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ABSTRACT

The heterotrimeric CCAAT-binding complex is
evolutionary conserved in eukaryotic organisms.
The corresponding Aspergillus nidulans CCAAT-
binding factor (AnCF) consists of the subunits
HapB, HapC and HapE. All of the three subunits
are necessary for DNA binding. Here, we demon-
strate that AnCF senses the redox status of the
cell via oxidative modification of thiol groups
within the histone fold motif of HapC. Mutational
and in vitro interaction analyses revealed that two
of these cysteine residues are indispensable for
stable HapC/HapE subcomplex formation and
high-affinity DNA binding of AnCF. Oxidized HapC
is unable to participate in AnCF assembly and
localizes in the cytoplasm, but can be recycled
by the thioredoxin system in vitro and in vivo.
Furthermore, deletion of the hapC gene led to an
impaired oxidative stress response. Therefore, the
central transcription factor AnCF is regulated at
the post-transcriptional level by the redox status
of the cell serving for a coordinated activation and
deactivation of antioxidative defense mechanisms
including the specific transcriptional activator
NapA, production of enzymes such as catalase,
thioredoxin or peroxiredoxin, and maintenance of a
distinct glutathione homeostasis. The underlying
fine-tuned mechanism very likely represents a
general feature of the CCAAT-binding complexes
in eukaryotes.

INTRODUCTION

CCAAT sequences are present in the promoter regions
of a large number of eukaryotic genes, in general located
50-200 bp upstream from the transcriptional start point
(1). They are bound by different distinct transcription
factors in order to modulate the transcription rate (2-8).
A heterotrimeric complex binding to CCAAT sequences
was first discovered in the yeasts Saccharomyces cerevisiae
and Schizosaccharomyces pombe (6,9—12). Since this dis-
covery, the particular regulatory complex has been found
in all eukaryotes, which have been analyzed so far. It has
been designated Hap complex in S. cerevisiae (6,11),
Kluyveromyces lactis (13), and Arabidopsis thaliana (14),
Php in S. pombe (10), AnCF in Aspergillus species (15),
CBF in Xenopus laevis (16) and NF-Y in mammals
(17,18), respectively. The Hap complex of S. cerevisiae
comprises four subunits, Hap2p, Hap3p, Hap4p and
Hap5p. Hap2/3/5p form the core CCAAT-binding
complex, which is responsible for DNA binding, while
Hap4p is involved in transcriptional activation (11).
Moreover, S. cerevisiae Hap2p, A. nidulans HapB
and human NF-YA are functionally interchangeable,
which was demonstrated by the complementation
of an S. cerevisiae hap2 and an A. nidulans hapB deletion
mutant by a human NF-YA ¢cDNA (19,20). Recombinant
rat CBF-C is able to form a stable protein-DNA complex
together with the yeast Hap2p and Hap3p (21) supporting
that the CCAAT-binding complex is evolutionary con-
served. The respective A. nidulans CCAAT-binding
factor (AnCF), consisting of the Hap2/3/5p orthologs
HapB/C/E, activates the expression of numerous genes
including the anabolic penicillin biosynthesis genes ipnA
and aatA (22,23) and the catabolic acetamidase encoded
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by amdS (24). On the other side, AnCF-mediated
repression of gene expression was also found: the
homoaconitase-encoding /ysF and the hapB gene were
repressed by AnCF (25,26). However, a comprehensive
picture of the CCAAT-binding complex regulon in fungi
is missing so far. For this reason, one of the key questions
related to the CCAAT-binding complex is the regulation
of the activity of the core complex. The stoichiometrical
distribution of the different subunits seems to be essential
for an efficient complex formation, supported by the
AnCF-mediated auto-regulation of the hapB gene (25)
and by the quantity control mechanism of HapE levels
by HapC (27) in A. nidulans. In addition, however,
there is growing evidence that the expression of certain
CCAAT-regulated genes needs the interaction of the
heterotrimeric core complex with additional proteins.
In S. cerevisiae, the Hap2/3/5p complex together
with Hap4p acts as an activator of genes involved
in oxidative phosphorylation in response to growth on
non-fermentable carbon sources (6). In A. nidulans,
AnCF represses the transcription of genes that encode
iron-containing proteins during iron-replete growth and
via physical interaction with the iron-sensing subunit
HapX during iron-depleted conditions (28). HapX
displays no similarity to S. cerevisiae Hap4p apart from
an N-terminal 17 amino acid-motif, which is essential
for interaction with the Hap/AnCF core complex (29).
Nakshatri et al. (30) showed in vitro that formation
of intra- and intermolecular disulfide bridges within
and between NF-YB subunits prevents NF-YB from
associating with NF-YC, the first step of the CCAAT-
binding complex assembly. Consistently, different redox
active proteins such as the human ADF, or Ref-1
increased the DNA-binding activity of recombinant
NF-Y to its CCAAT box. These data suggested that the
activity of CCAAT-binding complexes is regulated by the
cellular redox status, as demonstrated for several other
transcription factors (31).

The CCAAT-binding complex is a global regulator
in all eukaryotes, but the regulation of its activity
is still poorly understood. Here, we demonstrate that
the CCAAT-binding complex AnCF is regulated at the
post-transcriptional level by the redox status of the cell,
thereby serving as a redox sensor coordinating the cellular
oxidative stress response in the genetic model organism
A. nidulans. The strict conservation of the redox status-
sensing cysteine residues within a domain of HapC that
was described as histone fold motif (HFM) for human
NF-YB, and which was shown to be indispensable for
the first step of NF-Y assembly, i.e. interaction with
the second histone-like protein, NF-YC (32,33), suggests
evolutionary conservation of this function.

MATERIALS AND METHODS

Strains, plasmids, oligonucleotides, media, growth
conditions and transformation

Aspergillus nidulans strains used in this study are listed
in Table 1. Plasmids and oligonucleotides used in this
study are listed in Supplementary Tables S1 and S2,
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respectively. A. nidulans strains were grown at 37°C in
Aspergillus minimal medium (AMM), according to
Pontevorvo et al. (34), containing 1% (w/v) glucose as
carbon source, 20mM glutamine as nitrogen source,
30 uM FeSOy as iron source and the appropriate supple-
ments. To overcome the auxotrophy for organic sulfur of
the AtrxA strains, | mM cysteine was added to the AMM.
Oxidative stress conditions were induced with H->O,.
Mycelia were harvested before and after 30 min treatment
with H,O,. Transformation of A. nidulans was performed
by the method of Balance et al. (35).

Purification of recombinant proteins

The three AnCF-forming subunits, i.e. HapB, wild-type
HapC and HapE were overproduced in E. coli Rosetta 2
(DE3) and purified as described elsewhere (28). The
cysteine to serine exchanges in HapC were created by
applying the QuikChange® 1II Site-Directed Mutagenesis
Kit (Stratagene) using the HapC-encoding plasmid
pMalC2TEVHapC for mutagenesis. The Hisg-tagged
proteins TrxA, TrxA(C39S) and TrxR were overproduced
in E. coli BL21 (DE3) and purified as previously described
(36).

Thioredoxin system-dependent reduction of
oxidized HapC

Two milligrams of the lyophilized HapC proteins HapC or
HapC(CCS) were dissolved in 1 ml 0.1 M potassium phos-
phate buffer, pH 7.5 and incubated with either 15mM
diamide or H>O, for 3h. To remove the excess of the
respective oxidizing agent, the reaction mixtures were
then applied to a NAP-10 column (GE Healthcare). The
oxidized proteins were eluted with 0.1% (v/v)
trifluoracetic acid (TFA) in 40% (v/v) acetonitrile and
freeze dried.

For the thioredoxin-dependent reduction assay,
aliquots of the freeze dried oxidized HapC proteins were
dissolved in 0.1 M potassium phosphate buffer, pH 7.5.
The reduction assay was carried out in a final volume
of 1 ml containing 40 pM of oxidized HapC, i.e. HapC
or HapC(CCS), 1uM TrxR and 3uM TrxA [TrxA or
TrxA(C39S)]. After starting the reaction by the addition
of NADPH, the NADPH consumption was followed
by recording the decrease in absorbance at 340nm.
Furthermore, samples of the reduction assay were taken
at different time points, directly transferred into
denaturating SDS sample buffer and finally analyzed by
non-reducing SDS-PAGE. If no change in absorbance
was detectable any longer, 500 pl of the reduction assay
were transferred into 0.1% (v/v) trifluoracetic acid (TFA)
in 40% (v/v) acetonitrile for a further lyophilization.

Native PAGE analysis

Lyophilized fractions of reduced, oxidized and
thioredoxin system-treated HapC were dissolved in
water to give a final concentration of 0.1mM. Two
microliters (0.2 nmol) of these different HapC solutions
were incubated with equimolar amounts of HapE
or HapE and HapB for 5min. After transferring the incu-
bation mixtures into 2 x native Tris—Glycine sample
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Table 1. Fungal strains used in this study

Strain designation Strain Genotype Reference

in text

Northern blot analysis and glutathione measurements

Wild type TNO2A7 pyrG89; pyroA4; riboB2; argB2; AnkuA::argB; Arg”" 77

AhapC Nat24 pyrG89; pabaAl; riboB; AhapC::riboB; RiboB™ (78)

AtrxA AnTrxAKO pyrG89; pyroA4; riboB2; argB2; AnkuA:argB; Arg”; AtrxA:pyr-4; PyrG™ (36)

AnapA AnYaplKO pyrG89; pyroA4; nkuA::argB; riboB2; anyapl::pyr-4; PyrG " unpublished

Fluorescence analysis

AXB4A2 pyrG89; pabaAl; argB2; fwAl; bga0; argB2:pAXB4A (acvAp-uidA, ipnAp-lacZ), ArgB™ (79)

AC-HapCegfp pyrG89;+pabaA1; riboB; AhapC::riboB; RiboB"; pHapC-EGFP; HapC"; pyr-4:pKTBI; (62)
PyrG

AC-HapCegfp-SSS pyrG89; pabciAI; riboB; AhapC::riboB; RiboB™; pyr-4::pKTB1-HapC3CS-EGFP; PyrG™; This study
HapC3CS

AtrxA-HapCegfp pyrG89; pyroA4; riboB2; argB2; AnkuA:argB; Arg”; AtrxA:pyr-4; PyrG™; This study
pyroA:pHapC-EGFP-pyro; Pyro™

yN pyrG89; pabaAl; argB2; fwAl; bga0; argB2::pAXB4A (acvAp-uidA, ipnAp-lacZ), This study
ArgB™; pyr-4:pYN-pyr4; PyrG*

yC pyrG89; pabaAl; argB2; fwAl; bgal; argB2::pAXB4A (acvAp-uidA, ipnAp-lacZ), This study
ArgB™; pyr-4:pYC-pyrd; PyrG ™"

yCN pyrG89; pabaAl; argB2; fwAl; bga0; argB2::pAXB4A (acvAp-uidA, ipnAp-lacZ), This study
ArgB"; pyr-4:pYC-pyrd; PyrG™*; pEYFPN

yHapE-C pyrG89; pabaAl; argB2; fwAl; bga0; argB2:pAXB4A (acvAp-uidA, ipnAp-lacZ), This study
ArgB™; pyr-4:pYC-pyrd; PyrG™"; pHapE-YN

yHapC-N pyrG89; pabaAl; argB2; fwAl; bga0; argB2::pAXB4A (acvAp-uidA, ipnAp-lacZ), This study
ArgB™; pyr-4:pHapC-YC-pyrd; PyrG™; pEYFPN

yHapC-HapE pyrG89; pabaAl; argB2; fwAl; bgaO; argB2::pAXB4A (acvAp-uidA, ipnAp-lacZ), This study
ArgB™; pyr-4:pHapC-YC-pyr4; PyrG™"; pHapE-YN

yTrxA-C pyrG89; pabaAl; argB2; fwAl; bga0; argB2::pAXB4A (acvAp-uidA, ipnAp-lacZ), This study
ArgB"; pyr-4:pYC-pyrd; PyrG"; pTrxA-YN

yHapC-TrxA pyrG89; pabaAl; argB2; fwAl; bga0; argB2::pAXB4A (acvAp-uidA, ipnAp-lacZ), This study
ArgB™; pyr-4:pHapC-YC-pyrd; PyrG™; pTrxA-YN

AhapE AE-89 pyrG89; pabaAl; argB; AhapE:argB; ArgB™ (62)

yHapC-TrxA-AE pyrG89; pabaAl; argB; AhapE::argB; ArgB"; pabaAl:pHapC-YC-paba; Paba™; This study

pyr-4:pTrxA-YN-pyr4; PyrG*

buffer, the probes were analyzed by native PAGE on a
14% Tris—Glycine gel (Invitrogen).

Surface plasmon resonance (Biacore) measurements

Real-time analyses were performed on Biacore 2000
(AnCF complex assembly) and T100 (AnCF-DNA inter-
action) systems at 25°C. Data were processed with the
BIA evaluation software versions 4.1 or 1.1.1 (Biacore).
Refractive index errors due to bulk solvent effects were
corrected by subtracting responses from non-coated flow
cell 1. Sample injection and dissociation times were set to
2.5 or 5min at a flow rate of 30 ul/min. For measuring
AnCF complex formation, N-biotinylated HapB was
captured on an SA sensor chip on flow cell 2 (80 RU).
Samples containing equimolar amounts of HapC
(wild-type and mutants) and HapE were prepared by
mixing 0.1 M solutions of each subunit in water.
Samples for SPR analysis were generated by 500-fold
dilution of this stock solution in running buffer [10 mM
HEPES pH 7.4, 0.15M NaCl, 1mM DTT and 0.005%
(v/v) surfactant P20] followed by serial 2-fold dilution.
Injection was performed at concentrations from 6.25 to
200nM HapC/HapE. Regeneration of the biosensor
surface was carried out with 10 mM glycine/HCI, pH 2.0
for 1min. Dissociation constants (Kp) were calculated
from the concentration-dependent steady-state binding

of HapC/HapE. DNA duplexes containing CCAAT
boxes from the promoter regions of sred, trxA, catB,
prxA and napA were produced by annealing, using a
5-fold molar excess of the non-biotinylated oligonucle-
otide. The dsDNA was injected on flow cells of a
streptavidin (SA)-coated CM3 sensor chip at a flow rate
of 10 ul/min until 40-80 RU had been bound. AnCF
complexes were preformed from the single HapC, HapE
and HapB proteins as described above and were injected
in running buffer [10 mM phosphate buffer pH 7.4, con-
taining 2.7mM KCI, 137mM NaCl, ImM DTT and
0.005% (v/v) surfactant P20] at concentrations from 1.56
to 100 nM. Regeneration was achieved with running buffer
containing 0.5 M NaCl and 0.005% (w/v) SDS for 1 min.
Dissociation constants were calculated from both the
kinetic rate constants for AnCF-DNA complex formation
and dissociation derived from a 1:1 interaction model
including a mass transfer term or the concentration-
dependent steady-state binding of AnCF complexes
using the 1:1 steady-state affinity model.

Fluorescence microscopy

Generation of the encoding plasmids and strains, which
were used for eGFP or BiFC analysis, is described in detail
in the Supplementary Data. For nuclear staining 20 pl of
4’ 6-diamidino-2-phenylindol (DAPI) solution (1 pg/ml)



were added for 1 min. A. nidulans hyphae were analyzed
by light and fluorescence microscopy using Leica DM4500
B digital fluorescence microscope provided with Leica
DFC480 digital camera and suitable Leica filter cubes
(Leica Microsystems).

Isolation of RNA and northern blot analysis

For isolation of total RNA, fungal strains were grown for
26-28 h until half of the glucose was consumed. Glucose
concentrations in AMM were measured with the BIOSEN
C-line, GP + system (EKF diagnostics). Mycelia were har-
vested and washed with 200ml of sterile distilled water
and were broken using liquid nitrogen as described
previously (37). Total RNA was prepared using the
RNeasy Plant minikit (QIAGEN). The amount of RNA
was determined both spectrophotometrically and by
agarose gel electrophoresis. Northern blot analysis was
carried out as described previously (38). Detection of the
hybridized fragments was performed using CDP-Star
detection reagent (Roche). Fluorescence detection,
mediated by the digoxigenin labled probes and image
analysis were carried out with the Molecular® Imager
VersaDOC™ MP imaging system (BioRad).

Glutathione measurements

Determination of GSH and GSSG was carried out
according to a modified GSH-recycling method described
by Tietze (39). In detail, for measuring GSH/GSSG ratios
400-500mg of wet mycelia in 400 ul ice-cold 5% (w/v)
5'-sulfo-salicylic-acid  (SSA) were homogenized in
innuPrep Lysis Tubes (Analytik Jena) using the
FastPrep® Cell Disruptor FP120-system (Qbiogene).
After centrifugation at 14000 rpm for 10 min at 4°C, the
resulting supernatant was further diluted in six volumes of
ice-cold 5% (w/v) SSA and stored at —80°C for further
analysis. For measuring total glutathione concentrations,
homogenization of wet mycelia was carried out without
previous SSA treatment. After centrifugation, aliquots
were taken for protein concentration determination and
the remaining supernatant was also diluted in six volumes
of ice-cold 5% (w/v) SSA. After a further centrifugation
step at 14000rpm for 10min at 4°C, the resulting
protein-free supernatant was stored at —80°C for further
analysis.

The GSH samples in 5% (w/v) SSA were neutralized
with 0.5N NaOH and diluted 5-fold in assay buffer
(0.125M sodium phosphate, 6.3mM EDTA, pH 7.5).
To measure GSSG by the enzymatic method in samples
containing both GSH and GSSG, free GSH was masked
with a 3-4-fold molar excess of the thiol-scavenger
I-methyl-2-vinyl-pyridinium trifluoromethane sulfonate
(MV2P) (Natutec). Measurements were carried out in
assay  buffer containing 0.6mM  5,5-dithiobis(2-
nitrobenzoic acid) (DTNB) and 0.3mM NADPH using
the UV-Vis/NIR Spectrophotometer V-630 (Jasco). The
reaction was started with one unit of recombinant yeast
glutathione reductase (Sigma).
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Proteome analysis

Proteome analysis of 4. nidulans, including sample prep-
aration, 2D-SDS-PAGE, protein visualization, quantifi-
cation and MS identification of proteins, was essentially
carried out as previously described for A. fumigatus (40).
Gel images (n = 3) were analyzed using the software
Delta 2D 3.6 (Decodon). Afterwards, background sub-
traction spot volumes were normalized against total spot
volume and total spot area. Spot values were regarded
as differentially regulated with a #-test value P <0.05.
The MALDI-TOF data were used to search the NCBI
database and Central Aspergillus Data Repository
(CADRE), using the Mascot algorithm (Matrix Science),
with the following parameters: Cys as S-carbamidomethyl
derivative and Met in oxidized form (variable), one missed
cleavage site, peptide mass tolerance of 200 ppm.

RESULTS

The formation of HapC multimers is dependent on
redox sensitive cysteine residues

All identified HapC orthologs exhibit three conserved
cysteine residues in close proximity at conserved positions
(Figure 1A and data not shown). Remarkably, these
cysteine residues are located within a HFM core region
that is indispensable for NF-YB/NF-YC and CBF-A/
CBF-C heterodimer formation in men and rat, respec-
tively (41,42). This HFM displays moderate amino acid
sequence similarity to histone H2B (32). Most HFMs
consist of a central long o-helix that is flanked by two
shorter o-helices and a HFM 1is also present in all
NF-YC (HapE) orthologs, which have sequence similarity
to histone H2A (33). The solved crystal structure of the
NF-YB/NF-YC subcomplex resembles the head-to-tail
association of H2A and H2B (43). Comparative structure
modeling of the HapC/HapE dimer by using SWISS-
MODEL workspace (44) and the NF-YB/NF-YC struc-
ture as template revealed that cysteine residues 74 and 78
of HapC are buried in the HapC/HapE subcomplex
interface (Figure 1B).

Purified HapC formed dimers and multimers consistent
with possible formation of intramolecular and even
intermolecular disulfide bridges as response to oxidation
(Figure 1D). To analyze whether and which of the cysteine
residues of HapC are redox sensitive, HapC mutant
proteins were generated and purified, which contain
cysteine to serine exchanges in all possible combinations
(Figure 1C). All mutant proteins, except of the one lacking
all three cysteine residues (SSS), had lost their ability
to form multimers but were still able to form dimers
(Figure 1C). The oxidized forms of HapC (HapC,x)
could be reduced by the addition of DTT (Figure 1D)
showing that formation of dimers and multimers is
reversible.

The thioredoxin system can reduce HapC,y in vitro

To study whether the thioredoxin system accepts HapC,y
as substrate, HapC,y (oxidized by diamide) was incu-
bated with recombinant A. nidulans thioredoxin (TrxA),
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Figure 1. Alignment of HapC orthologs and redox behavior of HapC and its serine mutant proteins. (A) Amino acid sequence alignment of the
evolutionarily conserved HapE subunit interaction domains (blue boxes) of HapC orthologs. Conserved cysteine residues are numbered according to
the A4. nidulans HapC sequence. Invariant amino acids present in at least two of the three sequences are boxed in red. The numbers indicate the first
and last residues of the domains depicted. Abbreviations: ScHap3, S. cerevisiae Hap3; NF-YB, human NF-YB; AnHapC, A. nidulans HapC.
a-helices observed in the NF-YB structure are shown below the alignment. (B) Homology model of the HapC/HapE subcomplex based on the
NF-YB/NF-YC structure (PDB accession code 1N1J). A surface representation of the HapE molecule (residues L78-P163) is colored white and
a ribbon representation of HapC (residues L48—R131) is colored red. Cysteine residues of HapC are shown as sticks. (C) Schematic structure of the
recombinant HapC protein and all possible Cys to Ser mutants. The positions of the cysteine and serine residues are indicated by the letters ‘C” and
‘S’, respectively. (D) SDS-PAGE analysis of purified HapB, HapE, HapC and its serine mutants after 96 hin the absence and presence of 25 mM

DTT using samples containing 0.2 nmol of each Hap subunit.

A. nidulans thioredoxin reductase (TrxR) and NADPH.
Reduction was analyzed photometrically as described
previously (36) or by SDS-PAGE (Figure 2A and B).
TrxA, but not the inactive TrxA (C39S) version, was
able to reduce oxidized HapC in vitro, underlining the
specificity.

The formation of an intramolecular disulfide bridge
between Cys85 and Cys89 in the human HapC ortholog,
NF-YB, prevents assembly of the CCAAT-binding
complex (30). Therefore, the redox behavior of the
HapC mutant protein HapC(CCS) in comparison with
the wild-type HapC was analyzed. Both proteins were
treated with either H>O, or diamide (Figure 2D).
Irrespective of the used oxidant, both protein versions
could be reduced by the thioredoxin system (Figure 2C
and D). Assuming that the two HapC versions were
fully oxidized and the subsequent reduction by the
thioredoxin system was complete, the NADPH-dependent
reduction of 40 uM HapC,x and 40 M HapC(CCS).x
should lead to changes in absorbance of ~0.37 and 0.25,
repectively, which matched the values observed for the
diamide-oxidized proteins (Figure 2C). The complete
reduction was further confirmed by SDS-PAGE analysis

(Figure 2D). In contrast, the thioredoxin system reduced
only ~70% of H,0O,-oxidized HapC,, and HapC (CCS),
(Figure 2C), which was supported by high amounts of
non-reduced HapC dimers in SDS-PAGE analysis
(Figure 2D). A possible explanation of these results
might be the fact that diamide treatment results in the
oxidation of thiol groups to form disulfide bonds, which
are susceptible to reduction by thioredoxin, whereas H,O,
exposure can also lead to additional oxidation products
such as sulfinic-, sulfenic- and even sulfonic-acids, which
are not targets for thioredoxin. Moreover, H,O, is also
able to produce methionine sulfoxides from methionine
residues leading to tertiary structures that are not accessi-
ble by TrxA.

Although the treatment of HapC(CCS) with diamide or
H50, led to the formation of HapC(CCS) dimers, there
was still a considerable amount of monomer present
(Figure 2D). By contrast, the NADPH consumption
indicated that HapC(CCS) was always fully oxidized,
indicating oxidation by intramolecular disulfide bridge
formation. Moreover, thioredoxin affinity chromatogra-
phy (45,46) demonstrated that the thioredoxin mutant
version TrxA(C39S) recognizes all artifical protein-TNB
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Figure 2. Reduction of oxidized HapC by the A. nidulans thioredoxin system. (A) The NADPH-dependent reduction of H,0,-oxidized wild-type
HapC by TrxA or AnTrxA(C39S) was monitored by the decrease in absorbance at 340 nm. (B) After NADPH addition, aliquots were taken from the
reaction mixtures containing TrxA (upper panel) or TrxA(C39S) (lower panel) at the indicated time points, denaturated in sample buffer and further
analyzed by SDS-PAGE under non-reducing conditions. (C) Wild-type HapC or the mutant HapC(CCS) were treated with either H,O, or diamide.
Reduction by TrxA was followed as described in (A). The degree of HapC reduction was verified by SDS-PAGE (D) including a control under

reducing conditions (lanes 3 and 6).

adducts that resulted from the reaction of HapC(CSS),
HapC(SCS) and HapC(SSC) with DTNB (Supplementary
Figure S1), which underlines that TrxA can recognize and
reduce all disulfide bridges of HapC formed involving
either Cys74, Cys78 or Cys94.

Only reduced HapC participates in AnCF assembly

The HapC and HapC(CCS) proteins were further
analyzed for their ability to form a stable heterodimer
with HapE or to form the heterotrimeric complex
together with HapE and HapB by native PAGE. The
non-oxidized HapC proteins were able to form a stable
HapC/HapE heterodimer (Supplementary Figure S2A)
and a functional AnCF (Supplementary Figure S2B),
whereas oxidized HapC and HapC(CCS) did not.
Consistently, subsequent reduction of the oxidized
HapC proteins by the A. nidulans thioredoxin system led

to restoration of active HapC, which again was able to
interact with HapE (Supplementary Figure S2A) or HapE
and HapB (Supplementary Figure S2B). When diamide-
or H,O-treated HapC(CCS) protein was analyzed
for its ability to form a HapC/HapE heterodimer
(Supplementary Figure S2A) or HapC/HapE/HapB
heterotrimer (Supplementary Figure S2B) by native
PAGE analysis, HapC(CCS) failed to interact with both
of the other Hap-proteins. However, the SDS-PAGE
results from Figure 2D, as well as the native PAGE
analysis in Supplementary Figure S2 show that there
was still a high amount of HapC(CCS) monomer
present (40-50%) after oxidation with diamide or H,0,,
which failed to interact with HapE and showed minimal
activity in formation of AnCF. These data suggest
that already the formation of an intramolecular disulfide
bridge within the HFM of HapC leads to an inactive
tertiary HapC structure unable to interact with HapE
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and to form AnCF, as HapB requires the heterodimeric
HapC/HapE-structure to complete the assembly of AnCF.

HapC cysteine residues 74 and 78 are essential for
both stable heterodimer formation with HapE and
AnCEF stability

To characterize the impact of HapC cysteine to serine
mutations on HapC/HapE heterodimer formation as
well as AnCF assembly and stability quantitatively,
surface plasmon resonance (SPR) equilibrium binding
measurements with highly purified HapC and all seven
HapC cysteine to serine mutant proteins were performed.
All attempts to measure the interaction between HapC
and HapE directly on the surface of a SA-coated sensor
chip failed, irrespective of which subunit was immobilized
or of the mode of immobilization (data not shown).
However, HapC/HapE heterodimer formation in free
solution was detectable by native PAGE analysis when
HapC or HapC(CCS) proteins were mixed with HapE
resulting in a final subunit concentration of 10 uM in the
sample (Figure 3A). Therefore, an experimental setup was
chosen consisting of the biotinylated HapB subunit fixed
to the SA chip and preformed HapC/HapE complexes,
generated by  mixing equimolar amounts  of
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both subunits, which were applied by injection.
Concentration dependent SPR responses of HapC/HapE
heterodimer binding to HapB fitted a simple 1:1 interac-
tion model (Figure 3B). Equilibrium analysis led to the
calculation of a dissociation constant (Kp) of 35.3nM.
The heterodimer composed of the HapC(CCS) mutant
and HapE bound with an almost identical affinity to
HapB (Kp = 36.8nM), whereas any single substitution
of the cysteine residues at positions 74 or 78 of HapC to
serine decreased the HapB binding affinity of the respec-
tive heterodimers to ~50% of the HapC/HapE
heterodimer (Figures 3C and D). Furthermore, mutation
of all three conserved cysteine residues caused a substan-
tial loss of HapC(SSS)/HapE-binding affinity to HapB.
Taken together, we concluded that particularly HapC
cysteine residues 74 and 78 are required for both the for-
mation of a stable HapC/HapE heterodimer, and the
stable interaction of the HapC/HapE heterodimer with
HapB.

HapC cysteine residues contribute to high affinity DNA
binding of AnCF

Previous SPR real time protein—-DNA interaction studies
have demonstrated that AnCF bound with high affinity to
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Figure 3. HapC/HapE affinity to HapB and HapC/HapE heterodimer formation are impaired by subsitution of HapC cysteine residues 74 and 78
to serine. (A) Native PAGE analysis of heterodimer formation between HapC or all possible HapC cysteine to serine mutants and HapE using
samples containing 10 M of each Hap subunit. (B) SPR analysis of A. nidulans AnCF complex formation from wild-type HapC, HapE and
sensor-immobilized HapB, as shown schematically in the inset. Responses of 200, 100, 50, 25, 12.5 and 6.25nM HapC/HapE heterodimer
binding (red lines) to 80 RU of HapB are shown overlaid with the fit derived of a 1:1 interaction model (black lines). (C) Fit of the equilibrium
data for HapB binding of HapC/HapE containing wild-type HapC or all possible HapC cysteine to serine mutants. Dissociation
constants (Kps) were calculated from the concentration-dependent equilibrium binding using a 1:1 interaction model. (D) Scatchard plot from

the responses shown in (C).
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Figure 4. SPR analysis of AnCF binding to DNA containing a CCAAT box from the promoter region of 4. nidulans sreA. (A) Responses of 100, 50,
25, 12.5, 6.25, 3.13 and 1.56nM AnCF binding (red lines) to 40 RU of DNA duplex is shown overlaid with the fit derived from a 1:1 interaction
model (black lines). (B) Fit of the equilibrium data for DNA binding of AnCF containing wild-type HapC or the mutants HapC(SSC) and
HapC(SSS). The inset shows the Scatchard plot from both responses. (C) Responses of AnCF-DNA binding using complexes containing HapC,
HapC(SSC) or HapC(SSS), respectively. (D) Native PAGE analysis of AnCF complex formation from HapC or HapC mutants using samples

containing 10 uM of each Hap subunit.

a 50-bps DNA duplex representing the CCAAT box at
position —1235 of the sre4 promoter (28). Despite their
susceptibility to oxidation, cysteine residues of Hap3 and
NF-YB were previously shown not to be essential for
DNA binding (30). To determine the effect of HapC
cysteine to serine exchanges on the AnCF DNA-binding
affinity, SPR analyses of AnCF binding to this DNA
duplex were performed using either HapC or the
HapC(SSC) and HapC(SSS) mutants for AnCF
reconstitution. Kinetic analysis of the responses of
HapC/HapE/HapB heterotrimer binding to the CCAAT
box-containing duplex led to the calculation of a Kp
of 0.42nM (Figure 4A). Equilibrium analysis of the
association-phase responses reaching a steady-state
plateau revealed an apparent Kp of 1.36 nM, indicating
that the measured Kp values are valid (Figure 4B).
Neither the HapC/HapE heterodimer, nor any other
combination of two of the three AnCF subunits, or any
subunit alone, bound to DNA in our SPR experiments
(data not shown). By contrast, exchange of HapC
against HapC(SSS) or HapC(SSC) for AnCF
reconstitution impaired DNA association rates below
6.25nM (Figure 4C) leading to a set of sensor responses,
which cannot be fitted by a global 1:1 interaction model.
Furthermore, DNA binding of HapC(SSS)/HapE/HapB

is nearly abolished at a concentration of 1.56 nM, which
reveals an increasing instability of this complex with
decreasing concentrations. At higher non-physiological
AnCF concentrations (10 uM), however, all seven HapC
cysteine to serine mutant proteins are able to form a stable
AnCF heterotrimer with HapE and HapB detectable by
native PAGE analysis (Figure 4D).

Nuclear import of AnCF requires cysteine residues of
HapC and is dependent on their redox state

To analyze whether the redox status influenced the cellular
localization of AnCF, eGFP and bimolecular fluorescence
complementation (BiFC) studies were carried out.
The hapC deletion (A) strain AC-HapCegfp carries a
deletion of the endogenous hapC gene and, in addition,
encodes a hapC-egfp gene fusion complementing the
AhapC phenotype to wild type. Under normal conditions,
the HapC-eGFP-derived fluorescence was located in the
nucleus, as expected for a transcription factor (Figure 5A).
Addition of H,O,, however, led to cytoplasmic local-
ization of the HapC-eGFP-derived fluorescence. The
cytoplasmic localization lasted up to 45min after H,O,
addition, whereas fluorescence reappeared in the nucleus
after 60min exposition (Figure 5A). By contrast, a
HapC-eGFP fusion, in which all HapC cysteines were
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Figure 5. Cellular localization of HapC, HapC/E or HapC/TrxA-dependent fluorescence under oxidative stress conditions. Samples were analyzed
by light microscopy (panels 1) and fluorescence microscopy (panels 2 for DAPI staining of nuclei and panels 3 for eGFP or eYFP localization).
(A) Localization of HapC-eGFP in a AhapC strain at 0, 15, 30, 45 and 60 min after addition of 2.5mM H,0,. (B) Localization of HapC(SSS)-eGFP
in a AhapC strain and (C) of HapC-eGFP in a AtrxA strain. (D) Cellular co-localization and visualization of HapC and HapE under oxidative stress
conditions using BiFC in A4. nidulans strains producing HapC and HapE fused with the C- and N-terminal split fragments of eYFP, respectively.
(E) Cellular co-localization and visualization of transient HapC-TrxA interaction under oxidative stress conditions by BiFC in A. nidulans wild-type
and (F) AhapE strains producing HapC and TrxA fused with the C- and N-terminal split fragments of eYFP, respectively.

exchanged to serines (strain AC-HapCegfp-SSS), was
located in the cytoplasm in the absence of H>O,, which
is in agreement with the impaired stability of the
HapC(SSS)/HapE heterodimer (Figure 5B).

BiFC assays were previously shown to be valuable tools
to define in vivo interaction of proteins in the homologous
host (28,47-50). Therefore, either the N-terminal region
(aa 1-154) or the C-terminal region (aa 155-238) of the

eYFP were fused as described previously (48) to HapC
and HapE. Fluorescence was only visible when
HapC-YC and HapE-YN were present in the cell at the
same time (Figure 5D). In the absence of H>O,, fluores-
cence was clearly visible in the nucleus indicative of the
AnCF complex present in the nucleus. This result indi-
cates that HapC and HapE interact with each other and
thereby nucleate the assembly of the eYFP chromophore.



In the presence of H,O,, the eYFP fluorescence was visible
mainly in the cytoplasm, and after 60 minin the nuclei
again (Figure 5D). Although this localization pattern
was identical to that observed for a HapC-eGFP
fusion, it is important to consider that formation of the
bimolecular fluorescence complex is essentially irreversible
and protein—protein interaction is not required to
maintain a reassembled eYFP (51). Based on these limita-
tions of the BiFC assay, it is likely that upon oxidation
HapC-YC and HapE-YN do not interact any longer and
the observed fluorescence is due to the reconstitution of
functional eYFP before H,O, treatment. As a conse-
quence of the abolished HapC/HapE heterodimer forma-
tion, HapC-YC and HapE-YN, and therefore also the
fluorescence is confined to the cytoplasm. Hence, the
non-natural split fragment-derived HapC-YC/HapE-YN
heterodimer does not allow the recruitment of HapB,
which is necessary for nuclear localization.

On the basis of in vitro results and these in vivo fluores-
cence data, we conclude that oxidative stress-mediated
oxidation of HapC impairs its interaction with HapE
and consequently HapB-mediated piggy back transport
into the nucleus. However, because nuclear relocalization
60min after H,O, treatment occurred, this finding
indicated recycling of the oxidized HapC subunit.
To analyze the involvement of TrxA in this process, the
strain yHapC-TrxA encoding the eYFP split fragment
fusion proteins HapC-YC and TrxA-YN was generated.
In the absence of ROS, no significant fluorescence was
visible, whereas H,O, treatment for 15min induced
strong fluorescence (Figure 5E) indicative of an inter-
protein  thiol-disulfide exchange between oxidized
HapC-YC and the TrxA part of TrxA-YN, followed by
formation of a functional eYFP. Noteworthy, this fluores-
cence does not reflect transcriptional regulation because
the gene fusions are under control of the constitutive
gpdA promoter. Due to the fact that the interaction
between TrxA and HapC is only transient, reduced
HapC-YC is now able to form a heterotrimer with
endogenous HapE and HapB. Furthermore, as the
HapC and TrxA fusion fragments are still linked by the
eYFP split parts, the eYFP chromophore enters with
the AnCF complex the nucleus leading again to a
nuclear fluorescence 60 min post treatment. This assump-
tion was confirmed by the same BiFC experiment carried
out in a hapE deletion strain (Figure 5F). Here, HapC was
also only bound by TrxA upon oxidative stress, but after
reduction the HapC-YC/TrxA-YN complex was not
transported to the nucleus anymore as HapE is lacking.

On the basis of HapC-YC/TrxA-YN interaction
and the relocalization of HapC-eGFP in the nucleus 45—
60 min after initiating oxidative stress, we suggest that the
activation of stress response genes upon exposure to
oxidative stress leads to recycling of the oxidized HapC
subunit by the thioredoxin system. Consistently, in an
A. nidulans AtrxA mutant strain (36), the HapC-eGFP
fusion was constitutively located in the cytoplasm and
possibly also in the nucleus, which cannot be distinguished
because of the bright fluorescence of the hyphae
(Figure 5C). Taken together, these data demonstrate
that TrxA is capable to reduce oxidized HapC in vivo
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and the importance of the thioredoxin system for AnCF
functionality.

The redox-regulated AnCF is involved in redox regulation

Several redox-regulated transcription factors are known
to be involved in redox regulation as well. The most prom-
inent members of such oxidative stress regulators in
fungi are the proteins of the so called Yapl-family (yeast
activator protein 1) with S. cerevisiae Yapl being the
best-studied member (52) and its A. nidulans ortholog
NapA (53). Upon oxidative stress, Yapl accumulates in
the nucleus, where it functions as a transcriptional
activator for many stress response genes (52). To address
a possible impact of the redox-regulated AnCF on the
oxidative stress response in A. nidulans, we compared
the expression profiles of certain stress genes of the wild
type with AnapA, AtrxA and AhapC mutants (Figure 6A).
Moreover, we measured the levels of total cellular
glutathione and the GSH(reduced)/GSSG(oxidized)
ratios in these strains (Figure 6B), because glutathione is
one of the most important cellular antioxidants. Changes
in this system indicate occurrence or deregulation of
response to oxidative stress.

Deletion of napA led to decreased basal expression of
catB, which encodes the mycelial catalase B (54) and
genes encoding components of the thioredoxin system,
i.e. trxA, trxR and prxA (encoding thioredoxin-dependent
peroxidase). The AnapA mutant also failed to induce these
genes when treated with H,O,, which indicates direct
control by NapA. Similarly, the basal transcript level of
glutathione reductase-encoding glr4 was decreased in
AnapA but, in contrast to the other genes, H,O, treatment
caused transcriptional up-regulation of g/rA. Consistently,
napA deletion caused a decrease in the GSH/GSSG ratio
under non-stress conditions, and the ratio slightly
increased upon H,O, treatment. These data suggest that
the expression of g/rA4 is not exclusively NapA-dependent.
Moreover, the total glutathione content of AnapA was
1.6-fold decreased compared to the wild type.

A similar expression pattern of catB, as found for
AnapA, was observed in the AhapC mutant. By
contrast, mutation of trxA4 led to a completely different
gene expression profile. Basal expression of the
(remaining) thioredoxin system-encoding genes, e.g. trxR
and prxA, and of catB was up-regulated and H,O, treat-
ment only had a minor additional increasing effect.

The expression of glrA was not affected by deletion of
trx4A and, consistently, the GSH/GSSG ratio during
unstressed and stressed conditions was wild-type-like.
However, in the AhapC strain, the expression profile of
the thioredoxin system-encoding genes largely resembled
that of AtrxA, i.e. compared to the wild-type up-
regulation of the basal expression and reinforced
up-regulation during oxidative stress of both xR and
prxA. In addition, deletion of hapC caused significantly
higher expression of glrA, gpxA, napA and increased
GSH/GSSG ratios during stressed and unstressed condi-
tions compared to the wild type.

Taken together, deletion of either trxA, napA or hapC
caused different changes in the expression profiles of genes
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Figure 6. Oxidative stress response in A. nidulans wild-type (wt), AnapA, AtrxA and AhapC strains. (A) Gene expression in A. nidulans wild-type,
AnapA, AtrxA and AhapC strains. For northern analysis, total RNA was isolated from non-stressed mycelia and mycelia treated for 30 min with
10mM H,0O,. 28S rRNA bands are shown as loading control. (B) Total GSH content and GSH/GSSG ratios of A. nidulans wild-type, AhapC,
AnapA and AtrxA mycelia. Total GSH levels and GSH/GSSG ratios of non-stressed mycelia and mycelia treated for 30 min with 10mM H,0,

are compared.

Table 2. Putative AnCF and NapA binding sites within selected A. nidulans genes and their response to inactivation of AnCF (AhapC) and

napA, respectively

Gene ID? Promoter® AnCF CCAAT NapA TKASTAA® AhapC9 AnapA* Proven in vitro AnCF
promoter interaction®

AN7513.4 napA 4 1 + na +

ANO0170.4 trxA 2 1 nd - +

AN3581.4 trxR 2 2 + - ni

ANS8692.3 prxA 8 3 + — +

AN2846.4 gpxA 1 - + - ni

AN9339.4 catB 3 — — — +

AN0932.4 glrd 2 3 + - ni

dCentral Aspergillus Data REpository (CADRE) (80).

"Promoters were defined as the intergenic region up to the next upstream gene.

“Consensus sequence from refs (68,74).

44, up-regulation; —, down-regulation; na, not applicable; nd, no difference (from Figure 6A).

°+, yes; ni, not investigated (from Supplementary Figure S3).

involved in the oxidative stress response and of GSH/
GSSG ratios. The GSH/GSSG ratios measured in the
different strains during stressed and unstressed conditions
well agreed with the respective glrA expression patterns.
Notably, only free cellular GSH or GSSG can be
measured with this assay and therefore, we can only spec-
ulate about the ‘real total glutathione content’ that also
includes protein-bound glutathione (PrSH/PrSSG) or
other GSH S-conjugates. Moreover, oxidative stress not
only results in glutathione oxidation, but also in an
extracellular export of GSSG or GSH S-conjugates
(55,56), which might explain the decreased glutathione
concentrations in the different mutant strains, especially
in the AnapA strain.

The napA promoter and promoter regions of NapA
target genes are bound by AnCF

Our northern blot analysis revealed a HapC-dependent
expression of napA and NapA target genes. Therefore,

the 5-upstream regions of these genes were analyzed for
AnCF consensus binding motifs (15). All of the promoter
regions contained at least one core CCAAT box as
putative binding motif for AnCF (Table 2). To evalu-
ate the functionality of the found AnCF binding sites,
AnCF-DNA interaction analysis was performed with
DNA duplexes covering selected CCAAT boxes of the
trxA, catB, prxA and napA promoters (Supplementary
Figure S3A). Kinetic analysis of the responses of AnCF
binding to the CCAAT box-containing duplexes led to the
calculation of Kp values ranging from 1.7 to 10.2nM,
indicating specific and high-affinity binding
(Supplementary Figure S3B-G). Steady-state affinity
analysis of the association-phase responses compared
with the calculated maximum binding capacities of the
respective duplexes revealed a 1:1 stoichiometry, as
expected  (Supplementary Figure S3H and 1)
Interestingly, a DNA duplex covering both the CCAAT
boxes 1 and 2 of the napA promoter was bound by two



AnCF complexes simultaneously. This was not the case
for duplex prxApC34, probably due to preferred binding
to CCAAT box 4 (which fits better to the consensus
sequence RRCCAATMRCR) and/or steric hindrance.

Proteomic response to inactivation of AnCF or TrxA

Up to now, ~20 genes were verified to be regulated in an
AnCF-dependent manner (28,57). To further characterize
the response to AnCF inactivation and identify possible
new targets of AnCF-dependent regulation, we examined
the global effect of a hapC deletion at the proteomic level.
Due to the fact that a hapC deletion resulted in an
up-regulation of oxidative stress-associated genes even
under non-stressed conditions, which was similar to the
gene expression profile in the AfrxA strain, we also
included this strain in our proteome analysis. For this
purpose, protein extracts of the wild-type strain, a
AhapC strain and AtrxA strain grown in AMM were
compared by 2D-PAGE. Reproducibly, 36 protein spots
displayed an increase and 35 protein spots displayed a
decrease in intensity of more than 1.3-fold (2-fold
standard deviation) in AhapC extracts (Supplementary
Table S3). For AtrxA extracts, eight spots with higher
and 28 spots with decreased intensities were identified
(Supplementary Table S4). The PrxA protein appeared
in the gels as more than one spot with the same
apparent molecular mass, but with different p/ values
and abundance (Supplementary Figure S4). MALDI MS
analysis revealed that this protein was post-translationally
modified by hyperoxidation of cysteine residue 61 to its
sulfinic (-SO,H) and sulfonic form (-SOzH). The sulfinic
acid that forms in a peroxide-reducing peroxiredoxin can
be reduced enzymatically by sulfiredoxins (58,59), but the
sulfonic acid represents an irreversible form of protein
oxidation. Both hyperoxidized forms of PrxA were
found with higher abundance in AhapC extracts.
Additionally, the production of choline oxidase (CodA)
was up-regulated more than 4-fold. This enzyme is
involved in glycine, serine and threonine metabolism and
catalyzes the O,-dependent conversion of choline to
betaine aldehyde and H,O, (60). Thus H,O, production
might trigger oxidative stress. Furthermore, increased
amounts of several proteins involved in protein
ubiquitination (putative Thif domain protein) and degra-
dation (the proteasome components Pre6 and Pre8 and
the proteasome core alpha 1 component) were found in
AhapC protein extracts. The AhapC strain also produces
higher amounts of a novel putative glutathione
S-transferase (GST); GSTs catalyze the conjugation of
reduced glutathione to electrophilic xenobiotics and
peroxidized lipids in order to detoxify these compounds
(61). Taken together, 5 of the 36 proteins with higher
levels in AhapC extracts have antioxidative functions
and four of the 35 down-regulated proteins are most
likely involved in the oxidative stress response, too.

As already mentioned, deletion of #rxA and hapC
resulted in a similar expression pattern of stress response
genes both under normal and oxidative stress conditions.
Consistently, the proteome analysis revealed that four of
the eight proteins with higher abundance in protein

Nucleic Acids Research, 2010, Vol. 38, No.4 1109

extracts derived from the AtrxA strain were also found
with higher abundance in AhapC extracts. Similarly,
nine of the 28 proteins showing lower levels in AtrxA
protein extracts were also less abundant in protein
extracts of the AhapC strain.

DISCUSSION

The CCAAT-binding complex consists of three different
subunits that are necessary for formation of a DNA-
binding protein complex, for regulation of the CCAAT-
binding complex and its import into the nucleus. The
mode of protein interaction between the subunits, i.c.
association of the nuclear localization signal (NLS)-
carrying subunit (for 4. nidulans HapB) with a pre-formed
heterodimer composed of two histone-like subunits,
appears to be similar in higher and lower eukaryotes
(32,33). However, a comprehensive picture of the
CCAAT-binding complex regulon is missing until now
and one of the key questions concerns the regulation of
its activity.

Here, we provide evidence that the CCAAT-binding
complex is regulated by the redox status of the cell and
regulates genes required for an adequate response to
oxidative stress. Based on data presented here, we
propose the following model for redox regulation of
AnCF (Figure 7): the H2B-like subunit HapC with
reduced thiol groups in its HFM is able to form a stable
heterodimer with the H2A-like subunit HapE. This
heterodimer is bound by the HapB subunit that carries
the NLS. Thereby, HapB mediates the nuclear import of
the whole AnCF via a piggy-back mechanism (62). Upon
oxidation, HapC forms intra- and/or intermolecular
disulfide bridges, leading to structural changes within the
HFM of HapC that prevent the interaction with HapE.
Consequently, nuclear localization is abolished, because
HapB needs the pre-formed heterodimer for completion
of complex formation.

Due to the fact that H2B histones lack the conserved
cysteine residues located within the HFM of HapC
orthologs, it is conceivable that oxidation of these redox
sensitive cysteines represents a key regulatory feature of
CCAAT-binding complexes. The most likely rationale
for redox regulation of a transcription factor is its
involvement in oxidative stress response. The best-studied
fungal redox regulator is the S. cerevisiae basic region
leucine zipper (bZIP) transcription factor Yapl that is
activated upon peroxide stress (63-67). S. cerevisiae
Yapl and its orthologs were shown to increase the expres-
sion of several genes, whose protein products counteract
oxidative stress (52). Thioredoxin (Trx) and thioredoxin
reductase (TrxR)-encoding genes are the most prominent
target genes of this type of regulators in various fungi
(38,53,68,69). The activity of S. cerevisiae Yapl is con-
trolled by a thioredoxin-dependent negative feedback
loop and therefore, deficiency of both cytosolic thioredo-
xins caused a constitutive activation and nuclear accumu-
lation of Yapl (64,70). As a result, Yapl target genes such
as trrl and gshl (y-glutamylcysteine synthetase) were
up-regulated even under non-stressed conditions and
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Figure 7. Proposed model for redox regulation of the CCAAT-binding complex AnCF and the oxidative stress response in A. nidulans coordinated
by AnCF. The bold numbers in the figure refer to the following steps. (1) Cytoplasmic quantity control mechanism of the HapC/HapE heterodimer
level by the HapC subunit. Reduced HapC stabilizes the HapE subunit by interaction through the histone fold motifs localized in each subunit. (2)
HapB-mediated piggy back transport of AnCF into the nucleus and AnCF-mediated auto-regulation (repression) of the /iapB gene. (3) During
unstressed conditions, AnCF represses full expression of napA and some NapA target genes such as glrA and prxA, but is required (4) for basal
expression of catB. (5) Reactive oxygen species (ROS) inactivate AnCF via oxidation of HapC and (6) activate NapA by the redox transducer GpxA
(glutathione peroxidase-like protein A), leading to (7) increased expression of napA and NapA target genes. The ROS response triggered activation of
the thioredoxin system leads to (8) inactivation of NapA activity and (9) reactivates AnCF in a feedback loop, which (4) enables production of CatB.

glutathione reductase activity was increased (70). As we
showed here, the same is true for 4. nidulans. Deletion of
trxA (thioredoxin A) up-regulated trxR, prxA and catB
under non-stressed conditions. In contrast to S. cerevisiae
and S. pombe (70-74), however, deletion of napA and trxA
had only a minor or no effect, respectively, on the expres-
sion of glrA (glutathione reductase) and the glutathione
homeostasis in 4. nidulans. By contrast, the increased g/rA4
expression in the hapC-deficient strain well agrees with
an ~2.0-fold increased GSH/GSSG ratio compared
with the respective wild-type strain. This finding indicates
A. nidulans glutathione homeostasis is predominantly
regulated by AnCF which is consistent with the notion
that several proteins showed the same altered regulation
in both the A. nidulans AhapC and AglrA strain (75)
(Supplementary see Table S3).

Remarkably, neither oxidative stress nor inactivation of
the thioredoxin system affected expression of S. cerevisiae
yapl (67,70,73) or, as shown here, napA in A. nidulans.
However, the increased napA expression in the AhapC

strain and the in vitro interaction of AnCF with two
CCAAT boxes in the napA promoter suggest direct repres-
sion of napA by AnCF. Even more, AnCF also interacts
in vitro with the promoters of classical NapA target genes
such as trxA, catB and prxA (see Supplementary Figure
S3). Dual control, i.e. activation by NapA and repression
by AnCF, of these genes is further indicated by the
presence of both putative Yapl/NapA and AnCF respon-
sive elements in the respective promoters (except catB)
(Table 2). Nevertheless, since AnCF is most likely
involved in the regulation of hundreds of genes, it
cannot be excluded that some of the regulatory effects
are indirectly caused by deletion of hapC, e.g. due to an
altered metabolism in the mutant strain. For instance, the
identified hyperoxidation of PrxA and the increased
production of proteins involved in ubiquitination and deg-
radation processes in non-stressed AhapC cultures could
be caused by enhanced endogenous oxidative stress
due to, e.g. the reduced catalase B activity and/or
increased production of H,O»,-generating enzymes such



as choline oxidase. The S. cerevisiae homolog of PrxA,
designated Tsalp, can also undergo hyperoxidation that
impairs its peroxidase activity but increases its chaperone
activity (76). Similar to this observation could be our
finding of an enhanced production of several proteins
with chaperone-like activity in the AhapC strain such as
the eta subunit of the T-complex protein 1 or the Dnal
domain protein Psi (Supplementary Table S3). However,
it is unlikely that all alterations of the oxidative stress
response due to the hapC deletion are caused indirectly
by increased endogenous oxidative stress because,
according to this assumption, /apC deletion would be
expected to up-regulate expression of catB in concert
with the other NapA target genes but not to
down-regulate catB, as observed here. In addition to the
decreased catB expression, several other proteins with
antioxidative function were found by proteome analysis
to be decreased in AhapC, e.g. methionine-R-sulfoxide
reductase and a putative 1-Cys-peroxiredoxin. Moreover,
the increased nap A expression and the unusual high GSH/
GSSG ratio in the AhapC strain were observed neither in
the wild type upon oxidative stress nor in AnapA and
AtrxA mutants under both standard and oxidative stress
conditions. These findings clearly confirm a direct impact
of AnCF on the oxidative stress response.

Taken together all data obtained in vitro and in vivo,
we propose the following interplay of AnCF and NapA
in redox regulation (see Figure 7 and Supplementary
Figure S5): under standard conditions, AnCF prevents
full expression of nmap4 and some NapA target genes
such as glr4 and prxA. Oxidative stress leads to inactiva-
tion of AnCF via oxidation of HapC, which increases
expression of napA and NapA target genes directly via
the release of AnCF repression, and indirectly via NapA
activation. This response includes the activation of the
thioredoxin system, which represses NapA activity and
reactivates AnCF in interconnected feedback loops
(Supplementary Figure S5). Thereby, oxidative stress
most likely also blocks AnCF-mediated repression of the
hapB gene because no heterodimer is formed (25) that is
indispensable for HapB-mediated nuclear import of
AnCF (62). Because hapC and hapE are constitutively
expressed, an increased cellular HapB level causes a
rapid nuclear accumulation of AnCF as soon as HapC
is reduced by thioredoxin A. Formation of the functional
AnCF heterotrimer allows increased production of CatB
leading to an accelerated response to oxidative stress. The
strict conservation of the redox status-sensing cysteine
residues within the HFM of all HapC orthologs indicates
that redox regulation very likely represents a general
feature of all eukaryotic CCAAT-binding complexes.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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