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TRENDS IN U.S. ADULT CHRONIC DISEASE 

MORTALITY, 1960–1999: AGE, PERIOD, AND COHORT 

VARIATIONS*

YANG YANG

In this paper, I examine temporal changes in U.S. adult mortality by chronic disease cause of 
death and by sex over a 40-year period in the second half of the twentieth century. I apply age-period-
cohort (APC) analyses that combine conventional approaches and a new method of model estimation 
to simultaneously account for age, period, and cohort variations in mortality rates for four leading 
causes of deaths, including heart disease, stroke, lung cancer, and breast cancer. The results show that 
large reductions in mortality since the late 1960s continued well into the late 1990s and that these re-
ductions were predominately contributed by cohort effects. Cohort effects are found to differ by specif-
ic causes of death examined, but they generally show substantial survival improvements. Implications 
of these results are discussed with regard to demographic theories of mortality reductions, differential 
cohort accumulation of health capital and lifetime exposures to socioeconomic and behavioral risk 
factors, and period changes in diagnostic techniques and medical treatment.

ubstantial mortality declines in the United States for a large part of the past 100 years 
have been widely documented. However, trends of recent mortality change and sources 
of the demographic variations in U.S. adult mortality are not well understood. Relatively 
little is known about the evolution of mortality experiences attributable to distinct impacts 
of age, period, and cohort. Empirical investigations of sources of recent mortality reduc-
tions are typically confi ned to changes in one or two of these demographic components. 
The cohort effect is less frequently tested, but its presence implies that certain assumptions 
currently used by demographers and other social scientists to analyze factors contributing 
to mortality declines can be misleading. For instance, it is frequently assumed that rates 
of mortality declines over time are equal across birth cohorts. It is also assumed that these 
declines depend on rates of changes in period-specifi c conditions, such as economic ad-
vance and health care technology, that are independent of the birth year. These assumptions 
neglect cohort effects, and greatly simplify estimations, but are increasingly inconsistent 
with accumulating evidence of cohort changes in a variety of health outcomes that predict 
mortality (Fogel 2004).

Age-period-cohort (APC) analysis plays a critical role in the search for particular 
agents of or risk factors for disease and mortality by depicting the whole complex of 
social and environmental factors that create these risk factors. Identifying the age- period-
cohort patterns of adult mortality by cause can contribute in important ways to an un-
derstanding of the recent decline of mortality. First, the composition of deaths by cause 
bears directly on the age patterns of mortality because the incidence of cause-specifi c 
mortality varies substantially with age. For instance, Figure 1 shows that much higher 
rates of deaths attributable to degenerative diseases and cancer occur in older ages than 
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in young adulthood. Second, the ebbs and fl ows of cause-specifi c mortality rates over 
time are the product of period and cohort factors (Manton, Stallard, and Corder 1997). 
U.S. adult mortality changes may be affected by public health and medical care changes 
from 1950 to 1990. Changes in deaths attributable to chronic diseases also refl ect long-
term health effects of the processes of differential accumulation of lifetime exposure to 
risk factors that suggest clues to the pathways responsible for cohort mortality differenc-
es. Third, temporal trend analyses of disease-specifi c mortality rates are frequently used 
in etiological investigations to provide clues to the diseases themselves (Holford 1991). 
When such analyses are conducted on a comparative basis between different diseases and 
populations—such as between sexes—the results can be used to identify populations with 
signifi cantly higher or lower incidence of disease, so that the search for risk factors asso-
ciated with the disease may be more selective and specifi c.

Findings from previous studies using APC analysis of mortality change are tentative 
because of limitations in data and in analytic methods. And evidence regarding the relative 
importance of period and cohort effects in recent U.S. adult mortality change is particularly 
scant. Three interesting questions remain. First, to what extent did the large mortality de-
clines since the 1960s continue into the 1990s? Second, what are the patterns of mortality 
risks that are uniquely attributable to age, period, and cohort factors? Third, what are the 
age-period-cohort patterns of mortality attributable to the leading causes of death from 
degenerative diseases and cancer? This study aims to address these questions and to test 
hypotheses about the roles of period and cohort effects in recent mortality decline with up-
to-date population level mortality data and a rigorous modeling effort. With data from men 
and women aged 20–95 and older over a 40-year period (from 1960–1999) in the United 
States, I analyze temporal patterns of adult mortality attributable to heart disease, stroke, 
lung cancer, and breast cancer. I conduct an APC analysis based on a combination of infor-
mal descriptive devices and formal modeling techniques. A recently developed method of 
estimation—the Intrinsic Estimator (IE) for log-linear APC accounting models (Yang, Fu, 
and Land 2004)—provides a model-based summary of temporal effects of mortality that 
can be delineated into changes across ages, over time, and among birth cohorts.

TEMPORAL CHANGES OF U.S. ADULT MORTALITY
Evident declines for adult, total-cause mortality are noted in recent decades. First, increases 
in life expectancies at birth and for advanced ages have been substantial. Second, after 
showing only small declines from 1954 to 1968, death rates declined steadily from the late 
1960s to the early 1990s (Crimmins 1981). The examination of mortality patterns by cause 
links total mortality with underlying chronic diseases. The United States is among several 
industrialized societies that have entered the age of delayed degenerative diseases—the 
fi nal health state depicted by the epidemiologic transition theory (Olshansky and Ault 
1986). And temporal changes in adult mortality vary by degenerative causes of deaths and 
sex (Manton 2000). Figure 1 shows large reductions in those age-specifi c mortality rates 
between 1960 and 1999 that are attributable to cardiovascular disease (heart disease and 
stroke) across all adult ages for both sexes, sizable increases in rates of lung cancer mor-
tality in adults (especially women) aged 40 and older, and no evident declines in rates of 
female breast cancer mortality.1

Age, Period, and Cohort Distinctions
The conceptual distinctions of age, period, and cohort effects are important to the identifi ca-
tion of different demographic components in the temporal changes in mortality. Age is un-
doubtedly the most important source of variation in vital rates. Mortality risks increase with 

1. The logarithmic transformation of the rates can be interpreted as the proportional increase in rates 
with age.
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the biological process of aging, and the age patterns of mortality change exhibit consider-
able regularities across nations and historical time (Hobcraft, Menken, and Preston 1982). 
Of central focus in the APC analyses of mortality change is the distinction of the other two 
components of temporal effects—namely, period and cohort differences—through the use 
of APC models.

Period effects relate to variations in mortality, by time at which the death is recorded, 
that infl uences all age groups. Period effects subsume a complex set of historical events 
and environmental factors—such as world wars, economic crisis, famine, and pandemics 
of infectious diseases—which infl uence mortality of all society members (Omran 1982). 
Period effects may also arise with public health efforts and medical technology break-
throughs that lead to reductions in mortality rates of all ages (Frost 1939; Mason and 
Smith 1985). In addition to these direct effects, changes in disease classifi cation or diag-
nostic techniques might affect the mortality outcomes of certain diseases (Tarone, Chu, 
and Gaudette 1997).

Cohort effects represent variations in mortality across groups of individuals born in 
the same year or years. Cohort effects may arise when each succeeding cohort carries with 
it the imprint of physical and social exposures from gestation to old age that bear upon its 
morbidity and mortality risks in a specifi c way. Chronic disease epidemiology has long noted 
the importance of early life exposures in explaining the susceptibility to disease and mortal-
ity later in the adulthood. For example, malnutrition (Barker 1998; Kuh and Ben-Shlomo 
2004) and infl ammatory infection (Finch and Crimmins 2004) in utero and during infancy 
adversely affect intrauterine growth and postnatal development and have been hypothesized 
to increase risk of cardiovascular and respiratory diseases, cancer, non–insulin-dependent 
diabetes, metabolism syndromes, and mortality. Cohort effects may also refl ect the impacts 
of lifelong accumulation of exposures to risk factors (Ryder 1965). This is particularly rel-
evant in the examination of chronic diseases and cancer, wherein long-term exposure to a 
carcinogen is the major cause of the disease (Jemal, Chu, and Tarone 2001).

To the extent that period and cohort effects are aggregates and proxies of different 
sets of structural correlates of mortality, such distinctions are especially valuable for better 
identifi cation and understanding of underlying social and environmental factors that are 
amenable for modifi cations or reversions.

Hypotheses of Period and Cohort Effects
Mortality decline in recent history followed major advancement in economic develop-
ment, standard of living, and medical measures (McKeown 1976). It has been argued that 
improved nutrition and reduced exposure to diseases that are associated with economic 
development are likely to produce cohort effects in a population, while the introduction 
of medical techniques is likely to produce period effects. Some studies suggested that the 
overall contribution of medical measures is small for period effects but large for cohort ef-
fects. For example, specifi c birth cohorts in Italy and England/Wales benefi ted substantially 
from these measures (Collins 1982). Other studies of mortality reductions in developed 
countries emphasized strong period effects, especially for older ages after the 1950s in 
some European countries (Barbi and Vaupel 2005; Kannisto et al. 1994). The vast majority 
of previous studies, however, have merely documented the temporal declines in mortality 
based on descriptive plots of changes in death rates by time period and did not explicitly 
nor effectively distinguish period and cohort effects. (See the upcoming methods section for 
details.) Studies using formal APC modeling of mortality mostly suggested the existence of 
independent cohort effects (Hobcraft et al. 1982; Mason and Smith 1985). Distinct period 
and cohort patterns in overall mortality have been found in studies of several industrialized 
countries, including France (Wilmoth 1990), Italy (Caselli and Capocaccia 1989), and the 
United Kingdom (Robertson and Ecob 1999), based on different APC modeling techniques. 
As discussed later in this paper, statistical APC analyses have been largely hampered by 



Trends in U.S. Adult Chronic Disease Mortality, 1960–1999 391

lack of improvement in methodology and have yielded inconsistent fi ndings. Nevertheless, 
they provided preliminary or indirect information regarding these effects.

Although few studies tested the distinct role of period versus cohort effects in recent 
changes in U.S. adult mortality by using multivariate APC analyses, the weight of the evi-
dence points to the possibility that period and cohort factors contribute jointly to survival 
improvements in the U.S. population. Findings, however, are not clear on the shapes and 
relative importance of period and cohort effects as driving forces of mortality reduction. 
In addition, previous fi ndings were restricted to data for older ages or to the time period 
before the 1960s, or to mortality in European populations. Less is known regarding period-
specifi c and cohort-specifi c infl uences that operate on adult mortality in the United States 
in the latter half of the twentieth century.

I hypothesize that period effects continued to contribute to recent mortality change, 
but the potency of such effects may have decreased relative to those in the fi rst half of the 
last century. Although there were continuous mortality reductions during most periods in 
the past 100 years, evidence also exists that the decline was much more dramatic early 
during the twentieth century than during periods after 1960 (White and Preston 1996). 
This indicates that social forces that contributed to mortality decline in previous periods 
(such as the nation’s level of economic development, improved standard of living, or 
advancement in medical measures) may have become less responsible for improvement 
in survival during this period. This is largely due to reductions in or the elimination of 
many infectious diseases as causes of death (Finch and Crimmins 2004; Omran 1982). 
Because period effects result from variations in forces that affect the mortality rates of all 
age groups simultaneously, large period effects are more likely to occur if diseases being 
considered are more acute or infectious in nature and kill individuals of a wide age-range 
alike. The advent and diffusion of new medical technology may effectively prevent the 
spread of such diseases and also elevate survival chances of all affected individuals in a 
relatively short time. As the United States has reached the fourth stage of the epidemio-
logical  transition—that is, the age of delayed degenerative diseases—the leading causes 
of death have shifted to chronic diseases that disproportionately affect older adults, who 
have higher risks of mortality (Olshansky and Ault 1986). Also, the effects of medical 
measures may take longer to translate into widespread improvement in survival detectable 
to the same extent as those for acute diseases.

Meanwhile, I hypothesize that cohort effects contributed to recent mortality change 
independently of period effects. Whereas period-specifi c conditions affect death rates 
at all ages, cohort-specifi c conditions tend to take effect at early ages and depend upon 
subsequent length of exposure to risk factors. This has important implications for chronic 
diseases as causes of death that span longer time intervals since the age of onset. In a study 
of English death rates the nineteenth century, Kermack, McKendrick, and McKinlay (1934) 
attributed the regularity in cohort mortality patterns to a cohort’s health risk as determined 
by environmental conditions in its fi rst 15 years of life. The well-known study of tubercu-
losis mortality conducted by Frost (1939) also pointed to the importance of early life infl u-
ences on cohort experiences rather than on current conditions in the case of a disease that 
has long latency. The study of Finch and Crimmins (2004) further discovered that decreased 
infl ammation during early life in more recent Swedish cohorts may have made an important 
contribution to the historical decline in old-age mortality.

The theory of technophysio evolution also provides alternative explanations to a period 
effects hypothesis that attributes the mortality decline between 1970 and 1990 to health 
interventions during that period (Fogel 2004; Fogel and Costa 1997). The theory implies 
that during the twentieth century, individuals’ health capital changed with the year of birth. 
More recent cohorts fared substantially better in the initial endowment of health capital 
at birth and also enjoy lower rates of health capital depreciation. These improvements led 
to increased physiological capacities in later cohorts that also bode well for effectiveness 
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of medical treatments. This is consistent with mounting evidence in recent literature in 
demography of aging that successive birth cohorts experience later onset of chronic dis-
eases and disabilities (Crimmins, Reynolds, and Saito 1999; Freedman and Martin 1998). 
Fogel (2004) argued that improvements in life expectancy may not exclusively be due to 
medical advancements during those years but may also refl ect improved physiologies by 
later cohorts as a result of exposures, long before 1970, to improvements in health care 
technologies, nutrition, and personal and public health practices. In addition, cohorts 
with more years of schooling have substantial survival advantages (Kitagawa and Hauser 
1973; Lauderdale 2001). The increasing educational attainment in successive birth cohorts 
(Hughes and O’Rand 2004) suggests increases in the amount of health capital available to 
later birth cohorts from better lifestyle choices and health behaviors as well as access to 
medical care that may lead to reductions in cohort mortality levels.

Trends in Mortality by Four Leading Causes
Cardiovascular disease (CVD) and cancer cause more than two-thirds of all deaths in 
the United States.2 As both direct and indirect indicators of the infl uences of a myriad of 
social and behavioral, economic, and environmental factors on population health, CVD 
and cancer mortality rates are crucial for understanding the longevity of men and women. 
Four causes of mortality that represent leading chronic conditions—namely, heart disease, 
stroke, lung cancer, and female breast cancer—are of interest to the current analysis be-
cause their temporal variations have distinct public health and clinical characteristics and 
different implications for socioeconomic changes during the past 40 years.

As with total mortality rates, declines in CVD mortality rates in the United States 
have been projected to continue in the post-1990 period through 2000 (Crimmins 1981). 
Previous studies of changes in CVD mortality were mainly descriptive (e.g., Manton 2000; 
Peltonen and Asplund 1996) and are, therefore, of limited use to generate informed hypoth-
eses about the net period and cohort effects. Since the launch of the Framingham Heart 
Study in 1948, several major risk factors for CVD have been established. These include 
hypertension, high low-density lipoprotein (LDL; “bad” cholesterol) levels, diabetes, low 
socioeconomic status, cigarette smoking, lack of physical activity, and obesity (Barrett-
Connor 1997). On the one hand, increasing knowledge about prevention, diagnosis, and 
treatment of hypertension—together with diffusion of current medical techniques—should 
largely decrease CVD mortality (CDC 1999). On the other hand, the obesity epidemic in 
recent years may reduce the rate of decline (Mokdad et al. 1999; Rogers, Hummer, and 
Krueger 2003). Period and cohort changes in distributions of specifi c risk factors may lead 
to corresponding rise and fall of period and cohort effects of CVD mortality.

Lung cancer and female breast cancer mortality have received more attention in tempo-
ral analyses that use APC regression models. Both have been shown to have characteristic 
period and cohort patterns. Inconsistencies in these patterns, however, preclude conclusive 
inferences of the role of period and cohort effects.

Results concerning period effects of lung cancer mortality are ambiguous. For example, 
Gardner and Osmond (1984) found virtually no period effect when cohort effects are con-
sidered in APC models of lung cancer mortality in England and Wales from 1950 to 1980. 
The authors concluded that the period of time did not appear to be the major infl uence and 
offered a “much modifi ed interpretation,” emphasizing birth-cohort experiences that ac-
corded with known changes in smoking behavior in women. Others found monotonically 
increasing period effects in Belgian female lung cancer mortality that suggests a log-linear 

2. Recent analyses show that cancer supersedes heart disease as the leading killer of Americans under age 
85, based on age-adjusted death rates (Jemal et al. 2005). Among all the cancer death rates, lung cancer is the 
leading cause of deaths for both sexes and is expected to account for 31% and 27% of all cancer deaths in 2005 
for men and women, respectively. Breast cancer has receded to be the second-most common cause of death for 
American women since 1987.
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trend (Clayton and Schiffl ers 1987a) and inverse U-shaped period effects in the United States 
(Jemal et al. 2001). Still others found large fl uctuations in numerical estimates of the effect 
coeffi cients using different model identifying constraints (Kupper et al. 1985). Compared 
with cohort effects, the absolute magnitudes of the period effects are generally small.

In contrast, fi ndings of cohort patterns of lung cancer mortality have been consistent 
and show inverse U-shaped curves across developed countries, with varying peaks among 
cohorts (Gardner and Osmond 1984; Jemal et al. 2001; Lee and Lin 1996; Tarone and Chu 
2000a). Such effects suggest the infl uence of gender-specifi c risk factor exposure and be-
havioral differences, especially cigarette smoking, in the life experience of specifi c birth 
cohorts. Studies have found diverse patterns of smoking across cohorts and the presence 
of sex differences, with recent increases in smoking in later cohorts of females (Harris 
1983; Zang and Wynder 1996). Male cohorts adopted smoking cigarettes in large numbers 
earlier than did females, and this pattern preceded that of females by a decade or two (Lo-
pez 1995). The gender gap in lung cancer mortality that fi rst increased and then decreased 
refl ected this lag in the diffusion of smoking (Pampel 2005). Therefore, it can be expected 
that the peak of the inverse U-shaped male cohort mortality curve precedes that of the fe-
males, and the mortality decline in male cohorts started earlier than that in females.

Period effects of breast cancer mortality differ, depending on analytic methods used 
and the specifi c populations examined. Studies reported continuous declines in mortality 
rates from the 1950s to the 1970s in the United States, Japan, and Canada, slight increases 
in the 1980s, and decreases in recent years (1990–1995) in the United States and Canada 
(Clayton and Schiffl ers 1987b; Tarone and Chu 2000b; Tarone et al. 1997). Several period 
factors can be hypothesized to be responsible for the temporal trends in female breast can-
cer mortality. First, the increase in mortality the 1980s coincided with a rise in diagnosis via 
mammography (Breen and Kessler 1994). Second, medical interventions, such as increased 
use of tamoxifen therapy and early detection, can temper the increases and even lead to 
decreases in deaths from breast cancer (Tarone et al. 1997). Third, the link between weight 
gain during adult life and the increased risk of breast cancer (Eliassen et al. 2006) suggests 
possible increases in mortality due to the large increases in obesity rates after 1980s.

There is evidence of large cohort effects in U.S. breast cancer mortality that show 
steep increases until the peak in 1925, followed by moderations until the mid-1940s, and 
decreases for cohorts born after 1950 (Tarone and Chu 2000b; Tarone et al. 1997). The 
exposure of breast tissue to endogenous estrogens is a known risk factor for breast cancer 
(MacMahon, Cole, and Brown 1973). Fertility-related behaviors, such as reductions in 
completed pregnancies and delaying of childbearing to later ages, are socially and cultur-
ally regulated and determine the length of hormonal exposure. Recent fertility changes in 
women—including declines in the proportion ever marrying and increases in the mean age 
at marriage (Schoen et al. 1985), accelerated labor force attachment among baby boomers 
that reduced lifetime births (Schoen et al. 1997), and delayed births to progressively later 
ages (Yang and Morgan 2003)—may be consequential for cohort changes in the exposure 
to this risk factor. It is, therefore, possible that changes in female cohort fertility patterns 
lead to cohort variations in breast cancer mortality (Tarone et al. 1997). However, this hy-
pothesis found limited support in previous studies. Manton (2000) found only small cohort 
differences in age-specifi c death rates from breast cancer. Tarone and colleagues (Tarone 
and Chu 2000b; Tarone et al. 1997) found stable or decreasing rates of mortality for baby 
boomers who experienced decreased fertility because of increased female labor force par-
ticipation and uses of oral contraceptives.

Extensive methodological discussions of APC model specifi cations and identifi ca-
tion problems are available elsewhere (see, e.g., Mason and Wolfi nger 2002; Robertson, 
Gandini, and Boyle 1999), but the empirical studies cited earlier give examples of both 
the power of such models in delineating cohort effects from the age and period effects as 
well as the problems associated with inconsistencies of fi ndings owing to different model 
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 assumptions used. This study combines conventional methods of APC analyses with a 
new statistical approach to provide new evidence on the age, period, and cohort effects of 
U.S. adult mortality.

DATA
Data on numbers of deaths used in this study are from the Multiple Cause of Death public 
use fi les of all U.S. death certifi cates reported to the Centers for Disease Control and Pre-
vention, National Center for Health Statistics (NCHS) for adults aged 20 and older from 
1960 to 1999. The underlying cause of death is reported on the death certifi cate by the 
physician or other certifi er. The medical condition for each cause of death is numerically 
coded, according to the manual of the International Classifi cation of Diseases (ICD), which 
changed during the 40-year period. The ICD codes changed from the 7th through the 10th 
revision for the four causes of deaths examined in this study: namely, heart disease, stroke, 
lung cancer, and female breast cancer. However, recent studies found that ICD revisions 
have little effect on the temporal trends for the four causes in that these cause-of-death cat-
egories represent catastrophic health events and are much less subject to major diagnostic 
errors over time than other causes (CDC 1999). 

Data on population exposure to risk by age and sex from 1960 to 1999 were taken 
from U.S. Census Bureau estimates provided by the Human Mortality Database (HMD) of 
the University of California, Berkeley (available online at http://www.mortality.org). For 
most of the age range, the HMD used either linear interpolation of population estimates or 
intercensal survival methods. At ages 80 and older, the HMD used population estimates that 
were computed using the methods of extinct cohorts and survivor ratios.

Death rates are then calculated as the ratio of reported number of deaths to population 
exposure. The tabular rate data structure is shown in a diagram in Figure 2. In this rectangu-
lar age by period array, age-specifi c death rates are summarized in an a × p table for a age 
groups and p time periods of equal interval lengths. The diagonal elements of the matrix 
connected by the dashed arrows correspond to (a + p – 1) birth cohorts. In the following 
analysis, I use 16 fi ve-year age groups, ranging from ages 20–24 to 95 and older; and eight 
fi ve-year time periods, from 1960–1964 to 1995–1999.3 This yields 23 successive, 10-year 
birth cohorts labeled by their central birth years. The oldest cohort (born before 1865) cor-
responds to the bottom-left cell in the diagram, and the youngest cohort (born between 1970 
and 1980; the 1975 cohort) corresponds to the top-right cell in the diagram.

ANALYTIC METHODS

Descriptive Analysis

The majority of previous studies have relied on two analytic approaches to depict the time 
trends by age, period, and birth cohort. One common practice is to use summary measures 
that are independent of age composition, such as standardized indices (age-standardized 
death rates) arrayed by time periods. The other device more relevant to APC analyses is a 
graphical display of the table of age- and period-specifi c rates or age- and cohort-specifi c 
rates. An example of age- and period-specifi c rates is given in Figure 1. This fi gure illus-
trates that both sexes experienced declines in age-specifi c death rates from heart disease 
and stroke over time for all adult ages. Unlike the continuous declines in total mortality at 
older ages in European countries (Kannisto et al. 1994), in the United States, the declines 
decreased in older ages for heart disease mortality but increased in lung cancer mortality 
after age 55 for men and after early adulthood for women over the 40-year period. The 
period changes in age-specifi c female breast cancer death rates show a modest crossover 

3. The rates were also computed and modeled for single year of age and for each year. The results are similar 
and are omitted for parsimony.
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that indicates improvement of survival that was restricted to ages 20–65 and a slight in-
crease in postmenopausal breast cancer mortality. Consistent with previous results on co-
hort trends in death rates cause, the data (not presented) show continuous cohort declines 
in heart disease and stroke mortality, large increases in lung cancer mortality, and small 
cohort differences in breast cancer mortality.

The preceding two approaches do not explicitly consider an age-period-cohort modeling 
framework. Both are descriptive and share two disadvantages. First, they describe only vari-
ation in the rates attributable to factors associated with either period of death or birth cohort. 
Second, neither summarizes the rate table satisfactorily. Standardization ignores trends at 
different ages; and graphical methods represent all available rates, thus providing no sum-
mary at all (Osmond 1985). In addition, they each have their own limitations. Standardized 
rates depend on the selection of an appropriate standard population-age composition and 
give more weight to the older ages (Schoen 1970). Substantial population aging across the 
decades makes the choice even more diffi cult. Graphs of rates from two-way age-by-period 
tables are helpful for qualitative impressions about temporal patterns, but they provide no 
quantitative assessment of the source of mortality change (Kupper et al. 1985). For example, 
in Figure 3, the curve of age-specifi c lung cancer death rates for females in any given time 
period—say, 1995–1999—cuts across a number of birth cohort curves, such as 1900, 1905, 
1910, and 1920. Therefore, the shape of the period curve is affected by both varying age 
effects and cohort effects. The question of how these effects operate simultaneously to shift 
the period curve motivates the use of statistical regression modeling.

Figure 2. Tabular Rate Data Structure
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APC Accounting Models

APC multiple classifi cation/accounting models (Mason et al. 1973) have been a popular 
tool for separately estimating the effects of these three variables and have received con-
siderable attention in statistical demography (Fienberg and Mason 1985). Although previ-
ous demographic studies sought to determine whether there are distinct contributions of 
age, period, and cohort variation to mortality changes, few of them succeeded in taking 
all three dimensions of temporal trends into account simultaneously in multivariate analy-
sis. One problem in the early age models was that the cohort effects were not explicitly 
controlled. Studies that attempted to identify period and cohort effects did so only loosely 
because the linear dependence among age, period, and cohort components creates a model 
identifi cation problem for three-factor analysis. The methods on which previous studies of 
period and cohort effects are based may not be statistically rigorous and powerful (Hob-
craft et al. 1982). It follows that the fi ndings are not complete and accurate and, conse-
quently, are diffi cult to interpret.

Figure 3. U.S. Female Lung Cancer Mortality Rates per 100,000, by Age at Death, Period of Death, 

and Birth Cohort
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In order to specify the models to be estimated, it will be useful to review briefl y the 
APC accounting model outlined in Mason et al. (1973). The model for tabular mortality 
data can be written in log-linear regression form as

log(rijk) = log(dijk / nijk) = �  + αi + βj + γk, (1)

where rijk denotes the expected death rate in age-period-cohort cell (i, j, k); dijk denotes the 
expected number of deaths and is assumed to be distributed as a Poisson variate; nijk is the 
population or exposure-at-risk, the log of which is also termed as the offset or adjustment 
for the log-linear contingency table model; �  denotes the intercept or adjusted mean rate; αi 
denotes the ith row age effect for i = 1, . . . , a age groups; βj denotes the jth column period 
effect for j = 1, . . ., p periods; and γk denotes the kth diagonal cohort effect for k = 1, . . . , 
(a + p – 1) cohorts, with k = a – i + j. In conventional practice, one of each of the αi, βj, and 
γk coeffi cients is set to zero as a “reference” age, period, or cohort category against which 
the estimated coeffi cients for the other categories can be compared. An alternative param-
eterization is to center the parameters so that they sum to zero: Σiαi = Σjβj = Σkγk = 0.

The key problem in APC analysis using Eq. (1) is the “identifi cation problem.” Rewrit-
ing Eq. (1) in matrix form, we have

Y = Xb, (2)

where Y is a vector of logged death rates, and X is the regression design matrix that 
 contains dummy variable column vectors for the model parameter b of dimension m = 
1 + (a – 1) + (p – 1) + (a + p – 2), and b = (� , α1, . . . , αa – 1, β1, . . . , βp – 1, γ1, . . . , 
γa + p – 2)T. Assuming for now that the vector b is to be estimated by ordinary least squares, 
the normal equations to be solved takes the form XTXb = XTY. The linear relationship 
between the age, period, and cohort variables (period = age + birth year) translates to a 
design matrix, X, that is one less than full column rank. This implies that XTX is singu-
lar: the inverse of XTX does not exist. It follows that solution to normal equations is not 
unique. Therefore, it is not feasible to estimate the three effects separately without assign-
ing certain additional identifying constraints.4

One possible solution is to estimate a reduced age and period, two-factor model that 
contains no cohort effects and can be written as

log(rij) = log(dij / nij) = �  + αi + βj. (3)

Because cohort effects can be interpreted as a special form of interaction effect between 
the categorical age and period variables, Eq. (3) rests on the assumption of no interaction 
effect (Fienberg and Mason 1985). In particular, the expected rate in age by period cell 
(i, j) is modeled as a function of the marginal or gross effects of age i and period j only, 
and not also of the cell-specifi c effect—such as γa – i + j—which is a function of both i and 
j. Violation of this assumption can be detected by plots of age-specifi c death rates by time 
period, and a lack of parallelism among these curves suggests birth cohort effects that are 
operating (Kupper et al. 1985). The same applies to period effect as a particular type of 
age-cohort interaction (Holford 1991). The present study fi nds nonparallelism among age 
curves by period in rates of mortality from all causes (see, e.g., Figure 3), confi rming the 
inadequacy of age-period effects model. Age curves by cohort also show nonparallelism 

4. The APC accounting model for mortality rates as represented in Eq. (1) is a Poisson log-linear model and is 
a member of the class of generalized linear models (GLM) that can take various forms, such as normal and logistic 
models. The identifi cation problem presented in the context of least squares estimation applies in the same way to 
all kinds of models in this family, as does the use of the intrinsic estimator (IE) defi ned later in the text.
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only in plots of lung cancer and breast cancer mortality, but not in those of heart disease 
and stroke mortality. Therefore, period effects are likely more important in some causes of 
deaths than others. Thus, these preliminary graphical analyses argue against the plausibility 
of reduced two-factor models.

The most widely used approach to estimating the full APC models is to place at least 
one equality constraint on two or more of the age, period, or cohort coeffi cients (e.g., 
Fienberg and Mason 1985; Mason et al. 1973). This has been referred to as the constrained 
generalized linear models (CGLIM) approach (Yang et al. 2004). For example, one can 
constrain the effect coeffi cients of two adjacent age groups, periods, or cohorts to be equal 
to identify the model (see, e.g., Mason and Smith 1985; Yang et al. 2004). The main criti-
cisms of this approach and its variants are that different equality constraints yield different 
effect coeffi cient estimates but identical model fi t; and that the model estimates are sensi-
tive to the choice of the identifying constraints that depends on strong prior or external 
information that rarely exists or can be well verifi ed (Mason and Wolfi nger 2002; Robertson 
et al. 1999).5 Therefore, analysts have been advised that any statistical modeling of APC 
data should be carried out in conjunction with a detailed descriptive analysis (Kupper et al. 
1985; Mason and Smith 1985).

Intrinsic Estimator Analysis
Recently, a promising alternative modeling approach was described and evaluated by Yang 
and colleagues (2004). Incorporating recent methodological developments using estimable 
functions in biostatistics, a new method of estimation—termed the intrinsic  estimator 
(IE)—yields a unique solution to Eq. (1) that is determined by the Moore-Penrose gen-
eralized inverse and removes the arbitrariness of linear constraints on parameters. This 
solution is the only estimable function of the parameter vector, and it estimates both linear 
and nonlinear components (Fu 2008). It also achieves model identifi cation with minimum 
assumption imposed to data. To illustrate this comparative advantage of the IE, I briefl y 
review the nature and properties of this estimator.

First, the exact linear dependency between age, period, and cohort variables in Eq. (2) 
is mathematically equivalent to 

XB0 = 0. (4)

This equation states the property that X is singular and that the product of X and some 
nonzero vector B0 is 0 (see also Christensen 2002). Kupper et al. (1985) showed that B0 

has the specifi c form that is a function of the design matrix. Specifi cally, B
B

B0
0

0
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5. Subsequent developments of APC modeling can largely be considered variants of the APC accounting 
models using different constraints. Generally speaking, strong assumptions and sensitivities of results to choice 
of assumptions have largely prohibited reliable and consistent patterns to be revealed. Statisticians acknowledge 
the limitations of existing approaches and conclude that APC analysis is still in its infancy (Kupper et al. 1985; 
Mason and Wolfi nger 2002).
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It is important to note that the vector B0 is fi xed or nonrandom because it is a function 
solely of the number of age groups (a) and periods (p). The fact that the fi xed vector B0 is 
independent of the response variable Y suggests that it should not play any role in the es-
timation of effect coeffi cients. However, this principle may be violated in the conventional 
CGLIM approach, as illustrated below.

Second, the parameter space of the APC regression Eq. (2), P, can be decomposed 
into the direct sum of two linear subspaces that are orthogonal (independent) to each other: 
P = N �  Θ, where one subspace (N ) denotes the null space of X defi ned by the vector B0, 
corresponding to the unique zero eigenvalue of the matrix XTX, and the other subspace (Θ) 
denotes the complement non-null space orthogonal to N. Note further that B0 represents 
a special direction in the parameter space with Euclidean norm or length 1. This special 
direction in the parameter space is defi ned by the difference between two arbitrary CGLIM 
estimators ˆ ˆb b1 2− :

X b b X B1 2 0( ˆ ˆ ) ( ) ,− = =t 0  (6)

where t is an arbitrary real number, and tB0 represents arbitrary linear trends. Thus, the dif-
ference of any two arbitrary CGLIM estimators must be in the null space of X: the space 
defi ned by B0. Different equality constraints of the CGLIM estimators assign different values 
to t. And the arbitrary term in these parameter vectors, tB0, leads to different estimates.

The structure of the vector B0 (as shown in Eq. (5)) and the nature of CGLIM estima-
tor (as shown in Eq. (6)) suggest that the infl uence of null vector B0 that varies only with 
the number of age and period groups and is independent of death rates should be removed 
from the estimation. And using a vector-space projection approach, this can be realized. 
Corresponding to the parameter space decomposition is the decomposition of the param-
eter vector:

b = b0 + tB0, (7)

where b0 = Pprojb is a special parameter vector that is the projection of the parameter vector 
b to the non-null space Θ. The geometric projection implies that because the vector b0 is or-
thogonal to—and, therefore, independent of the arbitrary component tB0—b0 is an estimable 
function and is invariable to the choice of linear constraints. No other constrained functions 
of b, with t not equal 0, are estimable (for details see Yang et al. 2004: fi gure 1). 

It follows that each of the infi nite number of possible estimators of parameter vector of 
Eq. (2), denoted as b̂ , can be written as a linear combination of two parts that are orthogo-
nal or independent to each other in the parameter space:

ˆ ,b B B0= + t  (8)

where B is the special estimator—the intrinsic estimator (IE)—that estimates the special 
parameter vector b0 defi ned in Eq. (7), corresponding to t = 0, that satisfi es the projection. 
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The projection of the estimator onto the non-null space yields the IE: B B B b0 0
T= −( ) ˆI .6 

Alternatively, the IE can be obtained using the principal component regression algorithm 
exemplifi ed in the Appendix.

The geometrical projection shows that the IE may also be viewed as a constrained es-
timator. However, in contrast to the equality constraints on coeffi cients that are imposed in 
conventional approaches, the constraint imposed by the IE to identify Eq. (2) is a constraint 
on the geometric orientation of the parameter vector b in parameter space. Specifi cally, 
the IE imposes the constraint that the direction in parameter space defi ned by the unique 
eigenvector B0 in the null space of the design matrix X have zero infl uence on the parameter 
vector to be estimated. This constraint is reasonable in that B0 is fi xed and solely a function 
of the dimension of the age by period data matrix and therefore does not relate to the ob-
served mortality rates or frequencies being analyzed. Removing this component of B0 from 
the estimates reduces the subjectivity associated with conventional constraints.

To summarize, the new approach of using the IE to estimating the APC  accounting 
model yields unique solutions and identifi es the model by imposing minimum  assumptions 
of prior information. Yang et al. (2004) further showed that the IE possesses the desirable 
statistical properties in fi nite-time-period APC analyses of tabulated rates for a fi xed num-
ber of time periods. Note that identifying constraints obtained by the CGLIM methods 
or any linear combination of IE estimates of the coeffi cient vector will also identify the 
model and yield an identical model fi t to the data. Still, any substantial departure from 
the IE estimates, which incorporates a large nonzero t, will not yield an estimable func-
tion and thus will induce bias in the estimates. In contrast, for a fi nite number of time 
periods of data, the IE produces an unbiased estimate of the coeffi cient vector. Also, the 
IE has a variance smaller than that of any CGLIM estimators—unless, again, the CGLIM 
constraints result in t = 0. Therefore, it also has relative statistical effi ciency. In addition, 
Yang and colleagues noted that as the number of time periods in the analysis increases, 
the bias in CGLIM estimators decreases, and the CGLIM estimators converge to the IE.7 
Yang and colleagues also described the statistical consistency of the IE: namely, that 
under suitable regularity conditions on the error term process and a fi xed set of age cat-
egories, the IE will converge asymptotically to the “true” parameters that generate the 
sequence of APC rates.8

The empirical analysis of U.S. female total mortality rates conducted by Yang et al. 
(2004) further suggested that the IE yields results that are similar to those of the CGLIM es-
timators under sensible equality constraints, but the IE produces point and interval estimates 
in a direct way, without the necessity of choosing from among many possible constraints 
on coeffi cients that may not be immediately verifi able in the data. The consistency of the 

6. The special estimator B in Eq. (8) is determined by the Moore-Penrose generalized inverse. See, for ex-
ample, Searle (1971:16–19) for expositions of its defi nition and properties.

7. These properties derive largely from the fact that the length of the arbitrary eigenvector B0 decreases with 
increasing numbers of time periods of data and, in fact, converges to zero as the number of periods of data increases 
without bounds. Therefore, for any two estimators b̂ B B1 0= + t1  

and b̂ B B2 0= + t2 , where t1 and t2 correspond 
to different identifying constraints placed on Eq. (2), as the number of time periods in an APC analysis increases, 
the difference between these two estimators decreases towards zero. In fact, the estimators converge toward the 
intrinsic estimator B.

8. The statistical study of the asymptotic property is beyond the scope of this paper. For more details and 
mathematical proofs, see Fu and Hall (2006). It has been argued that as the number of time periods of data in-
creases, there are defi nite bounds on the differences between the effect coeffi cients estimated by the IE and the 
effect coeffi cients of the true period and cohort processes. Because mathematical proofs are diffi cult to relate to 
real-world situations and must rely on assumptions that may be violated, additional studies of model validation 
have been undertaken via simulation analyses that compare results from application of an estimator, such as the 
IE or CGLIM, to artifi cial data produced by computer simulation wherein an analyst knows the true form of the 
underlying model that generated the data. These studies found that IE recovers the true parameters, while CGLIM 
estimators do not. Details of these results are available upon request.
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results achieved using the IE and certain CGLIM estimators thus provides an empirical 
validation of the IE constraint.9

The remainder of this paper employs the Poisson log-linear model to analyze temporal 
trends of cause-specifi c mortality. In combination with descriptive analyses, I use multiple 
model specifi cations as a means of model validation, including the two-factor models, the 
CGLIM estimators, and the IE method of estimation for the full APC accounting models. 
The log-linear Poisson regression coeffi cients, standard errors, and model fi t are computed 
using Stata 9.2.10

RESULTS 

Model Comparison

Following the example of Yang et al. (2004), I conducted comparisons of conventional 
constrained-coeffi cients and the IE analyses. I fi rst estimated six reduced log linear mod-
els: three gross-effects models—namely, model A for age effects, model P for period ef-
fects, and model C for cohort effects—and three, two-factor models—namely, AP, AC, 
and PC effects models. I then estimated the full APC model wherein all three factors are 
simultaneously controlled. Goodness-of-fi t statistics were calculated and used to select the 
best- fi tting models for male and female mortality data. Because likelihood ratio tests tend 
to favor models with a larger number of parameters, I calculated the two most commonly 
used, penalized-likelihood model selection criteria: Akaike’s information criterion (AIC) 
and Bayesian information criterion (BIC), which adjust the impact of model dimensions 
on model deviances.11 Table 1 presents the comparisons of the goodness-of-fi t statistics 
from the preceding models using the AIC and the BIC. Because age is the most important 
source of variation in mortality, models with no age effects (P, C, and PC) have shown to 
be signifi cantly lack of fi t and are thus omitted from Table 1. For both male and female data 
and all causes of mortality, the AIC and BIC statistics imply that the full APC models fi t 
the data signifi cantly better than any of the reduced models.

For all of the causes of death in the analyses, I then estimated APC models for males 
and females with different identifying constraints using the CGLIM approach. I tested 
three possible types of equality constraints: one on two adjacent age coeffi cients (e.g., 
20 = 25), one on period coeffi cients (e.g., 1960 = 1965), and the other on cohort coef-
fi cients (e.g., 1865 = 1870). In the interest of space, these model coeffi cients are not pre-
sented. As expected, because all of these models incorporate all three of the age, period, 
and cohort factors, they fi t the data equally well (see Table 1). However, they differ in the 
coeffi cient estimates. Both the exploratory graphical analyses described earlier and the re-
sults from the gross-effects models suggest that the mortality risks attributable to all four 
causes considered—that is, two types of cardiovascular disease and two types of cancer—
vary substantially across fi ve-year age groups. Therefore, the age effect constraints may 
be less reasonable than the latter two. For heart disease and stroke mortality, the early two 
periods and two earliest cohorts born long before 1900 did not exhibit large changes and 

9. This is only one example of comparative analysis, and additional empirical studies are needed before con-
cluding that the IE produces substantively meaningful and empirically valid results under various circumstances. 
Any statistical model has its limitations and may break down under some circumstances. The identifi cation of these 
limits for the IE is a topic that merits additional research.

10. The estimation of the full APC models using the CGLIM and IE approach are through apc_cglim.ado 
and apc_ie.ado, respectively. Both ADO fi les may be obtained by typing ssc install apc on the Stata command line 
on any computer connected to the Internet, or downloaded from the Statistical Software Components archive at 
http://econpapers.repec.org/software/bocbocode/S456754.htm. The programs are documented more fully in Stata 
Help fi les.

11. Recent methodological literature suggests that although the two criteria have different foundations and 
penalty terms, useful information for model selection can be obtained from using them together and selecting 
models favored by both criteria (Kuha 2004).
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may both be deemed as having equal effects. The results show that the CGLIM estimates 
under these two constraints have similar trends and that both are highly consistent with 
the IE results. For lung cancer and breast cancer mortality, the period changes were more 
pronounced and continuous, and were less likely to give credence to the equality con-
straint. The cohort equality constraints, on the other hand, produced remarkably similar 
results to those of the IE.12 In addition, the results on period and cohort effects are also 
highly consistent with a prior epidemiological study that used earlier data and APC mod-
els to project lung cancer mortality rates to year 2000 (Osmond 1985).

12. The similarity between the IE results and the CGLIM estimates obtained using the equality assumptions 
of certain period or cohort coeffi cients means that the latter result in t values that are suffi ciently close to 0 in 
Eq. (8), so that the CGLIM estimators are close to being independent of the infl uence of the design matrix.

Table 1. Goodness-of-Fit Statistics for Age-Period-Cohort Log Linear Models of U.S. Adult 

 Mortality

 
Male Female  __________________________________   __________________________________

Cause of Death A AP AC APCa A AP AC APCa

Total

Deviance 978,783 108,289 45,427 25,828 695,527 40,443 72,089 18,903

AIC 979,007 108,499 45,607 25,996 695,751 40,653 72,269 19,071

BIC 979,019 108,510 45,617 26,005 695,763 40,664 72,279 19,080

Heart Disease

Deviance 1,110,502 63,080 14,811 5,533 782,210 52,225 18,638 9,243

AIC 1,110,726 63,290 14,991 5,701 782,434 52,435 18,818 9,411

BIC 1,110,738 63,301 15,000 5,711 782,446 52,446 18,827 9,420

Stroke

Deviance 543,470 7,260 17,947 1,027 655,622 12,660 25,967 1,480

AIC 543,694 7,470 18,127 1,195 655,846 12,870 26,147 1,648

BIC 543,706 7,482 18,137 1,204 655,858 12,881 26,157 1,657

Lung Cancer

Deviance 115,651 51,520 7,073 611 320,050 42,126 5,296 245

AIC 115,875 51,730 7,253 779 320,274 42,336 5,476 413

BIC 115,887 51,741 7,262 788 320,286 42,347 5,486 422

Breast Cancer 
Deviance     9,748 7,403 1,553 512

AIC     9,972 7,613 1,733 680

BIC     9,984 7,625 1,743 689

df 112 105  90 84 112 105  90 84

Notes: AIC = deviance + 2df ; BIC = deviance + log(N) × df, where df  is the degrees of freedom used by model parameters. 
Th e smaller the AIC and BIC, the better the model fi t.

aTh e full APC models, using the intrinsic estimator and conventional equality coeffi  cient constraints, yield the same model 
fi t.
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Intrinsic Estimates of Age, Period, and Cohort Effects

The results from the estimation of the full APC models using the IE method for females 
are displayed in Table 2. This table summarizes the model coeffi cients, their standard er-
rors, model deviance, and overdispersion coeffi cient.13 To facilitate the comparisons of 
the temporal effects of mortality by cause and sex, Figures 4–6 plot the point estimates 
of selected effect coeffi cients from each model. These plots compare the coeffi cients of 
successive categories within period and cohort classifi cations and show the net period 
and cohort trends of mortality. The results largely accord with the observed patterns from 
descriptive displays of the data, but they also offer additional insights of distinct sources 
of mortality change.14

The IE analysis of the total mortality change shows the dominance of age and cohort 
effects over period effects. When all three factors are considered in the APC models, there 
seem to be only modest period effects but substantial cohort effects. The fi nding of mortal-
ity declines by cohort largely supports the contention that nutrition, reduced exposure to 
disease, and improved medical measures all contributed to increasing health capital in more 
recent cohorts that improved cohort survival. And cohort trends in educational attainment 
may be one important mechanism through which these infl uences were realized.

Figure 4 shows that cohort differences in total mortality mirror cohort changes in 
education levels for cohorts born from the mid-1900s through the mid-1960s. Cohort 
effects on mortality show persistent declines from early cohorts until that of the early 
baby boomers (1946–1955) and decreases in the rates of declines for males. The data on 
cohort educational attainment show that succeeding cohorts from the Young Progressives 
(1906–1915) to the early baby boomers have increasingly higher proportions of high school 
graduates and those with some college education. Although the baby boomers (1946–1964) 
had higher levels of education than their parents born in the Jazz Age (1916–1925) and 
the Depression Era (1926–1935), the educational achievement leveled off across the baby 
boomer cohorts. The gender-specifi c attainments show a slight drop of education level 
among late–baby boomer men and an educational advantage for late–baby boomer women 
(Hughes and O’Rand 2004). Furthermore, there is evidence that this trend has continued 
among cohorts younger than the baby boomers (Gamoran 2001). These patterns correspond 
well with the slowdown in recent cohort mortality decline among males and the relatively 
smoother progressive decline among females.

Age effects of mortality attributable to heart disease generally exhibit exponential 
increases, and this is consistent with previous fi ndings. There is also a notable sex differ-
ence in the rates of changes in mortality risks with age. Although women’s mortality risks 
show log-linear increases with age, those for men show a faster increase before age 55 but 
a slower increase afterward. The decrease of the acceleration rate occurring in middle-aged 
men is intriguing. A conventional view relates this change in sex difference to hormonal 
effects that may protect premenopausal women against higher cholesterol levels, a benefi t 
lost in postmenopausal women. However, a review of recent studies indicated that meno-
pause has no discernible effect on the age pattern of coronary heart disease and that male 
midlife mortality change is more compatible with a change in male hormones than with 
menopause (Barrett-Connor 1997).

13. For both the CGLIM and IE models, the Poisson variance function is assumed to have a multiplicative 
overdispersion factor that can be estimated by dividing the deviance by degrees of freedom (df ). The overdispersion 
coeffi cients were estimated via the quasi-likelihood method (McCullagh and Nelder 1989).

14. A caveat for interpreting the separate results for males and females is that these are not absolute levels 
of mortality rates, but rather model effect coeffi cients. The former can be compared directly based on the same 
scale, such as deaths per 100,000 persons. The latter, however, indicate only relative trends within each gender-
specifi c population.
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Table 2. Intrinsic Estimates for the U.S. Female Adult Mortality Rates by Cause

 All Causes Heart Disease Stroke Lung Cancer Breast Cancer

Intercept –4.571 –6.064 –7.223 –8.922 –8.007
 (0.007) (0.018) (0.014) (0.022) (0.017)

Age

20–24 –2.032 –3.344 –3.082 –4.148 –4.495
 (0.032) (0.101) (0.059) (0.102) (0.094)

25–29 –1.995 –2.964 –2.681 –3.357 –2.564
 (0.029) (0.079) (0.046) (0.061) (0.036)

30–34 –1.819 –2.504 –2.228 –2.252 –1.362
 (0.026) (0.063) (0.037) (0.037) (0.023)

35–39 –1.555 –1.977 –1.766 –1.253 –0.639
 (0.023) (0.049) (0.029) (0.026) (0.018)

40–44 –1.245 –1.436 –1.342 –0.495 –0.137
 (0.020) (0.039) (0.024) (0.021) (0.016)

45–49 –0.915 –0.970 –0.972 0.088 0.245
 (0.017) (0.032) (0.020) (0.017) (0.013)

50–54 –0.596 –0.521 –0.671 0.507 0.505
 (0.015) (0.026) (0.017) (0.014) (0.012)

55–59 –0.295 –0.101 –0.400 0.826 0.631
 (0.013) (0.022) (0.015) (0.012) (0.011)

60–64 0.026 0.323 –0.018 1.074 0.702
 (0.011) (0.018) (0.012) (0.010) (0.010)

65–69 0.349 0.708 0.429 1.262 0.754
 (0.010) (0.015) (0.010) (0.010) (0.009)

70–74 0.701 1.107 0.942 1.389 0.821
 (0.009) (0.013) (0.009) (0.011) (0.009)

75–79 1.072 1.504 1.472 1.422 0.891
 (0.008) (0.012) (0.008) (0.012) (0.010)

80–84 1.484 1.932 1.996 1.397 0.989
 (0.008) (0.012) (0.009) (0.015) (0.011)

85–89 1.896 2.352 2.454 1.320 1.111
 (0.009) (0.014) (0.010) (0.018) (0.013)

90–94 2.273 2.746 2.802 1.187 1.199
 (0.011) (0.017) (0.012) (0.022) (0.017)

95+ 2.652 3.144 3.064 1.031 1.348
 (0.014) (0.021) (0.016) (0.031) (0.024)

Period

1960–1964 –0.115 –0.119 0.123 –1.100 –0.283
 (0.009) (0.015) (0.010) (0.014) (0.009)

1965–1969 –0.064 –0.075 0.136 –0.757 –0.193
 (0.008) (0.012) (0.008) (0.011) (0.008)

1970–1974 –0.042 –0.051 0.146 –0.391 –0.114
 (0.007) (0.009) (0.006) (0.008) (0.007)

1975–1979 –0.081 –0.079  –0.001 –0.076 –0.051
 (0.007) (0.008) (0.006) (0.005) (0.006)

1980–1984 –0.034 0.006 –0.118 0.231 0.045
 (0.007) (0.008) (0.006) (0.005) (0.006)

 (continued)
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(Table 2, continued)

 All Causes Heart Disease Stroke Lung Cancer Breast Cancer

Period (cont.)

1985–1989 0.044 0.065 –0.156 0.489 0.155
 (0.007) (0.009) (0.007) (0.006) (0.006)

1990–1994 0.094 0.084 –0.141 0.719 0.221
 (0.007) (0.011) (0.008) (0.009) (0.007)

1995–1999 0.197 0.169 0.011 0.886 0.220
 (0.008) (0.014) (0.009) (0.012) (0.008)

Cohort

1865 0.939 1.185 1.213 0.756 0.820
 (0.060) (0.065) (0.043) (0.235) (0.120)

1870 0.937 1.222 1.203 0.872 0.809
 (0.031) (0.037) (0.024) (0.092) (0.057)

1875 0.900 1.209 1.177 0.820 0.774
 (0.021) (0.027) (0.019) (0.056) (0.037)

1880 0.834 1.149 1.125 0.721 0.685
 (0.016) (0.022) (0.016) (0.044) (0.029)

1885 0.748 1.062 1.041 0.593 0.603
 (0.014) (0.019) (0.014) (0.038) (0.025)

1890 0.653 0.956 0.937 0.482 0.538
 (0.012) (0.018) (0.014) (0.034) (0.023)

1895 0.556 0.837 0.820 0.422 0.474
 (0.011) (0.017) (0.013) (0.031) (0.022)

1900 0.449 0.695 0.673 0.402 0.404
 (0.011) (0.017) (0.014) (0.029) (0.021)

1905 0.331 0.523 0.494 0.465 0.372
 (0.011) (0.018) (0.014) (0.027) (0.020)

1910 0.243 0.364 0.330 0.580 0.342
 (0.011) (0.020) (0.016) (0.025) (0.019)

1915 0.148 0.179 0.159 0.653 0.294
 (0.012) (0.023) (0.017) (0.024) (0.019)

1920 0.060 0.005 0.003 0.635 0.209
 (0.013) (0.026) (0.019) (0.024) (0.020)

1925 –0.018 –0.151 –0.136 0.587 0.130
 (0.015) (0.029) (0.022) (0.024) (0.020)

1930 –0.124 –0.304 –0.250 0.461 –0.015
 (0.017) (0.033) (0.025) (0.024) (0.021)

1935 –0.249 –0.452 –0.358 0.275 –0.165
 (0.019) (0.039) (0.028) (0.025) (0.022)

1940 –0.416 –0.651 –0.506 –0.008 –0.284
 (0.022) (0.045) (0.032) (0.027) (0.023)

1945 –0.567 –0.856 –0.672 –0.344 –0.394
 (0.024) (0.051) (0.035) (0.029) (0.024)

1950 –0.678 –1.021 –0.832 –0.759 –0.518
 (0.026) (0.060) (0.040) (0.032) (0.026)

1955 –0.732 –1.108 –0.933 –0.972 –0.696
 (0.030) (0.071) (0.047) (0.037) (0.029)

 (continued)
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Similar to the period trends in total mortality, period effects of heart disease mortal-
ity are small when simultaneously estimated with the age and cohort effects, as shown in 
Figure 6. In contrast, cohort effects shown in Figure 5 suggest that both males and females 
had large monotonic declines in heart disease deaths for most of the pre–baby boomer 
cohorts. The declines slowed considerably for female cohorts, starting with the late baby 
boomers, and leveled off for the same male cohorts. These mortality changes for late baby 
boomers and more recent cohorts are similar to those found in the analysis of total mortality 
and, therefore, also refl ect the cohort differences in socioeconomic attainment. The modest 
increase in heart disease mortality rates for the most-recent male cohorts also suggests the 
effects of changes in other major heart disease risk factors that are associated with nutri-
tional and lifestyle choices.

Age effects of stroke mortality are similar to those of heart disease mortality. Gender 
differences in the growth rates differ across the adult ages. It has been suggested that es-
trogen has both neuroprotective and neurodeleterious effects, which may contribute to the 
variable sex mortality differences at different ages (Fullerton et al. 2002).

Period effects of stroke mortality are modest and comparable to those of heart  disease 
mortality. Different from cohort effects of heart disease mortality, declines in stroke 
 mortality are largely continuous from the earliest to the most recent cohorts, with no 
evident decrease in the rate of decline. This result is surprising in that heart disease and 
stroke mortality share several medical and social risk factors and should  demonstrate 
similar patterns of mortality rates. Among the classic risk factors for heart disease, only 
LDL  cholesterol has not been proven to be a strong risk factor for stroke (Barrett- Connor 
1997). It can thus be inferred that cohort differences in LDL cholesterol levels play 
a role in the different cohort effects for the two causes of deaths. Possibly, late baby 
boomers and recent cohorts, especially males, have been disproportionately affected 
by  behavioral changes, such as a diet high in animal fat that can lead to higher levels of 
LDL  cholesterol.

Age effects of lung cancer death rates are concave: the risk of mortality increased rap-
idly from early adulthood to peaks near ages 80–85 and then leveled off. Compared with 
the relatively fl at period effects of heart disease and stroke mortality, the period effects of 
lung cancer mortality show monotonic increases similar to those found in Belgium female 
population. Females had a steeper increase than males throughout the 40-year period. There 
were signs of reductions in tar and nicotine yield per cigarette in the United States from 

(Table 2, continued)

 All Causes Heart Disease Stroke Lung Cancer Breast Cancer

Cohort (cont.)

1960 –0.805 –1.129 –1.028 –1.149 –0.851
 (0.035) (0.087) (0.058) (0.045) (0.035)

1965 –0.918 –1.188 –1.223 –1.446 –1.010
 (0.044) (0.119) (0.083) (0.072) (0.050)

1970 –1.063 –1.246 –1.474 –1.728 –1.160
 (0.060) (0.172) (0.129) (0.139) (0.098)

1975 –1.230 –1.280 –1.766 –2.318 –1.361
 (0.103) (0.307) (0.258) (0.362) (0.340)

Deviance (df = 84) 18,903.2 9,243.4 1,479.8 245.3 611.0

Overdispersion 224.3 109.7 17.5 2.9 7.3

Note: Numbers in parentheses are standard errors.
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Figure 4. Cohort Eff ects of Mortality for All Causes, by Sex
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Note: Th e top panel shows the intrinsic estimates of the cohort eff ects of U.S. mortality for all causes for men and women 
that are reported in Table 2. Th e bottom panel shows the percentage of people with 12 years of education or more, including 
high school graduate, some college, and college degree or more. Th is fi gure reproduces the table on educational attainment by 
gender and cohort using the Integrated Public Use Microdata Series (IPUMS 2003) that was published in Hughes and O’Rand 
(2004: table 2).

1950 to 1995 (Hoffman, Djordjevic, and Brunnemann 1996), which should decrease the 
harmful effects of smoking. It is, therefore, possible that changes in cigarette composition 
do not affect lung cancer death rates until after a suffi ciently long latency. It is also  possible 
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that changes in mortality refl ect more accurate diagnoses of lung cancer. However, no 
evidence shows dramatic increases in diagnosis of lung cancers during this period. Other 
factors need to be considered and are discussed in the subsequent section.

Cohort effects of lung cancer mortality are consistent with the expectation: mortality 
curves increased fi rst and decreased for more recent cohorts, following an inverse U-shape. 
The decrease in the male cohort mortality that started after the turn of the twentieth cen-
tury correlates with reduced initiation of cigarette smoking in young men during the Great 
Depression (1929–1933), as suggested by Tarone and Chu (2000a). However, the argument 
relating economic deprivation to reduced smoking does not seem to explain increased initi-
ation of smoking and lung cancer deaths for the same female birth cohorts. Men and women 
also differ in birth cohorts that experienced the highest levels of lung cancer mortality: 
1895–1900 for men and 1920–1925 for women. The lag of 25 years between the peaking 
male and female birth cohorts can be attributed to the sex differences in stages of cigarette 
diffusion. The subsequent decreases in mortality for more recent males and females may 
refl ect the long-term benefi ts of increases in smoking cessation.

Age effects of female breast cancer mortality are large and fi t the general description 
of the age variations of breast cancer risks that are described as the “Clemensen’s hook” 
(Clayton and Schiffl ers 1987b). Such an age pattern is indicative of the etiology of the 
disease: early (premenopausal) disease risk is more strongly genetically determined, and 
the increases in risk slow at menopause. The period effects are fairly small and indicate a 
similar upward trend with those of lung cancer mortality.

Cohort effects show a steady downward trend, suggesting continuous improvement in 
cohort survival from breast cancer. Such monotonic declines in mortality cannot be entirely 
related to changes in female fertility behaviors. Fertility rates dropped for the Depression 
and World War II cohorts; increased afterward until 1964, which produced the baby boomer 
cohorts; and decreased again since then (Easterlin 1987: fi gure 1.1). However, mothers of 
the baby boomer cohorts who had historically high fertility rates did not have lower mor-
tality rates than their daughters or more recent cohorts of women who had lower fertility 
rates. Delaying childbearing and bearing fewer children affect the exposure of breast tissue 
to endogenous estrogen levels and may elevate the risks for breast cancer. Still, recent fe-
male cohorts had progressively lower breast cancer mortality rates, which is a cohort trend 
consistent with those in mortality from other causes. The combination of increased female 
education and labor force participation may delay or reduce childbearing, yet also enhance 
socioeconomic status in more recent female cohorts. Too, greater access to resources such 
as health insurance and medical care reduces risks of morbidity and mortality. The result 
may well imply that early exposures to, and accumulation of, these resources have substan-
tial positive effects for survival from breast cancer.

DISCUSSION
I employed a new approach to APC analysis to examine the temporal change in the U.S. 
adult mortality from leading degenerative diseases and cancer during the second half of the 
twentieth century. The study improved previous estimates in several regards. First, the new 
modeling approach yields results that can serve as objective criteria for selecting the best 
among alternative summaries of data on mortality and provide a test of whether the observed 
pattern revealed in descriptive analysis is real or random. Second, delineation of different 
sources of variations in death rates brings clarity to the specifi c components of mortality 
dynamics in recent historical period and highlights important period- and cohort-specifi c 
factors that are operational in the declines in the population risks of chronic diseases and 
improvement in general health conditions. Third, the empirical assessment of mortality 
trends from the most recent data available may help to generate theoretical insights into 
continuing mortality reductions in the United States and reveal previously unknown forces 
affecting health and mortality conditions in this country that likely will continue.
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The analyses show that the large mortality reductions from the 1960s to the 1970s 
continued well into the late 1990s. The analyses also relate these temporal patterns of mor-
tality to specifi c demographic components by delineating age, period, and cohort effects. 
Related to each of these components are epidemiologic conditions determined by a host 
of biological, socioeconomic, and behavioral factors as well as public health and personal 
medical services. Whereas differences associated with age may primarily indicate different 
etiological factors underlying specifi c degenerative diseases, period and cohort variations 
refl ect the effects of social change. There are three major fi ndings.

First, these analyses provide new evidence on persistent cohort differences in mor-
tality rates of all causes of deaths examined. The most striking fi nding is the dominance 
of cohort effects in explaining recent trends of mortality reductions. The results largely 
support the theory of technophysio evolution, which implies large cohort improvements 
in health capital and physiological capacities. The effects associated with birth cohorts re-
fl ect processes of differential cohort accumulation of health effects of lifetime exposures 
to risk factors: education, diet and nutrition, physical activity, and smoking. If the fi nd-
ing on cohort effects is valid, the assumption that the declines in death rates are fi xed for 
different birth cohorts is violated, and standard models of period changes in death rates 
(such as those shown in descriptive analyses in and Eq. (3)) are misspecifi ed. The role of 
cohort effects in mortality decline undeniably has serious implications for measurement 
and analysis.

Cohort effects for the four causes of death studied are generally consistent with the 
cohort patterns for total mortality and show substantial survival improvements across most 
birth cohorts. The cause-specifi c effects, however, differ from those of total mortality in 
more recent cohorts. For three causes of death examined, including stroke, lung cancer, 
and breast cancer, recent cohort declines were largely continuous. However, declines in 
total mortality slowed, starting from the baby boomer cohorts. This trend may be due to the 
stagnation in cohort declines of heart disease mortality, which is the leading cause of adult 
mortality in recent decades. It may also relate to other causes of death not included in this 
study. Further studies are needed to fully understand this difference.

Second, sex differences in the cohort effects are most evident for heart disease and lung 
cancer mortality. Cohort trends in heart disease mortality have shown similar  de clines for 
earlier male and female cohorts but diverged for recent male and female cohorts since the 
later-born baby boomers (1960–1964), with men experiencing a small increase and women 
continuing to decline at a slower rate. Although this pattern  corresponds well with the dif-
ferential cohort changes in educational attainments by sex, it may also be attributable to 
cohort differences in exposures to risk factors that are specifi c for heart disease, such as 
LDL cholesterol. Sex differences are largest for lung cancer mortality. The differential tim-
ing of initiations of cohort declines in lung cancer mortality by sex are consistent with the 
recent demographic fi nding of a lag of reduction in lung cancer deaths between men and 
women. This fi nding, therefore, sheds light on remote sources of gender differences in lung 
cancer mortality, such as stages of diffusion of cigarette consumption.

Third, period effects are generally small or modest when birth cohort and age effects 
are simultaneously controlled. Specifi cally, there is virtually no period effect for heart dis-
ease mortality and a very moderate decrease in stroke mortality since 1975. Lung cancer 
and breast cancer mortality show monotonically increasing, albeit small, period effects 
that suggest log-linear trends. This result is comprehensible in light of the hypotheses of 
independent period and cohort effects. Because successive cohorts experienced more fa-
vorable historical and social conditions, they not only had lower exposure levels to socio-
economic, behavioral, and environmental risk factors, but they also benefi ted from reduc-
tion in the exposure earlier in life course than previous cohorts. In this sense, mortality 
reductions as a consequence of advancements in medical measures—namely, those mea-
sures that tend to persist after they are introduced and are found to be  effective—manifest 
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as cohort declines because the cumulative effects are more pronounced in successive co-
horts compared with periods.

The fi nding of weak period effects relative to the cohort effects is surprising in light of 
strong period changes shown in previous and present descriptive analyses (e.g., Kannisto et 
al. 1994)15 but largely consistent with previous fi ndings from epidemiologic studies using 
APC modeling (see, e.g., Osmond 1985). It suggests that the anticipated mortality declines 
have been mostly captured by cohort effects rather than by period effects. The insights from 
descriptive analysis further suggest that this is not likely to be an artifact of the modeling. 
As discussed earlier, nonparallelism among age curves across time periods suggests dif-
ferential period changes in mortality by age groups or a special form of age by period in-
teraction related to cohort effects. However, evidence for nonparallelism among age curves 
across cohorts, which relates to period effects, is restricted to cancer-related mortality; the 
degree of nonparallelism is smaller, suggesting smaller magnitudes of these effects.

The increasing period effects of cancer related mortality is intriguing. Whereas increas-
es in breast cancer mortality may be related to marked increases in breast cancer incidence 
rates due to expanded use of effective diagnostic techniques, such as mammography, and 
the increasing obesity epidemic among adult women, increases in lung cancer mortality are 
not likely to be affected by such changes. Future research should further investigate the role 
of period changes in drug use and air pollution in explaining this trend.

An alternative explanation to the increasing period effects is that they represent a 
special age-cohort interaction implied by the APC modeling framework. Recent cohorts, 
exposed to new favorable epidemiologic conditions for earlier in life, may experience 
greater delays of deaths to more advanced ages than cohorts who are already old at the time 
of exposure to these conditions (Guillot 2006). The postponement of proportions of deaths 
in succeeding cohorts to older ages may create a seemingly increasing period trend. Such a 
trend may actually result from the benefi cial effects of early cancer detection and treatment 
of cancer patients. Supplementary analyses suggest evidence in the changing composition 
of death distributions by cause. The years between 1960 and 1999 saw an approximate 
50% increase in proportions of lung cancer deaths and a 42% increase in proportions of 
breast cancer deaths within the elderly population (65 and older) in the United States. The 
increases were much smaller for heart disease (12% for females and 18% for males) and 
stroke (10% for females and 6% for males), consistent with their smaller period effects. 
Combining the estimated period and cohort effects, one can infer not only marked decreases 
in the level of mortality across cohorts but also postponement in the timing of deaths across 
cohorts between 1960 and 1999, especially for cancer-related deaths.

In conclusion, this study focused on adult, cause-specifi c mortality in the United States 
for a relatively short period in the late twentieth century. One should not infer that birth 
cohort declines in mortality are always dominant in other cases. Period effects likely are 
more prominent in times of wars or other major events that have massive social impacts, as 
is the case for French male mortality during World War II (Wilmoth 1990). Additional stud-
ies are needed to systematically examine the temporal components of mortality attributable 
to other causes and other demographic outcomes such as fertility. Comparison of results 
across societal contexts in different historical periods may shed light on a more general 
demographic theory of period and cohort dependence of changes in vital rates.

15. As discussed in the preceding text, the difference between the current fi nding and previous fi ndings on 
period effects, as suggested by Kannisto et al. (1994), may refl ect differences in data, including age ranges, specifi c 
populations and causes of deaths, and analytic focus. An alternative interpretation is that when mortality change is 
examined across the entire adult age range, and not just older ages, any differential period changes (declines) by 
age groups—or age by period interaction—may be picked up as a cohort effect (see the subsequent discussion). 
The earlier studies on declines in old-age mortality in European populations are not suffi cient to test this possibility, 
but the models used in this study allow such a test.
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The study of sources of variations in mortality can be used as a triage for a  refi ned 
 analysis of explanatory factors underlying period and cohort processes of change. 
 Knowledge gained from such combined analysis can provide specifi c clues to improve 
the prospect of future mortality reductions. For instance, period increases in lung cancer 
mortality and stagnation of recent cohort declines in heart disease mortality may be closely 
related to contemporaneous social patterns of health behaviors, such as cigarette smoking, 
drug use, a high-fat and high-cholesterol diet, and a sedentary life style. Even without 
major biomedical advances (e.g., in stem cell and genomic therapies), if greater social and 
public health efforts are directed toward modifi cations of these debilitative behaviors and 
other unfavorable environmental factors, then the mortality reductions will continue into 
the twenty-fi rst century.

APPENDIX: THE COMPUTATIONAL ALGORITHM OF THE INTRINSIC 
ESTIMATOR (IE)
1. Compute the eigenvectors u1, . . . , ur of matrix XTX, where X denotes the design ma-

trix of model (1). Normalize them with u ,  , rm = 1 .  .  . , and denote the orthonormal 
matrix as U = (u1, . . ., ur)T.

2. Identify the special eigenvector B0 corresponding to eigenvalue 0. Denote u1 = B0 
without loss of generality.

3 Select the principal components to be the remaining eigenvectors u2, . . ., ur with non-
zero eigenvalues.

4. Fit a principal components regression (PCR) model with the outcome variable of inter-
est (e.g., logged death rates) as the response using a design matrix V whose column 
vectors are the principal components u2, . . . , ur—that is, V = (u2, . . . , ur)—to obtain 
the coeffi cients (w2, . . . , wr). 

5. Set coeffi cient w1 equal to 0 and transform the coeffi cients vector w = (w1, . . . , wr)T by 
the orthonormal matrix U = (u1, . . . , ur)T to obtain the intrinsic estimator B = Uw.
Note that instead of using reference categories, the IE uses the “usual ANOVA-type 

constraints” that the sums of the respective age, period, and cohort coeffi cients equal 
zero. The computational algorithm used by the IE estimates effect coeffi cients for each 
of the a – 1, p – 1, and a + p – 2 age, period, and cohort categories, respectively, which 
is consistent with the defi nition of the parameter vector in Eq. (1). Then the IE uses the 
zero-sum constraints to obtain the numerical values of the deleted age, period, and cohort 
categories. See also Footnote 5, which explains the applicability of the IE to other forms 
of linear models.
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