reasonable model may in fact have very counterintuitive implications. For example, 
clustering in networks is often represented as a tendency to close triangles; common sum-
mary measures are the number of triangles, or the “clustering coeffi cient”—the number of 
triangles divided by number of triads with two or more ties (e.g., Watts and Strogatz 1998). 
The natural ERG model translation would be a z vector containing terms for the edge count 
(capturing overall sociality) and the triangle count or clustering coeffi cient (capturing the 
additional propensity for or against triad closure). However, the distribution of networks 
produced by this model, obtained through simulation, displays a bizarre pattern. For most 
combinations of θ values, the model produces networks in which either all ties exist or none 
do, and for θ values not producing such extreme networks, the distribution of networks is 
often bimodal; one mode has low density and high triad closure, while the other has high 
density and low triad closure, with the appropriate average density and triad closure. The 
observed network would almost never be produced by the model.

This behavior, termed model degeneracy, was explored in detail by Handcock (2003a, 
2003b). The intuition behind degeneracy is relatively straightforward. If we specify a model 
that is unlikely to produce the observed network, then one of two things can happen when 
it is fi t to data: either the MLEs do not exist and estimation does not converge (as in the 
extremal case above), or the MLEs exist but do not provide a good fi t to the data (as in the 
bimodal case above). Degeneracy is not a shortcoming of the MCMC estimation procedure; 
nor does it necessarily imply that our intuition about the general process (e.g., that triangles 
tend to become closed) is wrong. It just implies that the process is not properly specifi ed 
(e.g., that closure occurs homogeneously across all actor pairs). The solution is to specify a 
better-fi tting model for the data, but this is less straightforward for networks than for other 
statistical contexts. In ERG modeling, a misspecifi ed model can fail to converge, yielding 
no parameter estimates to guide model diagnosis or respecifi cation.

Many of the potential solutions to degeneracy replace strong homogeneity assump-
tions with some form of heterogeneity that defi nes the scope or form of dependence. One 
plausible feature of the triad closure case may be a differential tendency for triad closure by 
attribute combinations—for example, that only triads comprising three actors with shared 
attributes tend to close. Another mechanism entails a decreasing marginal impact in the ef-
fect of triangles on tie formation. To capture this phenomenon, Hunter (2007) and Hunter 
and Handcock (2006) described a statistic called the geometrically weighted edgewise 
shared partner distribution (GWESP), a reparameterization of a statistic of Snijders et al. 
(2006). The shared partner distribution is an alternative approach to counting triangles. 
Two actors “share” a partner if both have a tie to the same partner, and each shared partner 
forms a triangle if the original pair are tied. In contrast to the census of triangles or the 
clustering coeffi cient (which produce a single measure for the whole network), the shared 
partner count is taken on each edge (hence the “edgewise”), producing a distribution of 
counts. The GWESP statistic defi nes a parametric form of this count distribution that gives 
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each additional shared partner a declining positive impact on the probability of two persons 
forming a tie. This approach has a clear interpretation and has been shown to work well in 
practice in overcoming model degeneracy and producing models that fi t a wide range of 
data well, including the data considered here (Goodreau 2007; Hunter et al. 2008). 

We use MPLE estimation for models with only dyadic independent terms and MCMC 
estimation for dyadic dependence models. Both are implemented in the statnet package for 
R (http://www.statnetproject.org), which introduces numerous features that make estima-
tion fast and robust for the relatively large networks analyzed here (Handcock et al. 2008). 
ERG model fi t can be assessed using traditional likelihood-based measures such as AIC, 
which we report here. However, such tests reveal little about the specifi c features of the data 
captured or not by each model. We thus turn to the new goodness-of-fi t assessment methods 
described in Hunter et al. (2008). Consistent with our generative focus, we use the same 
MCMC algorithm and estimated model coeffi cients to simulate new networks. We then 
compare these simulated networks to the observed data on various structural properties to 
reveal which models are suffi cient to produce which network properties.

ERG Model Specifi cation
Our models include terms for sociality, selective mixing, and triad closure. The Add Health 
data provide an unusual opportunity for empirical replication: the models are fi t to each 
school, so we may compare 59 sets of coeffi cients.3

Sociality. We infer sociality based on counts of ties observed: s represents the total 
number of ties, and ki is the total number of ties for all persons with attribute value i. The s 
term acts as an intercept, and the coeffi cient for s represents the conditional log-odds of a 
tie for the reference category (in these models, reference categories are grade 7, white, and 
male). The ki terms assume homogeneity within attribute class, allowing each race, sex, and 
grade to have different mean sociality.

Selective mixing. We consider two selective mixing dynamics. The fi rst is a homo geneous 
propensity for assortative mixing across attribute categories (“uniform  homo phily”). The 
second is a propensity that is specifi c to individual categories (“ differential  homophily”). 
Statistics are as follows: fi rst, h is the total number of ties between persons in the same 
attribute category, regardless of category. This uniform homophily is used for sex since 
there are only three tie types (MM, MF, FF); with main effects included, only one degree 
of freedom remains. Second, hi is the total number of ties between persons both in attribute 
category i. There is one such statistic for each category of the attribute. This differential 
homophily is used for race and grade.4

Triad closure. For the reasons described above, we investigate triad closure using the 
GWESP statistic:

  
w = eτ 1− 1− e−τ( )i{ }i=1

n−2

∑ pi ,

where pi equals the number of actor pairs who are friends and who have exactly i friends 
in common.

This statistic includes a parameter τ, in addition to the coeffi cient in θ associated with 
the statistic in the ERG formula (Eq. (1)). τ controls the geometric rate of decline in the 

3. Note that some statistics do not appear 59 times because some schools do not include students in every 
category. In addition, for cases in which there were fewer than fi ve students of a given category in a school, the 
coeffi cients are also excluded, since parameter estimates would be unstable and in extreme cases undefi ned.

4. Note that a reference category is necessary for sociality effects but not for selective mixing effects. This is 
because the k statistics across all categories for an attribute must sum to s, while there is no comparable constraint 
on the sum of the h statistics. Put another way, the number of ties summed across people of all races must equal 
the number of ties summed across people of all grades; but the total number of race-homophilous ties need not 
equal the total number of grade-homophilous ties.
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effect of triad closure on tie probability for an increasing number of shared partners. The 
corresponding coeffi cient in θ measures the magnitude of triad closure for a given τ value. 
We adopt a value of 0.25 for τ, although results are robust to this choice.5

Because s represents the log-odds of a tie and thus has the number of non-ties in the 
denominator, the magnitude of s is directly affected by network density (the fraction of 
possible relationships that are realized). Friendship density declines as population size in-
creases (more people does not mean proportionately more friends per person), so we expect 
the coeffi cient on s to decline with school size. The coeffi cients on the k and h statistics 
should be invariant to school size because they are defi ned relative to s. For instance, a 
coeffi cient for male-male ties captures the increase in the log-odds that two males become 
friends relative to the log-odds for other dyad types. Such a statistic will thus not vary 
systematically with school size or sex ratio—any signifi cant variation can be interpreted 
as representing a process other than demographic constraint. This invariance does not 
necessarily hold for w, as will be seen in practice later in the article, nor for other dyadic 
dependence statistics generally.

To recapitulate, the s and ki terms measure total edges and overall degree by attribute 
category, h and hi measure uniform and differential homophily, and w measures transitivity. 
The θ coeffi cients associated with these statistics represent sociality, selective mixing, and 
triad closure, respectively.

We consider three models based upon this set of statistics: a demographic attribute 
(DA) model that considers only attribute-based, dyadic-independent processes (s, ki, hi); 
a triad closure (TC) model that considers only a homogeneous, dyadic-dependent process 
(s, w); and a full model combining the two (s, ki, hi, w). Our hypothesis is that selective 
mixing and triad closure terms (hi, w) will be positive in all models. Because some ties are 
consistent with either process, the partial models (DA or TC) will overestimate the effect 
of the terms, while the full model will estimate the unique effects of each; thus, we predict 
that estimates will be higher in the partial models than in the full model. We also expect 
that both selective mixing and triad closure are important to friendship formation, so we 
expect the full model to fi t better than either partial model. We do not expect any consistent 
differences in sociality terms between the DA and full model.

RESULTS
We begin by considering which of our models provides the best fi t to our data by using 
the likelihood-based measures of AIC and likelihood-ratio tests. For all 59 schools, these 
 measures indicate that the full model fi ts best by a large margin. The increase in log-
 likelihood between the partial and the full models ranges from 19.5 to 2,663.3, with one 
new term in the full model relative to the DA model, and up to 29 terms relative to the TC 
model.6 Because the full model fi ts best for all individual schools, we consider its coef-
fi cients to be our best estimates for the true magnitude of sociality, selective mixing, and 
triad closure. Figure 3 charts the sociality and selective mixing coeffi cients, using boxplots 
to show their range across the 59 schools. Sociality increases by grade until grade 12, 
though the apparent decline for 12th graders is due in part to nominations of more out-of-
school friends. Grade-based selective mixing is consistently assortative (i.e., the selective 
mixing coeffi cient is positive), but is strongest among 7th graders and declines with senior-

5. This process of adopting a value for τ entailed randomly selecting a set of schools covering the range of 
school sizes and testing the model fi t for τ values beginning at 0 and increasing by 0.05 until model fi t no longer 
increased for the majority of schools. We began at 0 and moved upward because lower τ values are less likely 
to produce degenerate models (Goodreau 2007). In the range explored (τ = 0 to 0.5), the specifi c value of τ had 
relatively little effect on coeffi cient estimates or on model fi t.

6. Comparing the DA and TC models by AIC reveals that 22 schools are better fi t by the former and 37 are 
better fi t by the latter, with no clear relationship to school size or diversity.
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ity. Again, the trend reverses with 12th graders. Both grades 7 and 12 are more likely to be 
infl uenced by boundary effects.7

Sociality differences by race are much less pronounced. Blacks average lower sociality 
than other categories, but racial categories do not otherwise differ systematically. Selective 
mixing by race is, in general, weaker than selective mixing by grade and differs across 
categories. The strongest assortative mixing is found among blacks, followed by Asians, 
“others,” and whites. All four categories exhibit assortative mixing in more than 90% of 
schools. In contrast, Native Americans exhibit assortative mixing in only 72% of schools 
where they are present, usually to a relatively small degree, while Hispanics exhibit assor-
tative mixing in only 63% of schools (see Table 1). “Other” race exhibits assortative mix-
ing comparable to whites and Asians, even though one might have expected lower levels, 
given the category’s potentially high heterogeneity. This may indicate that within any given 

7. One might chose to explore this by including another set of sociality terms that count in-school ties for all 
actors with a given number of nominations to friends outside of school. If these effects were increasingly negative 
for increasing numbers of out-of-school nominations, this would demonstrate the existence of the boundary effect 
and provide adjusted estimates for the sociality of each grade net of these effects. One would need to be careful in 
interpreting the coeffi cients in this case, given that we have no way of knowing if out-of-school names mentioned 
on surveys are in fact mutual close friendships, comparable to the relations that we study within the school.

Figure 3. Coeffi  cients From the Full Model, Plotted Across All 59 Schools

Notes: Boxplots follow the Tukey method. Boxes represent quartiles; whiskers extend to the most extreme data point within 
1.5 times the interquartile range from the edge of the box; and points represent outliers.
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school, the “other” category is relatively homogeneous, although in the absence of further 
information about these students’ identities, this conjecture is impossible to test.

Differences in sociality by sex are small, with females usually exhibiting slightly 
higher sociality than males. These values can be diffi cult to interpret since they are partly 
confounded by stratifi cation in the survey question, which asked respondents to nominate 
up to fi ve female friends and up to fi ve male friends. The resulting effects are moderate 
relative to race and grade assortative mixing, but they are signifi cant in every school.

The triad closure (GWESP) coeffi cients for the full model are plotted against school 
size in Figure 4. This term is consistently positive and tends to increase with school size, at 
least until a threshold of approximately 750 students. Interpreting this value requires some 
care. Consider a GWESP coeffi cient of 1.8, the approximate value at which it asymptotes 
in larger schools. If a tie will close one triangle, and all actor pairs in that triangle currently 
have no shared partners, the log-odds of the tie are increased by 5.4 relative to an otherwise 
similar tie that would not close a triangle. If it would close two triangles, the log-odds are 
increased an additional 4.0 relative to closing one. These diminishing returns continue for 
each additional triangle.8

The relationship between network size and the GWESP coeffi cient results from 
the nonlinear nature of triadic effects. Friends in smaller schools actually average more 
friends in common than those in larger schools (1.1 among the 10 smallest vs. 0.6 among 
the 10 largest), but this is more likely to happen by chance in smaller schools: the prob-
ability of closing triangles by chance declines with the square of network size. We intui-

8. To get a sense of the interpretation of the τ parameter, consider the following: for the same coeffi cient 1.8 
but for τ = 0.0, the two changes in log-odds would be 5.4 and 3.6 (instead of 5.4 and 4.0 for τ = 0.25). For τ = 1.0, 
they would be 5.4 and 4.7. That is, the closer τ is to 0, the more quickly the infl uence of triangles on tie probability 
tapers off for triangles beyond the fi rst one that a node is in. In the other direction, as τ approaches infi nity, the 
values do not taper off at all, but remain at 5.4 for each additional triangle. 

Table 1. Selective Mixing Coeffi  cients: Full Model
  Number of
 Number of Schools With % of Median
 Schools With Coeffi  cient > 0 Coeffi  cients Coeffi  cient Interquartile
Variable Coeffi  cient (assortative mixing)  > 0 Value Range

Grade 7 57 57 100 4.820 4.404–5.530
Grade 8 58 58 100 4.032 3.414–5.366
Grade 9 59 59 100 2.856 2.300–3.516
Grade 10 59 59 100 1.860 1.503–2.323
Grade 11 59 58 98 1.552 1.258–1.934
Grade 12 58 58 100 2.249 2.033–2.593

White 58 53 91 0.777 0.357–1.288
Black 37 35 95 2.486 1.866–3.098
Hispanic 40 25 63 0.492 –0.245–0.966
Asian 23 22 96 1.722 1.055–2.212
Native American 36 26 72 0.403 –0.017–0.864
Other 16 15 94 1.478 0.462–2.106

Sex 59 59 100 0.720 0.669–0.811
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tively understand this “small town” phenomenon, where everyone knows everyone else. 
The relationship between magnitude of effect and school size is not an artifact; it refl ects 
the fact that higher-order relational processes operate differently in differently sized com-
munities. If persons generally prefer some level of social closure, they must exert more 
effort in larger populations to create it.

Comparing coeffi cients across models. We can compare these estimates to those ob-
tained from the partial models to see whether simultaneous estimation attenuates the coef-
fi cients, as hypothesized. Table 2 presents an analysis of a single school, detailing changes 
in all coeffi cients over nested models. Figure 5 then shows coeffi cients for three statistics 
over all schools. Tables for the remaining schools and comparable plots for the remaining 
coeffi cients appear in the online supplement.

Analysis of nested models on all 59 schools shows that the selective mixing coeffi -
cients from the full model are less than the corresponding coeffi cients in the DA model for 
grade and sex in all schools (e.g., see Grade 7 in Figure 5, plot a), and for white, black, and 
Asian races in most schools. The apparent decline in selective mixing averages between 
5% and 15% for all grades, sex, and the above three race categories, suggesting that the 
homophily we observe is partly a function of triad closure. 

For the Hispanic, Native American, and other race categories, our hypothesis of attenu-
ated effects is not supported; selective mixing increases on average when a triad closure 
term is included in the model (e.g., see Hispanics in Figure 5, plot b). Interpretation of 
this pattern is somewhat nuanced, but one of its features is that homophilous ties in this 
category are less likely than others to be found in triangles. Thus, once the triad closure 
term for all students is included, the magnitude of selective mixing necessary to explain 
observed homophily becomes greater. As an example, consider the probabilities implied 
by our model coeffi cients that two seventh-grade Hispanic boys in School 11 will form a 
relationship. In the DA model, this value is 1.4%. In the full model, it is 1.1% if the tie will 
not close a triangle, and 47.4% if it will. Clearly, closing a triangle dramatically increases 
its probability, as it does for all racial categories. But the DA value (1.4%) lies closer to 
the nontriangle value (1.1%) and further from the triangle value (47.4%) than is true for 
other categories. The DA value provides a weighted average of the other two, capturing 

Figure 4. Triad Closure (GWESP) Coeffi  cient: Full Model
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Table 2. Model Coeffi  cients: “School 18”
    % Change, Partial
 DA Model TC Model Full Model to Full Model

Sociality
Intercept –11.720 –6.997 –11.188
Grade 8 0.334 –– 0.325 –3
Grade 9 1.227 –– 1.042 –15
Grade 10 1.882 –– 1.636 –13
Grade 11 1.699 –– 1.456 –14
Grade 12 1.306 –– 1.149 –12

Black –0.345 –– –0.233 –33
Hispanic 0.836 –– 0.743 –11
Asian –0.097 –– –0.050 –49
Native American 0.752 –– 0.602 –20
Other 0.573 –– 0.448 –22

Female 0.346 –– 0.168 –51

Selective Mixing
Grade 7 4.825 –– 4.142 –14
Grade 8 4.367 –– 3.648 –16
Grade 9 2.577 –– 2.165 –16
Grade 10 1.466 –– 1.094 –25
Grade 11 1.831 –– 1.552 –15
Grade 12 3.046 –– 2.226 –27

White 1.041 –– 0.865 –17
Black 3.874 –– 3.166 –18
Hispanic –0.470 –– –0.642 37
Asian 2.320 –– 2.423 4
Native American 0.721 –– 0.831 15
Other NA –– NA

Sex 0.785 –– 0.677 –14

Triad Closure
GWESP –– 2.142 1.726 –19

Likelihood –6,073.584 –5,725.892 –5,043.718 –5,043.718
AIC 12,201.170 11,455.780 10,143.440 10,143.440

Note: Coeffi  cients for “NA” category are not shown.

the proportion of homophilous ties that are in triangles. Since it tends to fall closer to the 
nontriangle value for Hispanic-Hispanic ties than for other races, such ties are less likely 
to appear in triangles.

Figure 5, plot c shows the apparent change in the GWESP coeffi cient between the TC 
and full models. The average attenuation here is larger than for any of the attribute terms 
(25.9%), suggesting that selective mixing has a stronger impact on triangle counts than 
triad closure has on homophily.
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Figure 6. Selective Mixing (SM) Coeffi  cients, by Proportion of School in Category: Full Model

Note: Lines represent lowess curves.
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There is one striking change that we did not anticipate. From the DA to the full model, 
the intercept s increases moderately, while the sociality term for females decreases by at 
least 23% in all schools. The interpretation of this is straightforward: the more females in 
the friendship dyad (MM vs. MF vs. FF), the more likely that dyad is to be in a triangle. 
Once triad closure is included, female sociality declines, since more of their ties are gener-
ated by triad closure than are male ties; the intercept (which partly models male ties, as 
male is the reference category for sex) declines. These effects are consistent with previous 
work identifying differences in friendship nomination patterns by sex (Dunphy 1963) and 
are especially interesting in the light of work demonstrating the Durkheimian implications 
of social cohesion on suicidality in these data (Bearman and Moody 2004).

Racial selective mixing and the prevalence of sociodemographic categories. Al-
though assortative mixing among blacks appears the highest in simple boxplots (Figure 3), 
this compounds two effects: minority status and the impact of minority status on assortative 
friendship selection. The variation in racial composition across the 59 schools gives us some 
leverage to tease these two effects apart. Figure 6 examines the racial selective mixing coef-
fi cients from the full model against the fraction of student body in the given racial category, 
allowing us to compare how different categories cluster when in the minority or majority. 
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Although blacks have higher average selective mixing coeffi cients than whites across all 
schools, here we see that the effect depends on the relative prevalence of the racial category. 
When either whites or blacks compose more than about 50% of the student body, they exhibit 
roughly equal levels of assortativity. In the 10%–50% range, blacks appear more assortative 
than whites. However, when each category represents a small minority in their school, the 
pattern switches dramatically; black assortativity stays roughly the same or declines slightly, 
while at small numbers, whites become extremely assortative—far more than blacks at 
the same concentration. By far the highest racial selective mixing coeffi cients in all of our 
models are among whites in the two schools where whites are a small minority.

For Hispanics, negative selective mixing is concentrated in those schools where 
Hispanics represent a small minority. However, it is not always the case that a small 
minority of Hispanics have disassortative mixing. A plausible fulcrum for this inconsis-
tency may be whether the Hispanic population is itself homogeneous (dominated by a 
single origin: e.g., Mexican) or heterogeneous. Since the Add Health questionnaire asked 
Hispanic students to select their origin from a list of six options, we test this conjecture 
by constructing a homogeneity index representing the probability that any two randomly 
selected Hispanic students share their origin. Examining the relationships between this 
measure and Hispanic homophily, either across all schools or limited to those less than 
10% Hispanic (where the inconsistency seems to occur) fails to show a signifi cant rela-
tionship (results not shown). An alternative hypothesis is that Hispanics might be assor-
tative when the remainder of the population is homogeneous—that is, Hispanic identity 
is most salient when Hispanics are the only minority subpopulation in the school. The 
reverse is that when multiple racial minorities are prominent, individual Hispanic students 
might identify and socialize with students of some other racial minority, creating Hispanic 
disassortative mixing. Figure 7 plots the magnitude of the Hispanic selective mixing coef-
fi cient against the percentage of non-Hispanic white students for all schools that are less 
than 10% Hispanic.9 Although the plot is only suggestive, for a small subpopulation of 

9. A plot replacing “white” with “largest non-Hispanic racial category” (not shown) demonstrates a similar 
but less clear pattern.

Figure 7. Hispanic Selective Mixing, by Proportion White: Full Model

Note: Th e line represents a lowess curve.
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Figure 8. Goodness-of-Fit Plots: “School 18”

Notes: Th e fi rst row depicts the demographic attribute (DA) model. Th e second row represents the triad closure (TC) model. 
Th e third row represents the full model.
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Hispanic students to be assortative, it appears necessary but not suffi cient that the student 
body is otherwise largely non-Hispanic white.

Goodness of fi t. We present an example of goodness-of-fi t plots for one school in Figure 
8. Each plot compares the observed data to 100 simulated networks (generated from a given 
ERG model and its estimated coeffi cients) for a given network statistic. The three rows 
represent the DA, TC, and full models, respectively; the three columns represent the three 
statistics that we compare. In each case, the dark solid line represents a given statistic from 
School 18, while the boxplots represent the same statistic for the 100 simulated networks. 

The fi rst plot in each row shows the degree distribution, tabulated across all actors in 
the network. By including sociality terms in two of our models, we were in effect modeling 
mean sociality by category; but we did not explicitly consider the full degree distribution, 
one of the most heavily studied features of network data. The second plot in each row rep-
resents the distribution of shared partners (number of friends in common) tabulated across 
all friendship pairs; this provides a sense of the level and scale of clustering. Our GWESP 
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term is a parametric version of this distribution, guaranteed to capture its mean; like degree, 
however, there is no guarantee that our models will fi t the full distribution. The third plot 
considers a higher-order network statistic that is not directly related to any of the model 
terms: the distribution of geodesic distances. Geodesic distances are the pairwise path 
distances between students (friends are distance 1, friends of friends who are not friends 
directly are distance 2, and so on). This distribution can vary substantially across networks 
and is often used to gauge the diffusion potential of a network. 

The school illustrated in Figure 8 typifi es the qualitative trends seen in these plots across 
the schools for our three models. For all schools, the DA model sharply underestimates the 
observed numbers of shared partners; selective mixing is never suffi cient to capture friend-
ship clustering. On the other hand, the TC model rarely captures geodesic distances well, 
generally overestimating the number of people reachable by short (length 2–5) paths and 
underestimating those unreachable or reachable only by long paths. The full model comes 
close to matching all higher-order statistics in some smaller schools. In the larger schools, 
it does not perfectly match the data, but it comes closer to the full set of goodness-of-fi t 
metrics than any partial models. We return to model fi t in the Discussion section.

DISCUSSION
Our analysis of adolescent friendship networks reveals evidence that both selective mixing 
and triad closure operate across a wide range of sociodemographic settings to structure the 
process of mutual friendship formation. These processes interact, generating a complex set 
of effects. The attributes of grade and sex always generate both strong assortative mixing 
and within-category triad closure. The effects of race vary: white, black, and Asian stu-
dents typically exhibit assortative mixing and within-category triad closure, representing 
structural cohesion within their subpopulations, but other categories are more complicated. 
Hispanic students (by far the most numerous of remaining categories) can display random 
(i.e., unbiased) or even disassortative mixing. Even when Hispanics exhibit assortative 
mixing, it is often coupled with a relative lack of within-category triad closure, reducing 
their higher-order cohesion. 

We also fi nd that the higher-order processes governing friendship formation can de-
pend on the school’s overall demographic profi le. For example, the extent of Hispanic 
cohesion appears to be partly shaped by the homogeneity of the school’s non-Hispanic 
population: the more homogeneous the non-Hispanic population, the more cohesive the 
Hispanic friendships. Similarly, the strength of assortative mixing for whites is inversely 
related to their relative share of the student body: the more they are in the minority, the 
more segregated their friendships become. This relation does not hold for blacks: assorta-
tive mixing is strongest for blacks when they compose an intermediate proportion of the 
population. Perhaps blacks are less assortative than whites when they are a small minority 
because this status is familiar to them. 

Although the models we examined reproduce structural features in the observed 
 networks relatively well, the lack of fi t for some features suggests directions for future 
investigation. Chief among these directions is consideration of attribute-specifi c triad clo-
sure. Our method of comparing coeffi cients from two models provided indirect evidence 
that triad closure differs by category, but this could be examined directly with a model 
that includes attribute-specifi c GWESP statistics. Another direction is modeling the prev-
alence of students having no reciprocated friendships. Our models reproduce the observed 
distribution of mutual friendship counts per person surprisingly well, given that they in-
clude only terms for category-specifi c mean sociality. But they consistently underestimate 
the proportion of actors with no reciprocated friendships. One could capture this tendency 
for social isolation with a single term for number of actors of degree 0. This would iden-
tify the cross-school variation in the preponderance of loners beyond that expected and 
may improve other aspects of model fi t, but it would provide little insight into the factors 
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that produce social isolation. Additional models and data could help clarify these factors, 
as well as determine whether some of this reported social isolation actually stems from 
item nonresponse.

The full model also does not capture the social distance structure of the friendship net-
works for larger schools. These networks are more “stretched out” than the models predicted, 
with more actors reachable only by very long paths (as seen in the last panel of Figure 8). 
This may be because we modeled cross-grade ties homogeneously, while the data suggest 
that the greater the difference in grade, the less likely students are to become friends. An 
additional term capturing absolute difference in grade would capture this effect and likely 
improve the fi t to the social distance distribution. Including an effect for mixing by school 
(i.e., across- vs. within-school) for the multischool school groups would also likely help. 

Another area for future work is to also consider unreciprocated friendship nominations. 
It is hard to predict how the structure of such relations would differ from those we observe 
here, but comparing the two in transitivity, for instance, would give us a richer overall pic-
ture of friendship formation. It would also allow for investigation of mutuality and hierar-
chy in networks simultaneously with the processes we have considered here. Moody (2001) 
considered some of these effects for the Add Health data, albeit in the pseudolikelihood 
framework; reexamining those processes using the likelihood methods now available for 
ERG models, while also taking account of missing data, would be an important next step.

One further avenue is to formalize the analysis of the effects of macro-level variables, 
such as network size or composition on ERG model coeffi cients across schools. To do so, 
one could in theory employ hierarchical linear modeling techniques; developing formal 
methods for applying this framework to ERG coeffi cients is an area for future research.

Our modeling goal here was to move beyond network description to uncover the 
generative processes that underlie network formation. We believe that the ERG model-
ing framework offers a general set of tools to aid in this goal, and the Add Health survey 
(with 59 replicate schools) has a unique structure for exploiting these new capabilities. By 
focusing on relatively exogenous personal attributes (race, sex, and grade), we were able 
to identify some of the demographic correlates of friendship formation and to rule out the 
kind of endogenous feedback processes between friendship choices and personal attributes 
found in other contexts. By estimating all models within the relatively small units of 
schools, we were able to get closer to ensuring that all pairs of students are equally able to 
form friendships, so their choices are less confounded by gross heterogeneities in opportu-
nity. By simultaneously estimating effects at the individual, dyadic, and triadic levels, we 
were able to disentangle the effects of each process from the others. This analysis moves 
us closer to quantitatively comparing the strength of effects within and across the levels on 
which student friendship preferences operate. 

What this particular analysis cannot do is provide estimates of actual friendship pref-
erences among students. Part of this is due to the simplicity of the models we examine, 
but the real limitation is data. For example, the strong grade homophily we observe prob-
ably refl ects the opportunity structure of grade-segregated classrooms as much as, if not 
more than, student preferences for friends in the same grade. The patterns of mixing by 
race also refl ect a combination of opportunity and preference, since schools rarely offer 
a full range of potential friends of every race. In general, it is very diffi cult to distinguish 
preference from opportunity in a cross-sectional observational network study (Feld 1981, 
1982; McPherson and Smith-Lovin 1987), though it is worth noting that this limitation is 
not unique to network data. Experimental data are required to observe the preferences that 
guide friendship choice; there, preferences may be revealed by design. The ERG modeling 
tools can be used for analyzing such experimental data, and the coeffi cients would then 
have a simpler preference interpretation.

The ERG modeling framework places the statistical analysis of networks on a solid and 
accessible footing, giving researchers a powerful new tool for understanding the  micro-level 
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processes governing the relational structure of populations. The models can incorporate de-
mographic determinants of social relations, along with a wide range of endogenous network 
processes. The issue of model degeneracy has been identifi ed and analyzed, removing the 
obstacle to full likelihood estimation that hobbled these models for over a decade. And the 
computationally intensive algorithm used for parameter estimation has the benefi t of also 
providing a method for generating simulated networks, both cross-sectional and dynamic. 
Additional issues remain to be solved, such as the handling of missing and sampled net-
work data, but progress is being made on this and other methodological fronts (see Gile and 
Handcock 2006). The result is that population scientists now have a set of general tools for 
inferring from the relational structure of a population the social and demographic processes 
that generated it.
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