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Licking-Induced Synchrony in the Taste—Reward Circuit
Improves Cue Discrimination during Learning
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Animals learn which foods to ingest and which to avoid. Despite many studies, the electrophysiological correlates underlying this
behavior at the gustatory-reward circuit level remain poorly understood. For this reason, we measured the simultaneous electrical
activity of neuronal ensembles in the orbitofrontal cortex, insular cortex, amygdala, and nucleus accumbens while rats licked for taste
cues and learned to perform a taste discrimination go/no-go task. This study revealed that rhythmic licking entrains the activity in all
these brain regions, suggesting that the animal’s licking acts as an “internal clock signal” against which single spikes can be synchronized.
Thatis, as animals learned a go/no-go task, there were increases in the number of licking coherent neurons as well as synchronous spiking
between neuron pairs from different brain regions. Moreover, a subpopulation of gustatory cue-selective neurons that fired in synchrony
with licking exhibited a greater ability to discriminate among tastants than nonsynchronized neurons. This effect was seen in all four
recorded areas and increased markedly after learning, particularly after the cue was delivered and before the animals made a movement
to obtain an appetitive or aversive tastant. Overall, these results show that, throughout a large segment of the taste-reward circuit,
appetitive and aversive associative learning improves spike-timing precision, suggesting that proficiency in solving a taste discrimina-

tion go/no-go task requires licking-induced neural ensemble synchronous activity.

Introduction

Animals learn to use multisensory cues to procure appetitive and
avoid aversive food sources. During feeding, the animal’s behav-
ior is reinforced by a rewarding (acceptance) or aversive (rejec-
tion) stimulus. Both appetitive and aversive learning depend on
interactions between components of a taste—reward circuit that
includes the orbitofrontal cortex (OFC), the amygdala (AMY)
(Paton et al., 2006), the nucleus accumbens (NAcc), and the in-
sular cortex (IC) (Gottfried et al., 2003; Stalnaker et al., 2007). To
date, however, relatively little is known about how this circuitas a
whole mediates an animal’s ability to learn to select appropriate
foods.

The taste—reward circuit is composed of a highly intercon-
nected neural network (Cavada et al., 2000) that is involved with
multiple aspects of ingestive behavior, associative learning, and
reward expectation (de Araujo et al., 2006; Rolls, 2007). The IC,
which contains the primary gustatory cortex, is a multimodal
area that processes taste, visceral, somatosensory, and hedonic
information (Katz et al., 2001; Accolla and Carleton, 2008). The
OFC integrates information from several primary sensory sys-

Received Feb. 17, 2009; revised Nov. 6, 2009; accepted Nov. 9, 2009.

This work was supported by National Institute on Deafness and Other Communication Disorders (NIDCD) Grant
DC001065. We thank Jim Meloy for invaluable technical support and Susan Halkiotis and Eric Thomson for their
comments on this manuscript. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the NIDCD or National Institutes of Health.

Correspondence should be addressed to Dr. Ranier Gutierrez, Department of Pharmacology, Centro de Investi-
gacion y de Estudios Avanzados del Instituto Politécnico Nacional, 07360 Mexico City, DF, Mexico. E-mail:
ranier@cinvestav.mx.

DOI:10.1523/JNEUR0SCI.0855-09.2010
Copyright © 2010 the authors ~ 0270-6474/10/300287-17$15.00/0

tems (Cavada et al., 2000) and assays the relative reward value of
sensory stimuli, including those associated with foods (Tremblay
and Schultz, 1999; Rolls, 2007). Dysgranular OFC also encodes
the economic value of foods (Padoa-Schioppa and Assad, 2006).
Rodent OFC and AMY neurons fire selectively to sensory cues
according to their predictive value of a reward (Schoenbaum et
al., 1998). The NAcc is thought to translate emotional-motiva-
tional information, generated by limbic regions, into movements
and actions to obtain food and to avoid punishment (Mogenson
et al., 1980). Neurons from the IC, OFC, and AMY project to
NAcc, defining a circuit that processes information about gusta-
tory cues, their predictive reward value, and motivational signif-
icance (Pecifia and Berridge, 2005).

Rodents actively sample sensory stimuli using rhythmic and
stereotypic behaviors such as sniffing (Kepecs et al., 2006), whisk-
ing (Fanselow and Nicolelis, 1999), and licking (Travers et al.,
1997), at approximately similar frequencies (theta band, 4—12
Hz). It has been suggested that sniffing and whisking allow ani-
mals to process continuous real-world sensory stimuli into dis-
crete chunks or cycles (Kleinfeld et al., 2006), with each cycle
serving as a temporal frame to synchronize neural activity across
multiple brain structures (Nicolelis et al., 1995). In contrast to
other sensory systems, there is a paucity of information regarding
the potential physiological role of neuronal oscillations in taste-
guided behaviors. Thus, it remains unknown whether rhythmic
licking may function as an internal temporal frame to synchro-
nize the firing of populations of neurons throughout the taste—
reward circuit. Equally untouched is the question of whether
neuronal synchronous firing would enhance the ability of the
taste—reward circuitry to discriminate among cues. Here, we ad-
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dressed these two fundamental questions by simultaneously re-
cording the activity of neural ensembles located in the IC, OFC,
AMY, and NAcc, while rats learned to perform a new version of a
taste discrimination go/no-go response task. Briefly, we found
that, throughout the taste-reward circuit, learning improves
spike-timing precision, suggesting that widespread licking-
induced neuronal synchronicity is important in the solution of
taste-guided discrimination tasks.

Materials and Methods

Animals

Seven male Long—Evans rats (350—450 g) were obtained from Harlan
(Harlan Laboratories). Surgical procedures followed the methods de-
scribed previously (de Araujo et al., 2006). A movable microwire array
comprised of 16 Formvar-coated tungsten wires (35 wm diameter) was
unilaterally implanted in each of the four brain regions, OFC, NAcc, IC,
and AMY. The locations of microelectrode implants are found in supple-
mental Figure S1 (available at www.jneurosci.org as supplemental mate-
rial). One of the seven subjects received bilateral implants only in OFC
and IC. In all experiments, one electrode was used as reference for FEC
software (Plexon). The electrode arrays were advanced ~40 wm such
that for each experimental session a new set of single units was recorded.
All protocols were approved by the Duke University Institutional Animal
Care and Use Committee.

Recording technique

Procedures were essentially the same as described previously (de Araujo
et al., 2006). That is, neural electrical activity from the four implanted
brain areas was simultaneously recorded using a Multichannel Acquisi-
tion Processor (Plexon). Spikes were sorted using Off-line Sorter soft-
ware and the stability of waveform shape across a session was confirmed
by using the Waveform Tracker software (Plexon). Additional details are
found in supplemental Figure S2 (available at www.jneurosci.org as sup-
plemental material).

Behavioral task
All experiments were performed in an operant box that contained two
widely spaced (~17 cm) drinking compartments. Each compartment
contained a photobeam lickometer (MED Associates) that was used to
register each lick. The sipper tube was composed of a bundle of 12 20-
gauge stainless-steel tubes cemented together in a larger steel tube (inner
diameter, 7.5 mm), connected to solenoid valves (Stapleton et al., 2006).
Each solution was maintained under air pressure to ensure a single de-
livery of a ~20 ul drop ofliquid (in 10 ms). Access to each compartment
was restricted with a sliding door operated with a hydraulic pump. The
behavioral task and details about the quantification of learning are shown
in Figure 1. Briefly, before surgery, all rats were trained on the taste
discrimination task. A trial began when the door opened allowing access
to the cue compartment. Rats were then allowed to lick the tube and
received a drop of water at the fourth lick. Rats were required to continue
licking the dry sipper five additional times and on the sixth lick, they
received a cue consisting of a drop of either 0.1 M NaCl or 0.1 M mono-
potassium L-glutamate (MPG). These two tastants were chosen because
rodents can distinguish between them independently of sodium content
(Maruyama et al., 2006). In the first session, one of these tastants was
randomly chosen as either the positive (C+) or negative (C—) cue. After
cue delivery, access to the outcome compartment was allowed, and, al-
though no more licks were required, rats continued licking, on average,
1.2 s before moving to the outcome port. Rats had 10 s after cue delivery
to move from the cue compartment to the outcome compartment, where
after three empty licks they could receive the signaled outcome. If after
10 s no response was observed, both doors closed, thereby terminating
the trial. In the outcome compartment, the positive cue (C+) was asso-
ciated with three deliveries of 0.4 M sucrose and the negative cue (C—)
signaled the availability of up to three deliveries of 1 mm QHCI (quinine
hydrochloride).

Supplemental Figure S6A (available at www.jneurosci.org as supple-
mental material) shows a schematic representation of the behavioral
strategies used to solve the task. In our go/no-go task, water-deprived

Gutierrez et al. @ Rhythmic Licking Entrains Network Activity

animals initially adopt a behavioral strategy that favors responding to
both cues with a “go” response (“always go behavioral strategy”). Note
that, at the beginning of the session, the predictive value of either of the
cues is unknown to the rat, thus exploring the outcomes of both cues with
a go response will provide them with the experience needed to learn
which cue predicts a reward (sucrose) and which predicts punishment
(quinine). After several trials in which learning had taken place, rats
switched to a discriminative behavioral response pattern, in which they
respond to C— cue by withholding a go response (correctly avoiding
quinine), whereas rats maintained making a go response to C+ cue. Rats
respond correctly for nearly 100% of the C+ trials throughout the entire
session (supplemental Fig. S6 B, available at www.jneurosci.org as sup-
plemental material). Therefore, since both trials types are intermingled,
itis not until the rat starts to avoid quinine that it is possible to know from
a behavioral viewpoint that the rat has learned that the C+ predicts
sucrose. Indeed, rats that do not learn aborted the task and kept drinking
for the cues but stopped making a go response or simply stopped work-
ing. For this reason, we used both cues to obtain the “learning trial” (for
definition, see below, Behavioral analysis of learning) (supplemental Fig.
S6C,D, available at www.jneurosci.org as supplemental material).

This initial training was followed by serial reversal training in which
the response contingencies of the tastants were reversed. Once the rats
learned the new contingency (usually after one or two extra sessions
covering 2 or more days), subsequent reversals were issued. Electrode
implantation did not occur until at least three complete reversal cycles
were learned. Therefore, animals were familiar with the taste discrimina-
tion task and with the tastants used as cues, but after each reversal they
unlearned or suppressed previous cue—outcome contingencies so that
their behavior could dynamically adapt to the new task rules.

During the recordings, the animal’s behavioral performance was ana-
lyzed online. If the state space algorithm (described below) determined
that the subject learned, the trials were subdivided into prelearning and
postlearning phases. Furthermore, if in the postlearning phase a stable
performance was observed (defined as correct performance >80% dur-
ing at least 60100 trials), then another within-session reversal was is-
sued. This training protocol continued as long as quality recordings were
obtained. In these later sessions, however, rats unlearned the original
meaning of the cues but never, in the same session, exhibited a complete
reversal. The results from the within-session reversal are not presented in
this manuscript. However, we note that the changes in the postlearning
epoch described in this manuscript were significantly reduced in a few
trials after the within-session reversal (our unpublished results).

Since rats in these experiments were trained in a continuous serial-
reversal task, we note that our operant definition of “prelearning” and
“postlearning” phases refers specifically to the collection of trials before
and after the learning trial (see definition below). Thus, this definition
does not imply occurrence of learning of a “novel” cue—pair association.

Behavioral analysis of learning

We used a state-space algorithm (Smith et al., 2004) to determine within
a single session the occurrence of a learning trial. Briefly, this algorithm
modeled learning as a dynamic process from the time series of binary
responses across trials, where “0” represents an incorrect response and
“1” represents a correct response. Smith et al. (2004) demonstrated that
this method estimates the learning curve and its confidence interval more
accurately and earlier than several currently accepted methods (i.e., the
moving average method). In the state-space algorithm, the learning trial
is defined as the first trial in which, from the point of view of an ideal
observer (that is, one that has knowledge of the performance throughout
the entire session), there is a reasonable certainty (95% confidence) that
the subject is performing above chance level and that correct perfor-
mance will be maintained for the rest of the session (see Fig. 1 B, right). In
this model, the learning curve (confidence interval) and certainty were
estimated using the expectation maximization algorithm (Smith et al.,
2004). However, this algorithm does not treat learning as a gradual pro-
cess but rather as a statistical event. In this regard, the learning trial does
not mean that learning occurred on that particular trial, but rather it
reflects the trial at which there is sufficient evidence that the subject
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began performing above chance level and from which its correct perfor-
mance remained for the rest of the session.

The sequence of correct and incorrect behavioral responses was ob-
tained following the standard nomenclature; a correct trial is composed
of both “hit” and “correct rejection” trial types. (A hit is when C+ is
delivered and the subject makes a go response and drinks at least one
drop of sucrose. A correct rejection occurs when C— is delivered and the
subject withholds a go response to avoid punishment, quinine HCI.) An
incorrect trial comprises the pool of “false alarms” and “miss” trials
types. A false alarm occurs when C— is followed by a go response, mean-
ing the subject will drink at least one drop of quinine. A miss occurs when
C+ is followed by a no-go response, and the subject will not receive the
sucrose reward. By using these definitions, together with this algorithm,
a quantitative estimate of the learning trial was obtained (see Fig. 1 B, C).
In this task, from the first lick in the cue compartment, the mean inter-
trial interval was 24.5 = 1.2's. On average, a single session lasts for 70.9 =
5.4 min, and rats achieved the learning trial in 16.2 = 1.3 min.

Data analyses
All data analysis was performed using MatLab and R. Unless otherwise
indicated, we used the SEM.

Coherence. Multitaper spectral analysis and coherence were computed
by segmenting two univariate binned point processes (licking and spike
PSTHs) into chunks (Jarvis and Mitra, 2001). The coherence (C) be-
tween licking and the spike trains was computed using the following
formula: C(f) = L, /\/(I, L), where I represents the spectrum of
licking behavior, I, is the spectrum of neuronal activity, and I, is the
cross-spectrum of licking and spike spectrum. Note that the coherence
(C) is normalized to range between 0 and 1. Finally, fis the frequency
where coherence was computed (4-10 Hz). This frequency band corre-
sponds to that normally observed in freely licking behavior (Spector et
al,, 1998). The confidence interval of the coherence, C( f), and signifi-
cance threshold (at « 0f 0.05%) were computed with a jackknife method
and finite size corrections using the procedures developed by Jarvis and
Mitra (2001). A neuron was classified as licking-coherent only if its lower
confidence interval (95%) crossed the significance threshold. Supple-
mental Figure S3 (available at www.jneurosci.org as supplemental mate-
rial) shows an example of coherence calculation in a single neuron. Each
chunk of data corresponded to the first lick in the cue port up to 2.5 s of
activity. This time essentially represents the entire period that rats licked
the sipper tube in the cue compartment (see Fig. 2). The maximum
coherence value and frequency were computed using the Chronux 1.50
software package (www.chronux.org). Multitaper coherence was also
computed cycle-by-cycle in windows of 170 ms aligned to each lick in the
cue compartment (see Fig. 4 D, E; supplemental Fig. S4, available at www.
jneurosci.org as supplemental material). This window is large enough to
observe theta rhythm. Tapers 1 and 2 were used for this analysis, as were
frequencies between 0 and 60 Hz (supplemental Fig. S4 A, available at
www.jneurosci.org as supplemental material). In Figure 9C, we deter-
mined whether after cue (AC) cue-selective cells were licking coherent;
thus, we used a single window from 0.2 to 1 s after cue delivery. In the
postlearning phase, both C+ and C— trials were combined.

Cross-correlation analysis. In this analysis, a neuron from one region
was compared with a neuron simultaneously recorded in a different
brain area. For instance, if two licking-coherent neurons were recorded
in OFC, three in AMY, and two in IC, then there were six OFC-AMY
pairs, four OFC-IC pairs, and six AMY-IC pairs. The variability in the
response of each neuron to repeated presentations of the same stimulus
was removed by subtracting the shift predictor from the raw cross-
correlation. The shift predictor was constructed by shuffling the trials of
one neuron (reference cell), this procedure was repeated 100 times, and
the average cross-correlation values were subtracted from the original
raw cross-correlations. Then, the absolute peak value of this cross-
correlation was identified (Grossman et al., 2008).

Phasic, before cue, and after cue responses. Neuronal firing modulations
shown in Figure 2 were identified using a Wilcoxon rank sum test at an «
level of <0.05.

Phasic responses. Phasic neuronal firing modulations were identified
using a Wilcoxon rank sum test at an « level of <0.05. Briefly, the spike
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counts over the first 150 ms after cue delivery were compared against the
neuronal firing produced during the 150 ms after a previous empty lick.
In cases in which the interlick interval of the previous lick overlapped
with cue delivery, the next to last dry lick before the cue delivery was used
as the baseline. This approach determined whether cue delivery evoked a
significant neuronal response relative to that produced by an empty lick,
thus providing a rationale to separate oromotor-driven firing modula-
tions from genuine taste cue-evoked neuronal activity (see Fig. 2).

To determine whether the neurons responsive to the delivery of the
cues were also responsive to other gustatory stimuli (e.g., water, sucrose,
quinine), we followed the same procedure outlined above for the cues,
namely by calculating the differences in activity between the wet and dry
licks. This criterion allowed us to test whether neurons responded to
other gustatory stimuli, but not whether these evoked responses were
significantly different among gustatory stimuli (supplemental Table S1,
available at www.jneurosci.org as supplemental material). It is important
to emphasize that in the present study we did not explore the contribu-
tion of a temporal code (in 150 ms), which has been shown to also carry
taste information (Di Lorenzo and Victor, 2003; Stapleton et al., 2006).

Before cue responses. Neurons with excitatory activity before cue (BC)
delivery were identified using a Wilcoxon rank sum test at an « level of
<0.05. Neurons with this firing pattern had to meet two selection crite-
ria: (1) they needed to show a significant inhibition during the first lick
after cue delivery. Thus, we compared the spike counts over the first 150
ms after cue delivery against the firing rate produced during 150 ms after
a previous empty lick. (2) The spike counts over the first 500 ms before
cue delivery had to be significantly greater than the firing rate in the
subsequent 500 ms after cue delivery.

After cue responses. Neurons that fired after cue delivery were also
identified using a Wilcoxon rank sum test at an « level of <0.05. These
neurons showed a significant increase in firing rate during the first sec-
ond after cue delivery, in comparison with the second before cue delivery.
Neurons that showed phasic activity [upon cue (UC) responses] were not
included in this category. In Figure 2, both AC and BC neurons were
ranked according to the root mean square of their firing rate.

Onset and peak latency. The onset and peak latency were computed
from perievent stimulus histograms (PSTHs) (bin width, 1 ms) using a
200 ms window after cue delivery. The PSTHs were smoothed through
convolution with a Gaussian function with a SD of 10 ms. The onset
latency was defined as the first bin exceeding 3 SDs above background
activity. The onset latency and average peak time are displayed as a func-
tion of cue type, learning phase, and brain area in supplemental Table S2
(available at www.jneurosci.org as supplemental material).

Generalized linear model. It is generally accepted that neuronal firing rates
follow a Poisson distribution. Therefore to determine whether spiking activ-
ity discriminated between cues in each learning phase, the spike counts
were modeled using a Poisson generalized linear model (Stapleton et al.,
2006). The generalized linear model (GLM) is more appropriate to use
than a two-way ANOVA test, which assumes the spike trains are nor-
mally distributed. Details of the Poisson GLM model can be found in
supplemental Methods, Data analyses, GLM (available at www.jneurosci.
org as supplemental material).

Choice probability. The choice probability represents the accuracy with
which an ideal observer, given previous knowledge of the firing rate
distributions, could predict from the response of the neuron the subject’s
anticipated decision (go/no-go). The choice probability was computed
with a standard receiver operating characteristic (ROC) curve, since this
is the test that is classically used to detect choice probability (Britten etal.,
1996). The ROC analysis takes on values between 0 and 1, where 0 or 1
represent perfect predictive power and values near 0.5 reflect a random
association between neuronal response and behavioral response and in-
dicate that the neuronal response provides no information for predicting
the animal’s choice. We analyzed activity only from C— trials in the
postlearning phase, since in those trials rats performed both go and
no-go responses, in accordance with the inclusion criteria described by
Setlow et al. (2003). For UC cue-selective neurons, we integrated the
activity over the first 150 ms, and for the AC cue-selective neurons, over
the interval 0.2—1 s. Significance of the ROC curve was computed using a
permutation test, at an « of 0.05%. In this test, the labels of go/no-go
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responses were shuffled, and the ROC value was calculated from 1000
permuted samples.

Optimized learning vector quantization. The ability of single neurons to
discriminate the cues as a function of task performance was quantified
using a nonparametric method for statistical pattern recognition called
optimized learning vector quantization (OLVQ) (supplemental Meth-
ods, Data analyses, OLVQ, available at www.jneurosci.org as supplemen-
tal material). For all OLVQ analyses, spike trains were binned in 10 ms
bins, and both firing rates and spike timing information were always used
for cue discrimination. A “moving window” analysis was used to assess
the time course of information about the cues. OLVQ was applied se-
quentially to a 300 ms window of single-unit activity that “moved” in 50
ms steps through 0.5 s before and 1.0 s after the time of cue delivery at 0 s
(see Figs. 7D, 9 A, B). This analysis reveals a continuous quantitative read-
out (50 ms steps) of the ability of the recorded population to distinguish
between the C— and C+ cues.

Results

Behavior: learning the cues in a single lick

Adult rats were trained in a taste discrimination go/no-go re-
sponse task (Fig. 1 A). To solve this go/no-go task, rats needed to
determine which taste cue predicted the reward (C+) and which
predicted the aversive outcome (C—). Subjects initially re-
sponded to each cue by making a go response and received the
corresponding outcome until the cues acquired a predictive
value. At this point, rats learned to avoid quinine (correct rejec-
tion, no-go response) while continuing to respond (go response)
after the positive cue (hit) to obtain sucrose (supplemental Fig.
S6 A, available at www.jneurosci.org as supplemental material).

In an individual session, learning was quantified using a state-
space algorithm in which trials were categorized as either pre-
learning or postlearning (Fig. 1B, C) (for all learning curves, see
supplemental Fig. S5, available at www.jneurosci.org as supple-
mental material). We found that, for C— trials, the learning trial
was at 95.4 * 6.8 trials (supplemental Fig. S6C, available at www.
jneurosci.org as supplemental material), that is, it occurred sig-
nificantly later than the learning trial obtained by combining
both cues [56.8 £ 4.9 trials; f test (88) = —4.5; p < 0.0001]. Thus,
the learning trial was estimated by combining both cues together
(supplemental Fig. S6 D, available at www.jneurosci.org as sup-
plemental material). Parenthetically, the state-space definition of
the onset of learning occurs earlier than that found using the
often applied 90% trials correct criterion [73.1 % 5.9 trials; t test
(88) = —2.1; p < 0.037] (Schoenbaum et al., 1998). In addition,
during the prelearning phase, rats performed at chance level of
52.8 = 0.005%, but in the postlearning phase, subjects performed
correctly in 88.4 = 0.008% of the trials (mean * SEM; n = 45
sessions). This shows that they can extract taste information from
one lick of a tastant and use this information to guide their be-
havior (Halpern and Tapper, 1971).

During the delivery of the two hedonically positive tastants
used as cues (0.1 M NaCl; 0.1 M MPG), animals licked the tube in
a stereotypic rhythmic manner. For these two cues (1 s after cue
delivery, in the delay epoch) (see below), the mean lick frequency
was not significantly different (C— = 5.9 = 0.1 Hz; C+ = 6.0 *
0.09) (F(1,178) = 0.99; p = 0.32; n = 45). In addition, during the
delay epochs of both the prelearning and postlearning phases,
rats did not discriminate among the cues by changing their lick-
ing patterns (supplemental Fig. S7, available at www.jneurosci.
org as supplemental material).

As expected, during both prelearning and postlearning
phases, the rats licked more times after the delivery of sucrose
(hit) than quinine (false alarm). By calculating the probability
that a trial contained only a single lick in the first 1.0 s after the
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first delivery of sucrose or quinine, we found that, throughout
this period, rats continued licking for sucrose. Indeed, in a small
fraction of the hit trials, rats received only one drop of sucrose
(prelearning, 0.016 = 0.007, and postlearning, 0.008 * 0.004
fraction trials; Wilcoxon’s test, p = 0.93, NS). In contrast, the
fraction of false alarm trials in which they licked only once after
quinine delivery significantly increased, from 0.30 = 0.045 (pre-
learning) to 0.63 = 0.042 (postlearning) (Wilcoxon’s test, p <
0.001). These results demonstrate that rats can learn to detect
(and reject) quinine in a single lick (~150 ms).

Electrophysiology

We recorded the activity of 1110 single neurons distributed
across four taste—reward structures: OFC, IC, NAcc, and AMY
(supplemental Fig. S1, available at www.jneurosci.org as supple-
mental material). The distribution of neurons in these areas was
as follows: OFC (n = 449), NAcc (n = 306), IC (n = 243), and
AMY (n = 112).

Licking coordinates neuronal activities in the

taste-reward network

Figure 2 shows a stack of 526 (of the 1110) normalized Z score
PSTHs for all the OFC, IC, AMY, and NAcc neurons that exhib-
ited a significant modulation in firing rate from —1.5to 1 s cen-
tered around cue delivery (0 s). During this 2.5 s interval, the
PSTHs included three main epochs of the go/no-go task [antici-
pation, cue (C+, left panel; C—, right panel), and delay]. The
anticipation epoch consisted of three dry licks (L) followed by
water (W) delivery, followed by five more dry licks. The cue
epoch is delineated by the vertical white lines (representing a
single lick ~150 ms) and contains the response to the delivery of
the cue at time 0 s. This was followed by a delay epoch that
consisted of several more dry licks (L).

The observed patterns of neuronal firing modulation in these
components of the taste—reward circuit were classified into two
broad, but not mutually exclusive, categories: licking coherent
(neurons 1-278) and event-related (neurons 279-526). A total of
414 neurons showed a significant coherence with licking (see
below), and of these, 278 were plotted in the licking-coherent
category (Fig. 2). The remaining 136 licking coherent neurons
were plotted in the event-related category since they fired during
a particular epoch in relation to cue delivery. Therefore, 112 neu-
rons with no licking-coherent activity were classified as event-
related (supplemental Fig. S8, available at www.jneurosci.org as
supplemental material). The event-related neurons (136 + 112 =
248 in total) were further characterized by their responses in
relation to the cue delivery. These included neurons that fired
before cue delivery (BC), upon cue delivery (UC), and after cue
delivery (AC). Below each category is described in detail. Inspec-
tion of the color-coded population of PSTHs indicates that,
throughout the four brain areas, the neuronal responses to cues
may be entrained to the licking cycle.

Licking-coherent

Next, we analyzed the level in which the firing of each of the 1110
neurons was coherent with rhythmic licking. In this context, co-
herence is defined as a measure of the interdependence of licking
and neural activity in the relevant frequency domain (supple-
mental Fig. S3, available at www.jneurosci.org as supplemental
material). A coherence of 0 or 1 means that two signals are com-
pletely uncorrelated, or completely correlated in frequency and
phase, respectively. The phase of the coherence ranges between
*+ 1 radians and indicates the extent to which a neural discharge
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Figure1. Taste discrimination and performanceina go/no-go response task. 4, In each trial, after a door opens (data not
shown), rats approached a sipper, and then licked (L) an empty sipper three times, whereon on the fourth lick they received
water (W). They then licked the empty sipper another five times and on the 10th lick, they received a cue of either 0.1 m NaCl
or0.1m MPG. In positive cue trials, C+, one of the arbitrary taste cues, signals the availability of reward [0.4 m sucrose (S),
up to 3 drops, 1 per lick], whereas in negative cue trials, C—, the other taste cue signaled the availability of a bitter tastant
[1 mm quinine HCI (Q)]. After cue delivery, subjects had 10 s to leave the cue compartment and move to the outcome
compartment—Iocated at the right side of the box—where after three additional empty licks, they received either
sucrose or quinine. Right, Depending on the type of cue (C+ or C—) and behavioral response (go/no-go), trials were
classified as hit, miss, false alarm, or correct rejection. For example, hit is when C+ was delivered and the subject made a
goresponse, whereas a correct rejection occurred when C— was delivered and the subjects withheld a go response to avoid
punishment. Note that positive trials (C+) are the combination of hits and misses, whereas negative trials (C—) are the
combination of false alarms and correct rejections. B, left, shows a representative learning curve (bold black line, and
confidence interval) from a single session that was analyzed using the state-space smoothing algorithm. The learning curve
combines both cues in the order originally presented. The top bar shows the sequence of an incorrect (0) and correct (1)
behavioral responses, in which a gray tick represents an incorrect response (false alarm and miss) and black mark a correct
response (hit and correct rejection). From this binary vector, the trial that divides prelearning from postlearning trials (the
learning trial) (dashed vertical line) was calculated as described in Materials and Methods. Note that the learning curve has
asigmoidal shape, suggesting that the learning process is gradual. Therefore, the learning trial does not mean that learning
occurred in that trial; instead, it reflects the point at which the subject began performing above chance level. The right
panel shows the extent of certainty of that of an ideal observer (that is, one that has knowledge of the performance in the
entire session). In this model, the learning trial is located at the trial in which the ideal observer is 95% certain (horizontal
solid lines) that the subject is performing above chance level and that correct performance will be maintained for the rest
of the session. €, Same session displayed on B, but the learning curve was obtained by the more traditional moving window
method (of 20 trial width). In the prelearning phase, the subject’s performance was 50%, as during this phase no correct
rejections were made (see red stars; *). The apparent increase in performance observed at trial 70 is a result of the 20 trial
moving window. Note that this graph only shows 160 of 180 trials, because of smoothing with a 20 trial window width.
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follows the lick (set at 0 radians corre-
sponding to the tongue contacting the sip-
per) (Fig. 3A). Positive phase values (>0
to 7 radians) indicate that the action po-
tentials of a given neuron tend to occur
during the early phases of the lick cycle,
meaning that such neurons would rapidly
fire after the lick. For neurons that fire
with a negative phase (— 7 to <0 radians),
their discharges tend to peak later in the
lick cycle (Fig. 3A, D). The distribution of
the phase of coherence (average phase
across all licks in the cue epoch) for each
brain region is shown in Figure 3C.

Neurons with licking-coherent activity
were present in the four brain areas and in
all subjects (supplemental Table S3, avail-
able at www.jneurosci.org as supplemen-
tal material). However, the proportion of
licking-coherent neurons differed among
brain areas (Fig. 3B) (X(23) = 145 p <
0.0001); their distribution was IC (71%;
173 of 243), AMY (60%; 68 of 112), OFC
(34%; 153 0f 449), and NAcc (6.5%; 20 of
306). A comparison of the number of
licking-coherent neurons observed when
the animals were in the cue and outcome
compartments are presented as supplemen-
tal Table 4 (available at www.jneurosci.org
as supplemental material) (see supplemen-
tal Results, Coherence, available at www.
jneurosci.org as supplemental material).
The IC and the AMY exhibited the great-
est percentage of these cells and both re-
gions contained more such neurons than
the OFC (p < 0.0001) (Fig. 3B). In turn,
all three areas, IC, AMY, and OFC, were
significantly different from the NAcc
(p<0.0001) (Fig. 3B). The small propor-
tion of coherent neurons recorded in NAcc
is most likely attributable to the prominent
inhibition observed in this region during
consummatory behavior (Nicola et al,
2004; Roitman et al., 2008).

The average coherences in the different
brain areas were as follows: IC (0.25 =+
0.009) and AMY (0.24 # 0.013) followed
by the OFC (0.21 = 0.008) and NAcc
(0.17 £ 0.011). The IC and the AMY ex-
hibited the greatest coherence values and
both regions showed higher coherence
than the OFC. In turn, all three areas,
IC, AMY, and OFC, were significantly
different from the NAcc (F; 4,0y = 5.3;
p =0.0012).

Figure 4A-C depicts representative
examples from different brain areas that
illustrate typical licking-coherent firing
patterns. Figure 4 A depicts a neuron from
the AMY that fired throughout the behav-
ioral task in phase with the animal’s
rhythmic licking. This neuron exhibited a
maximum coherence with licking of 0.64
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at 6.8 Hz, and relative to the lick cycle, its
action potentials were phase-locked at 2.6
radians. Figure 4 B shows a response from
the IC that, before water delivery, had vir-
tually no firing. Nevertheless, on water
and the cue delivery, it produced a strong
transient response that decayed in an os-
cillatory manner during the subsequent
dry licks. Thus, in contrast to the neuron
shown in Figure 4 A, which fired in phase
throughout the trial, this neuron fired in
phase with licking only after a stimulus
was delivered.

Figure 4C shows an example of two si-
multaneously recorded neurons, one in
AMY and the other in OFC, that com-
menced firing two licks after receiving the
cue and whose action potentials were
phase-locked to specific lick cycles (see
vertical dashed lines). This type of re-
sponse shows that the resulting synchro-
nous activity was not a consequence of
somatosensory input as might be the case
for the example shown in Figure 4A. In-
stead, despite being located in two distinct
brain areas, these neurons fired in syn-
chrony in a manner that covaried with
licking. Thus, neurons across multiple
brain structures may fire synchronously at
specific lick cycles during relevant epochs
of the behavioral task (supplemental Fig.
S4, available at www.jneurosci.org as sup-
plemental material).

To determine the proportion of neu-
rons that fired in synchrony during each
lick cycle at theta frequencies, we used the
multitaper coherence analysis to establish
that the proportion of neurons with sig-
nificant coherence was larger after learn-
ing in the OFC, AMY, and IC, but not in
NAcc (Fig. 4 D). This analysis also showed
that the proportion of coherent neurons
was greatest when the animals received ei-
ther water or a tastant cue (Fig. 4 E). These
results suggest that licking may act to syn-
chronize the activity of neurons from dif-
ferent brain regions in a dynamic and
learning-dependent manner.

Learning enhances coincident spiking
between licking-coherent neurons
Next, we determined whether licking-
induced oscillations enhance coincident
spiking between neuron pairs from dis-
tinct brain areas. To address this issue, we
analyzed the cross-correlations between
pairs of licking-coherent neurons before
and after learning (Grossman et al., 2008),

during the first second after cue delivery. Since no pair of licking-
coherent cells was obtained in the NAcc, this area was not in-
cluded in this analysis. Overall, during the delay epoch, there
were 168 neurons with significant coherent activity. From these,
we recorded 37 pairs of OFC-AMY neurons, 43 OFC-IC pairs,
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Figure 2.  Licking evoked synchronous activity in the taste—reward circuit. Color-coded PSTHs depicting the spatiotemporal
response patterns of 526 neurons recorded in the IC, OFC, AMY, and NAcc. Along the ordinate, 526 neurons were separated into two
non-mutually exclusive categories: licking-coherent (1-278) and event-related (279 -526). The event-related responses were
referenced with respect to the cue delivery (solid vertical line) and separated into three subcategories: BC, before cue (279 -300);
UG, upon cue delivery (301-468); and A, after cue delivery with tonic-firing activation (469 —526). Licking in the cue compart-
ment was partitioned into three epochs: anticipation, cue, and delay. “L” represents the time stamp for an empty lick, “W” for water
delivery, and “C” for delivery of a cue. The left (right) panel depicts the activity around C+ (C—) delivery. These responses were
obtained in the postlearning phase. The cues were delivered at time 0s; the vertical dashed line indicates 150 ms after cue delivery
(~1 lick cycle). The absolute firing intensities of each neuron were normalized to Z scores and, for visualization purposes,
smoothed and displayed in color contour plots. Dark red/blue indicates firing that is 3 or more SDs above/below its mean,
respectively (from —1.5to 1sin each PSTH). The black horizontal lines delimit the two main firing categories. Within each firing
pattern, neurons were subsequently ranked as a function of brain area, indicated by horizontal white dashed line. The average
population activity for each brain area is shown in black PSTHs. For each of the four brain areas, licking-coherent neurons were
ranked according to their coherence phase (P) from v to — 7 radians (top to bottom, indicated in IC as an example, since it
contains the largest number of such neurons).

and 57 AMY-IC neuron pairs (Fig. 5D). By measuring the max-
imum peak of the cross-correlation, we found that coincident
spiking between licking coherent neurons increased significantly
after learning (pair ¢ test, p < 0.0001) (Fig. 5D). Such an increase
was also observed in pairs of licking-coherent neurons from the
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Figure3. Licking-induced synchronization and phase-locked distribution across the four brain areas recorded. 4, A schematic
representation that llustrates the phase of the lick cycle. A phase () of 0 radians represents the tongue’s contact with the sipper.
Thus, neurons with a positive phase-relation (0 to 77) tend to fire in the first half of the licking cycle (green), whereas coherent
neurons with a negative phase (—r << 0) tend to fire in the second half (red) of the lick cycle. B, A histogram showing the
percentage of neurons with significant coherence for each brain area: percentage of neurons with positive (0 to 7r; red) and
negative (— 7 << 0; green) phase coherence. In the amygdala, the proportion of neurons with positive phase was larger than
neurons with negative phase coherence. **Significant value of p << 0.05, x* test. C, Distribution of phase-locked neurons sorted
by brainregion. In each histogram, the gray shaded rectangle indicates the percentage of neurons that were phase-locked with the
tongue’s contact with the sipper (—0.5 to 0.5 radians). In the OFC, NAcc, and IC, we found that the average firing phase (average
phase across all licks in the cue epoch) was equally distributed over the entire lick cycle (Kuiper's test of uniformity, OFC, Vy5; =
1.37; NAcg, V5 = 1.25; 1C, V5,5 = 1.69; nonsignificant). In contrast, the distribution of the phases of AMY was not uniform
(Vg = 3.7;p < 0.05) in that they showed a marked preference to fire in the positive phase relative to the lick cycle. Thus, AMY neurons
predominantly synchronize with neurons from the other three areas that also fire in a positive phase relative to the lick cycle (see
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OFC-AMY, OFC-IC, and AMY-IC (Fig.
5D, “licking-coherent”). As a control, we
performed the same analysis for all pairs
of neurons in which firing in the delay
epoch was not coherent with licking
(Fig. 5D, “noncoherent”). In this sub-
population, there were 891 OFC-AMY,
1129 OFC-IC, and 272 AMY-IC neuron
pairs. We observed that, after learning,
coincident spiking between noncoher-
ent OFC-AMY, OFC-IC, and AMY-IC
neuronal pairs also showed larger cross-
correlation peaks (Fig. 5E). These corre-
lation peaks, however, were significantly
smaller than for licking-coherent cells ( p <
0.01) (Fig. 5E). This result shows that, after
learning, licking-induced oscillations in-
creased the probability of coincident spiking
between disparate brain regions, such as the
OFC-AMY-IC. This effect, however, was
much more pronounced among licking-
coherent neurons.

Event-related activity: neurons monitor
the structure of the task

In addition to licking-coherent neurons,
the neural populations also contained
cells that fired in relation to a salient event
such as the delivery of a cue. As shown in
Figure 2, we further classified the activity
of this population according to its timing
relative to the delivery of the cue (BC, UC,
and AC delivery).

BC delivery

The BC population contained 22 neurons.
Their firing modulations were character-
ized by a buildup of activity before cue
delivery, followed by a rapid return to
baseline after cue delivery (~150 ms) (Fig.
2). In this regard, even though the rats
continued licking upon and after cue de-
livery, the decrease in neuronal activity
was maintained, indicating that this neu-
ronal population did not encode purely
oromotor information. Interestingly, BC
neurons were found only in the OFC and
IC. In the OFC, only 4% (18 of 449) of the
neurons exhibited such firing behavior.
Overall, 88% (16 of 18) of these OFC neu-

<«

D, green PSTH). D, Population PSTH of neurons with significant
coherence (OFC, IC, NAcc, and AMY, n = 414) sorted by their
phase relationship with licking. Gray, The population PSTH of
neurons that fired in phase —0.5 to 0.5 radians relative to the
lick (gray shaded rectangle in €). Green, The population PSTH
of neurons that fired from 0.5 to 7. Red, The population PSTH
of neurons that fired from — v to —0.5 radians. Activity is
aligned to cue delivery (time 0 s). The interval from the solid
vertical line to the right dotted line indicates the first lick cycle
after cue delivery. Note that the neuronal activity from these
three PSTHs reset in each lick cycle.
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Figure4. Rhythmic licking may serve to coordinate neuronal activity across brain structures. A, Raster and PSTH of a neuron from AMY that fired in phase with rhythmic licking throughout the
time the subject was in the cue compartment. The activity in the raster plots was aligned to C+ deliveryin the postlearning phase. The red marks represent the tongue’s contact with the sipper tube.
The blue marks show water delivery (W). The black marks indicate the occurrence of action potentials. The maximum coherence (Coh) and phase coherence (®) is given in the PSTH. Conventions
the same for all figures (4—C). B, An example of a neuron from the IC exhibiting a high coherence and that fired phasically to both water and cue delivery. C, Rasters and PSTHs showing the responses
of two simultaneously recorded neurons from AMY (top) and OFC (bottom). Note that their action potentials were synchronous (Fig. 54 shows cross-correlation of this neuron pair) and locked to the
lick cycle (vertical dashed lines). That is they only became licking coherent after the second empty lick that followed the cue delivery. The coherence plots of these two neurons are displayed in
supplemental Figure S44 (available at www.jneurosci.org as supplemental material) (see “Ensemble B”). D, These four panels show the entire population of neurons for each brain region with
significant coherence at each lick cycle. The proportion of neurons that fired in synchrony with licking increased after learning in OFC, IC, and AMY. The NAcc did not increase the proportion of
licking-coherent cells with learning. E, This panel shows the results of pooling together all the data obtained from the four brain regions. Note that, in the first 16 licks, a given proportion of neurons
fired in coherence on at least one lick cycle. The proportion of neurons was larger after learning and during cycles 4 and 10, in which water and the cues were released respectively (see arrows),

suggesting that brief gustatory stimuli seems to recruit more neurons with licking coherent activity.

rons displayed significant phase-locked activity with respect to
licking (mean coherence, 0.226 * 0.027 SEM; mean frequency,
6.82 = 0.16 Hz). In the IC, only 1.6% (4 of 243) of the neurons
showed the same kind of anticipatory activity (see BC) (Fig. 2).
All four IC neurons showed significant coherence with licking.
Supplemental Figure S9 (available at www.jneurosci.org as
supplemental material) illustrates the response of an OFC neuron
in the postlearning phase in which the firing rate increased or
ramped up before cue delivery. The activity increased in a sigmoi-
dal manner from the time the subject entered the cue compart-
ment, licked the dry sipper, received water, licked the dry sipper
again, and received either of the cues (C+ raster is shown). This
firing pattern, which was not significantly different for either cue
(see PSTHs below raster), transiently decreased in the first 100 ms
after cue and reached baseline levels 50 ms later. Supplemental
Figure S9B (available at www.jneurosci.org as supplemental ma-
terial) depicts the population PSTH of the above noted 18 OFC
neurons. For this population, neuronal activity increased as the
animal entered the cue compartment until water was delivered,
whereon it slightly decreased. The activity then increased again
until a cue was delivered, whereon the response rapidly decreased
and returned to baseline in 137 ms, before the onset of the next
lick. Overall, this population of OFC neurons may reflect the
expectation of the delivery of salient liquids but not their identity.
We also determined whether the cue-anticipatory activity
seen in the postlearning phase was also present in the prelearning
phase. In this regard, we compared the average population PSTH

(from —3 to 0 s before cue delivery; bin width, 25 ms) of the 18
OFC neurons in the prelearning phase (data not shown) against
the population response over the same period in the postlearning
phase (supplemental Fig. S9B, available at www.jneurosci.org
as supplemental material). We found no significant differences
in anticipatory activity between prelearning and postlearning
phases [repeated-measure (RM) ANOVA, F, o, = 0.18, p =
0.67, NS]. We also did not find any difference between cues (RM
ANOVA, F(, ¢, = 0.0037, p = 0.95, NS). Therefore, in both
learning phases, this OFC population seems to anticipate the
delivery of the cues (but not their identity). Likewise, the four IC
neurons with cue-anticipatory activity acted in a similar manner
to the OFC neurons (data not shown).

Cue delivery induces activation of the OFC-AMY-IC-NAcc
circuit

Another neuronal subpopulation in our classification scheme,
named UG, exhibited firing rates that transiently changed upon
cue delivery (see UC) (Fig. 2). These neurons constituted 15%
(168 0f 1110) of the neural population and were present in similar
proportions in all four recorded brain areas (x 3, = 2.74; p = 0.9).
Approximately 50% (84 of 168) of all UC neurons displayed
phase-locked activity with respect to licking (mean coherence,
0.24 = 0.013 SEM; mean frequency, 6.8 = 0.09 Hz). To charac-
terize the UC population (n = 168), we determined the onset
latency of phasic firing modulation by finding the first I ms bin in
the PSTH that was at least 3 SDs above baseline. This analysis
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Figure 5.  The cross-correlation peaks in pairs of licking-coherent simultaneously recorded neurons in OFC—AMY, OFC—IC, and

AMY-ICincreased after learning. A—C, Cross-correlations of three pairs of licking-coherent neurons as a function of learning. Each
pair was recorded simultaneously (dashed lines, prelearning; solid black lines, postlearning). The two neuron pairs shown in Aand
Bwere recorded simultaneously, and in both cases, the OFCneuron was the same. This OFC was a licking-coherent AC cue-selective
cell and the neuron in the amygdala for the pair in A was not cue-selective. The neuron in the IC for the pair in B was also
non-cue-selective. Note that, after learning, coincident spiking in both pairs (4, B) was enhanced, suggesting that licking-coherent
cue-selective neurons from one area can fire in synchrony with non-cue-selective coherent cells from other brain regions and that
synchronous spikes between different regions are enhanced after learning (see text for summary of these type of interactions).
D, This histogram shows the maximum peak of cross-correlations as a function of learning for pairs of OFC—=AMY, OFC-IC, and
AMY-ICneurons. Neurons were divided into coherent, if they showed significant coherence in the delay epoch, or noncoherent. We
compared pairs of licking-coherent neurons recorded simultaneously in different regions. It is seen that, after learning the peaks of
the cross-correlations were significantly larger in all neuron pair combinations (*paired t test, significant value of p << 0.0001).
E, This figure shows the normalized peak of cross-correlations (peak post—pre learning) as a function of pairs of OFC—AMY, OFC-IC,
and AMY-IC neurons. The normalized peak of cross-correlation was compared between neurons that displayed licking-coherent
and noncoherent activity. **0.0001, *0.07, significant p value (Wilcoxon's rank sum test). Error bars indicate SEM.
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used to discriminate between the two cues
(“non-cue-selective UC”) (supplemental
Table S1; supplemental Results, Cue ep-
och, available at www.jneurosci.org as
supplemental material). Thus, even though
most individual UC neurons could not dis-
criminate the identity of these tastants, their
increase in firing rate could at least mediate
cue detection.

Rapid encoding of the predictive value
of the cues

How then do rats discriminate among the
cues to perform the taste guided behav-
ioral task? In this context, we found that,
during learning, 17% (28 of 168) of the
UC population developed cue selectivity
in the postlearning phase (“cue-selective
UC?). That is, although the firing rate of
these neurons did not discriminate among
cues in the prelearning phase, they did af-
ter learning occurred. Figure 6, A and B,
shows the development of cue selectivity
of an OFC neuron throughout the session.
This neuron, which was not activated by
licking the sipper per se, responded simi-
larly to both cues in the prelearning phase,
but developed a stronger phasic response
for C+ in the postlearning phase. Figure 6
also shows the average population of cue-
selective UC neurons sorted by their pre-
ferred cue (Fig. 6C, prefer C+; D, prefer
C—). Although most cue-selective neurons
responded to both cues, their responses
were often of different magnitudes. More-
over, the development of cue selectivity was
specific to the cues and was not observed
during water delivery (supplemental Fig.

revealed no significant difference among brain regions (F(; 545, =
0.21; p = 0.88). The mean onset latencies observed were as fol-
lows: OFC, 47 = 3 ms; NAcc, 44 = 4 ms; IC, 49 = 5ms; and AMY,
42 * 3 ms, suggesting that there was a parallel activation of these
four areas upon cue delivery (supplemental Table S2, available at
www.jneurosci.org as supplemental material).

To obtain a better estimate of the dynamics of the UC neu-
rons, we also analyzed their peak latencies. For each of the re-
corded brain areas, this analysis revealed the existence of a
characteristic temporal activation pattern (supplemental Fig.
S10, available at www.jneurosci.org as supplemental material).
The time to maximum firing rate (peak) was significantly differ-
ent among the four areas (F; ,45) = 8.2; p = 0.0001). Specifically,
the peak firing activity of AMY neurons occurred earlier than
peak responses from the OFC ( p < 0.0001), NAcc ( p = 0.0007),
and IC ( p = 0.002). These data show that, as a population, neu-
rons in the AMY had a faster time to peak than OFC and NAcc
neurons (supplemental Table S2, available at www.jneurosci.org
as supplemental material). In the IC, the peak distribution exhib-
ited a very broad activation pattern (supplemental Fig. S10, avail-
able at www.jneurosci.org as supplemental material).

Interestingly, because the firing rate modulation of UC neu-
rons was broadly tuned, 83% (140 of 168) of them could not be

S11, available at www.jneurosci.org as
supplemental material). We found no dif-
ference in the distribution of cue-selective UC neurons among
brain areas: 29% (5 of 17) in the AMY, 17% (13 of 74) in the OFC,
16% (6 of 38) in the NAcc, and 10% (4 0of 39) in the IC (x5, = 3.2;
p = 0.36). Overall, these data indicate that, upon cue delivery
(~150 ms), 17% of the UC neurons contained detailed informa-
tion about the associative significance of the cues and are dynam-
ically reorganized upon learning.

Learning reorganizes phasic activity in the taste-reward
circuit

A significant percentage of non-cue-selective UC neurons also
changed their firing modulation properties after learning (sup-
plemental Fig. S12 A, available at www.jneurosci.org as supple-
mental material). For instance, 26% (36 of 140) of UC neurons
showed significant evoked responses to cue delivery in the pre-
learning phase, which became smaller and/or nonsignificant in
the postlearning phase (supplemental Fig. S12, available at www.
jneurosci.org as supplemental material; referred to as only-pre).
Approximately 53% (74 of 140) of them developed significant
cue-related firing activity only in the postlearning phase (only-
post) and 21% (30 of 140) displayed significant evoked responses
in both learning phases (pre-post). The number of neurons from
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Figure 6.

UCneurons, Cue-selective modulation during learning. 4, Raster plot of an OFC neuron that developed C+ selectivity in the postlearning phase. The horizontal black lines separate the

trials in the prelearning and postlearning phase. Activity was aligned to the delivery of the taste cue (top raster for C+ trials and bottom raster for C— trials). Overlapped in the raster is the PSTH in
the prelearning (dashed line) and postlearning (solid line) phase for C+ (top) and C— (bottom). The coherence and phase relation was 0.48 and — 1.95 radians, respectively. B, The PSTHs of same
neuron in A, but in each learning phase responses to both the cues overlap. C, The average population PSTH in the prelearning and postlearning phases obtained from 10 C+ preferred neurons
(green lines). The black dashed line shows the firing rate to the nonpreferred cue. D, The average population PSTH in the prelearning and postlearning phases obtained from 18 (—

preferred neurons (red line).

each category and brain region is shown in supplemental Figure
S12 B (available at www.jneurosci.org as supplemental material).

AC delivery

The delay epoch encompasses a period in which animals had
already sampled the cue but continued to lick until they decided
to make a go/no-go response. A small subpopulation of AC neu-
rons (n = 58) displayed a tonic firing pattern during the delay
epoch (Fig. 2; neurons labeled “AC”). We observed that 8.5% (38
0f449) of the total number of OFC neurons exhibited this type of
tonic firing pattern. In the other areas, the following percent-
ages were found: NAcc, 2.6% (8 of 306); IC, 3.2% (8 of 243);
and AMY, 3.5% (4 of 112), indicating that the percentages of
such responses were more frequently found in the OFC
(x%, = 16.17; p = 0.001). Overall, 55% (32 of 58) of these
neurons displayed significant phase-locked activity with re-
spect to licking (mean coherence, 0.27 = 0.02 SEM; mean
frequency, 6.4 = 0.12 Hz).

Delayed cue-selective responses

In addition to the AC neurons described above, a much larger
population of AC neurons (n = 196) changed their firing
pattern on learning. To identify these, we searched for neurons
that, during the delay epoch, or 200—1000 ms after cue delivery,
discriminated between the cues. We named such neurons AC
cue-selective. The example in Figure 7 shows that no activity was
evoked during the initial trials in the prelearning phase, but as the
animal learned the task, the firing activity of the neuron increased
during the delay epoch. In particular, in the postlearning phase,
the activity of the neuron for C+ trials was markedly enhanced
when compared with the C— trials (Fig. 7B). In general, we also
found that cue-selective AC neurons discriminated among cues
in both prelearning and postlearning phases, although the vast
majority (77%; 152 of 196) was selective only in the postlearning
phase (supplemental Table S5, available at www.jneurosci.org as
supplemental material).

The OFC contained the largest percentage of these type of
neurons at 24.7% (111 of 449), followed by the AMY at 17.8% (20
of 112), NAcc at 15% (46 of 306), and the IC at 7.8% (19 of 243).
These proportions were different among brain regions (x(, = 33;
p <0.0001; n = 196) (Fig. 7C).

The C+ or C— distribution of cue-selective neurons was
found by pooling the results from all four brain regions. Under
these conditions, we found a slight, but significant, increase in the
proportion of C— (116) relative to C+ (80) neurons (X(zl) = 6.25;
p < 0.012; null probability, 0.5). However, the proportion of C+
and C— neurons was not significantly different across individual
brain regions. In the OFC, 66 cue-selective neurons fired more
for C—, whereas 45 preferred the C+ cue (x¢, = 3.6; p < 0.057).
For NAcc neurons, 29 fired more for C— and 17 for C+ (x(,, =
2.63; p < 0.105), whereas for AMY neurons, 14 had firing greater
for C— and 6 for C+ (x(}, = 2.45; p < 0.1175). Finally, the IC had
7 firing more for C— and 12 for C+ (x(;, = 0.84; p < 0.3588).
Therefore, the four brain regions tested were responsive to
both appetitive and aversive cues, with a slight bias for aversive
cues.

As mentioned in the behavioral results, to solve this go/no-go
task, rats needed to determine which taste cue predicted the re-
ward (C+) and which predicted the aversive outcome (C—).
Although it is possible that rats can learn the meaning of both
cues independently, our data suggest that both learning processes
(C+ and C—) can influence each other. In this regard, we found
neuronal activity that suggests a possible interaction between
cues, as shown in the example in supplemental Figure S6 E (avail-
able at www.jneurosci.org as supplemental material), and even in
the absence of any apparent behavioral change for C+ trials, this
neuron began developing cue selectivity for C+ trials, a few trials
after the first correct rejection of quinine (supplemental Fig. S6 E,
available at www.jneurosci.org as supplemental material). We
suggest that this type of neuronal activity not only reflects an
interaction between C— and C+ cues, but also that in this task
rats first had to learn that the C— cue predicted quinine before
changes in neuronal C+ cue selectivity were observed.

Cue discrimination in the taste-reward circuit improves

with learning

To quantify the influence of learning on this AC neuronal sub-
population (n = 196), we used the activity of individual neurons
to classify C+ and C— trials (supplemental Methods, Data anal-
yses, OLVQ, available at www.jneurosci.org as supplemental ma-
terial). The temporal evolution of the percentage of trials that
were correctly classified in each brain area is shown in Figure 7D.
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Figure7.

AC cue-selective neurons: neuronal decoding of cue identity improves with learning. A, Raster plots and PSTHs for an OFC neuron that with training developed stronger activity in C+

trials. In the delay epoch, this neuron became synchronized with licking (coherence, 0.18 at 6.2 Hz; @ = —2.5radians). The horizontal black lines separate trials in the prelearning and postlearning
phases. B, The PSTHs of the neuron in 4, but comparing both cues (C+, green; C—, red) as a function of learning phase. C, Presented is the proportion of AC cue-selective neurons in the postlearning
phase sorted by brain region. D, Neural activity from the 196 AC cue-selective neurons in different brain areas that was used to classify the identity of the cues (C+, C—) using an optimized LVQ
classifier (see Materials and Methods). Note that the neuronal classification of the cues improved with learning (red solid line, postlearning phase; gray dashed line, prelearning). The horizontal

dashed line represents chance classification level. Error bars indicate SEM.

In the prelearning phase, only OFC neurons were found to dis-
criminate the cues above chance level (RM ANOVA; F(, 4 50, =
4.2,p < 0.0001). However, in the postlearning phase, a significant
increase in correct cue classification was found in all four brain
areas (RM ANOVA; for OFC, F, 0, = 24.27, p < 0.0001; AMY,
Fiise = 6.74, p = 0.013; NACc, F(y o0 = 24.2, p < 0.0001; IC,
F 36 = 14.7, p < 0.0005). Therefore, throughout these compo-
nents of the taste—reward circuit, the ability of neurons to dis-
criminate between cues improved with learning.

A small population of licking-coherent AC cue-selective
neurons also conveys information about the anticipated
motor go/no-go response

We next asked whether these 196 cue-selective AC neurons could
encode the acquired cue’s predictive value of the outcomes (re-
ward or punishment) and/or whether they encoded the instru-
mental response to be performed (go/no-go). To answer these
questions, we performed a ROC analysis to measure the subjects’
choice probability (Britten et al., 1996). In this analysis, a signif-
icant choice probability suggests that the neuronal activity pro-
vides information for predicting the subsequent behavioral
response that subjects will perform (go or no-go response). We
found that 19% (22 of 111; 7 preferred C+ and 15 C—) OFC,
20% (4 0f 20; 4 preferred C—) AMY, 16% (3 0f 19; 1 preferred C+
and 2 C—) IC, and 9% (4 of 46; 2 preferred C+ and 2 C—) NAcc
neurons also encoded the rat’s anticipated motor decision. Thus,

a relatively small population of these neurons also contained in-
formation regarding the anticipated instrumental choice of the
subjects.

This result was verified when we only analyzed the subpopu-
lation of coherent, cue-selective AC neurons. In total, we found
that, in the postlearning phase in the delay epoch, 46 neurons (26
OFC; 8 AMY; 10 IC; 2 NAcc) were both coherent and cue-
selective. In the OFC, only 30% (8 of 26 neurons) of AC cue-
selective coherent cells also encoded the rat’s anticipated motor
decision (go/no-go). In the AMY, 12.5% (1 of 8) exhibited these
characteristics, whereas in the IC (0 of 10) and NAcc (0 of 2) none
of these cells showed a significant choice probability. This sug-
gests that a relatively small population of licking-coherent AC
cue-selective neurons also contains information regarding the
anticipated instrumental choice of the subjects. Thus, the large
majority of AC cue-selective coherent cells encoded the predic-
tive value of the cues independently of the anticipated motor
decision.

Similar results were found for 3 of 28 cue-selective UC neu-
rons (3 of 28; 10.7%), which displayed a significant “choice prob-
ability” (3 neurons from OFC and none in NAcg, IC, and AMY).

Licking-coherent neurons are better at decoding the cue
identity than noncoherent neurons

We also determined whether the 196 cue-selective AC neurons
could use the animal’s licking pattern as a reference signal and/or
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Figure 8.

Noncoherent and coherent AC cue-selective neurons. 4, B, Noncoherent. A, Raster plot of AC cue-selective neuron in which spiking pattern is noncoherent (coh, not significant) with

licking. The raster on the top panel shows C+ trials, and the raster on the bottom panel shows C— trials. Cues were delivered at time 0s. The dashed line indicates the learning trial. Pre, Prelearning;
Post, postlearning. The adjacent right panels display the corresponding PSTHs during the prelearning (top) and postlearning phase (bottom). The percentage of trials correctly discriminated by the
classifier (OLVQ) are also shown. Note that, after learning, this OFC neuron developed a larger cue discrimination. B, The overall mean firing rate of the neuron shown in A is illustrated during the
entire delay epoch as a function of learning phase. Itis seen that differences in firing rate between the cues were observed only in the postlearning phase. The C+ trials are shown in green, and C—
trials are shown in red. **p << 0.05. (, D, Coherent. (, Raster plot and corresponding PSTHs of a lick-coherent and AC cue-selective neuron. Conventions are the same as given in A. Note that this OFC
licking-coherent neuron achieved better cue discrimination than that obtained by the noncoherent neuron shown in A. D, The overall firing rate of neuron shown in € during the delay epoch as a
function of learning phase. It is seen that differences between the cues were only observed in the postlearning phase. Green, C+; red, C—. **p << 0.05. Error bars indicate SEM.

whether licking-induced synchronous firing could improve their
ability to discriminate among the cues. In the postlearning phase,
we first analyzed whether each of these neurons showed a signif-
icant coherence during the delay epoch (Fig. 8). We found that, in
total, 23% (46 of 196) of the neurons fired coherently with lick-
ing, with the IC having the largest proportion (52%; 10 of 19),
followed by the AMY (40%; 8 of 20), OFC (23%; 26 of 111), and
NAcc (4%; 2 of 46). A similar number of these neurons re-
sponded preferentially for C+ (n = 25) and C— (n = 21).

Interestingly, we found that licking-coherent neurons did not
use the entire lick cycle as a reference (supplemental Fig. S13,
available at www.jneurosci.org as supplemental material). As
found in the olfactory system during respiratory cycles (Bathellier
et al,, 2008), different parts of the licking cycle are not similarly
informative. In this regard, we found that the subpopulation (n =
46) of coherent AC-cue-selective neurons do not use the entire
lick cycle as an internal reference.

We also found that coincident spiking between pairs of
licking-coherent cue-selective AC cells was enhanced by learning.
This conclusion emerged from the analysis of 46 coherent AC
cue-selective cells. For this analysis, we measured the cross-
correlations in the neuronal pairs simultaneously recorded from
different brain regions during the delay period. A total of 13 pairs
was analyzed: 7 OFC-AMY pairs, 2 OFC-IC, and 4 AMY-IC.

After learning, the cross-correlation peaks of the 13 pairs of
such neurons increased. Thus, whereas the mean peak values
in the prelearning was 13.1 = 2.6 coincidences/s, after learning
it increased to 25.6 £ 5 coincidences/s [paired f test (12) =
—3.4,p = 0.0046; n = 13]. Likewise, we found that after learning
the cross-correlation peaks between cue-selective and non-cue-
selective coherent neuron pairs also increased (for examples of
individual neuron pairs, see Fig. 5A,B) (the mean cross-
correlation peak of 61 neuronal pairs was 12.5 * 1.2 in the pre-
learning; it increased to 28.7 * 2.5 coincidences/s after learning;
paired t test 45, = —7.4, p < 0.0001). These results suggest that a
subpopulation of cue-selective AC neurons synchronizes their
activity with licking, and may transfer information about the
acquired predictive value of the cues to other licking-coherent
neurons located in different brain structures of the taste—reward
circuit (Gregoriou et al., 2009).

Using AC cue-selective neurons, we tested the hypothesis that
neurons that exhibited synchrony with licking contained more
information about the cues than those that do not (Fig. 9A).
These analyses revealed that, during the delay epoch, coherent
neuronal populations were significantly better at identifying the
cue than noncoherent neurons, but only in the postlearning
phase (prelearning; RM ANOVA, F(, ;o,) = 0.03, p = 0.86, NS;
postlearning; RM ANOVA, F, 44y = 18.1, p < 0.0001). Never-
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Figure9.  ACcue-selective neurons: neural decoding of cue identity as a function of synchrony and learning. 4, Shown are the
196 AC cue-selective neurons that were sorted according to whether or not they showed significant coherence with licking in the
delay epoch. Notice that, independently of whether the neurons exhibited synchronous firing with licking from — 0.5 to 0 s relative
to cue delivery, the classification of the cues was, as expected, below chance levels (horizontal dashed line) in either the prelearning
or postlearning phases. However, after cue delivery, the discrimination of the cues slowly increased. The graph also shows that,
after learning, licking-coherent neurons (blue dots) were better at discriminating the cues than noncoherent neurons (red dots).
B plots cue discrimination (OLVQ performance) as a function of brain region and learning phase. C, The coherence level in the delay
epoch correlates with OLVQ cue discrimination in the postlearning phase. The left panel shows the Pearson correlation value (r)
between cue discrimination (percentage of trials correctly classified by the OLVQ) of 46 licking coherent and AC cue-selective cells
(from all four brain regions) against the amount of coherence that each of these cells displayed in the delay epoch. The adjacent
three panels plot the same analysis for each individual brain region. The OFCshowed a nonsignificant trend, because of one outlier
(red point) that had a low coherence, but an excellent cue discrimination. Reanalysis of the regression omitting this cell reveals a
significant correlation between coherence level and cue discrimination (r = 0.44; p = 0.02). A stronger and significant correlation
in the ICand the AMY was observed. The same analysis was not possible to perform for the NAcc, since only two neurons were
coherent and AC cue selective. For panels in €, we used a single window of spike trains (binned in 10 ms bins) that comprised the
entire delay epoch (0.2-15s, after cue delivery). Error bars indicate SEM.
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gions (RM ANOVA; Fi5 130, = 1.5, p =
0.2) (Fig. 9B, four blue lines), not all brain
regions showed the same enhancement.
For example, during almost all the delay
epoch (from 0.45 to 1.0 s), the OFC was
the only region exhibiting a consistently
higher performance for coherent over
noncoherent cells. The other three regions
showed enhanced performance during a
limited window of the delay epoch. Since
only two NAcc neurons were coherent
and cue-selective, no conclusions were
drawn for this particular area. Using the
OLVQ as a classifier, we found that the
level of coherence during the delay epoch
correlated significantly with cue discrimi-
nation. That is, in the postlearning phase,
the larger the coherence, the greater the
cue discrimination ability of a neuron
(Fig. 9C; supplemental Fig. S14, available
at www.jneurosci.org as supplemental
material). A good correlation between the
level of coherence and cue discrimination
was found in the OFC (Pearson’s pairwise
correlation; r = 0.44; p = 0.02, when one
outlier was removed). Larger correlations
were found in the AMY (r = 0.74; p = 0.03)
and IC (r = 0.79; p = 0.006). Overall, these
results indicate that both coherent and non-
coherent neurons contribute to the decod-
ing of the cue identity, but neurons that fired
in synchrony with licking clearly performed
significantly better in this task.

Spike timing of licking-coherent
neurons conveys additional
information about the cues
To better distinguish among sensory
cues, we explored whether licking-coherent
cells might rely on additional information
contained in either their firing rates or
their spike timing. To identify which of
these mechanisms better explained our
findings, we first determined the amount
of discrimination obtained by using only
mean firing rates. This analysis revealed
no significant difference between licking-
coherent and noncoherent cue-selective
AC cells of the IC, AMY, and the OFC
(supplemental Fig. S15, available at www.
jneurosci.org as supplemental material),
indicating that firing rates alone did not
convey the extra cue information of licking-
coherent cue-selective cells.

To test the hypothesis that additional

theless, it is important to note that, after learning, both coherent
and noncoherent neurons improved their cue classification (co-
herent neurons; RM ANOVA, F, 44, = 21.2, p < 0.0001; nonco-
herent neurons, F(, 505y = 41.8, p < 0.0001). We then analyzed
each brain region independently and found that coherent neurons
displayed greater cue discrimination than noncoherent neurons in
all four brain regions (Fig. 9B). Although the cue classification of
licking-coherent neurons was similar across different brain re-

cue information derived from the spike timing of the neuron, we
shuffled the spikes of all 46 licking-coherent cue AC-selective
cells. This procedure removed all potential cue information from
the spike timing of the neuron, without compromising informa-
tion contained in the average firing rate of the cell. When the
spike timing information was eliminated from these neuronal
responses, their ability to discriminate among the cues became
nearly identical with that of noncoherent neurons (Fig. 10). This
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coherent AC cue-selective in comparison with noncoherent neurons. 4, Top left, Raster plot of
spikes of a licking-coherent neuron in the delay epoch (plotted in Fig. 8(), C+ trials in the
postlearning phase. The cue was delivered at time 0 s (data not shown). Top right, To deter-
mine whether there is more information contained in the spike timing of coherent AC cue-
selective than noncoherent neurons, we shuffled the spikes for C+ trials, such that each trial
had the same number of spikes as in the original raster plot, but random spike timing. It is clear
that shuffling removed the spike-timing information and retained the mean firing rate. To
quantify cue discrimination, the same spike shuffling procedure was performed for C— trials
(bottom panels), and the OLVQ was recalculated on these shuffle spikes. In this example, the cue
discrimination obtained by the OLVQ (C+ vs C—) in the postlearning phase was 71% (trials
correct) using the original raster plots, whereas the cue discrimination dropped to 60% after
removing spike-timing information. B plots the amount of discrimination (percentage of trials
correctly classified) of all 46 coherent AC cue-selective neurons in the delay epoch as a function
of learning phase (solid circles). It is seen that, when the spike-timing information is removed
(by shuffling the spikes), the coherent AC cue-selective neurons showed the same level of
discrimination as all 150 noncoherent AC cue-selective cells (compare open circles vs triangles).
**p value of 0.01%. Error bars indicate SEM.

demonstrated that, in the delay epoch, spike timing likely con-
veyed the extra cue information of cue-selective and licking-
coherent AC neurons in comparison with noncoherent neurons.

Therefore, it follows that the spike timing of coherent cue-
selective AC neurons should be more precise than of noncoher-
ent cue-selective cells. Indeed, we found this to be the case. In
general, one can measure how precisely and reliably a neuron will
fire during a lick cycle (spike-timing precision) by calculating
the SD of the firing phase of the neuron: the smaller the SD of the
firing phase (for a given phase of the lick cycle), the greater the
spike-timing precision (Fig. 11A). By plotting the SD of the neu-
ronal firing phase for coherent and noncoherent cue-selective
cells at each lick cycle (Fig. 11 B), we observed that coherent cells
tended to fire with a significantly smaller SD phase than nonco-
herent cells (Wilcoxon’s test, p < 0.05). Therefore, licking-
induced synchronization likely improves taste discrimination
because AC cue-selective cells, in addition to being able to dis-
criminate cues by modulating their firing rates, also fired with
higher spike-timing precision. In fact, in contrast to noncoherent

Gutierrez et al. @ Rhythmic Licking Entrains Network Activity

cells, licking-coherent cells significantly improved the precision
of their spike timing during the delay epoch (smaller SD firing
phase) in the postlearning phase (Wilcoxon’s test, p < 0.001)
(Fig. 11C). This suggests that one of the major effects of learning
the task was the reduction of spike timing variability, which con-
sequently allowed cue-selective licking-coherent neurons to im-
prove cue discrimination.

Discussion

In this paper, we addressed how a taste stimulus gains control of
behavior through associative learning and how active sampling of
gustatory cues, through rhythmic licking, influences neural activ-
ity across multiple brain regions. We observed that, as rats
learned to perform a go/no-go taste discrimination task, neuro-
nal responses to initially nonpredictive taste cues became more
distinct and predictable in different brain areas, showing that
learning induces a significant functional reorganization of neural
activity throughout major components of the taste—reward cir-
cuit. We also observed that neurons that fired in synchrony with
licking exhibited greater cue discrimination than nonsynchro-
nized neurons and that this effect increased with learning. We
attribute this to an enhancement in spike-timing precision of
licking-coherent neurons.

We found that rats can learn to discriminate and identify two
hedonically positive tastants (the cues), as well as a negatively
hedonic tastant (quinine), using only a single lick comprising
~150 ms (Halpern and Tapper, 1971) (Fig. 1 B,C) (also see Re-
sults, Behavior). In contrast to this rapid response, tastants deliv-
ered via intraoral cannulae (IOCs) require a much longer time to
be detected (Katz etal., 2001). One possible reason is that actively
sampling tastants, by freely licking, may induce an “active brain
state” (Poulet and Petersen, 2008) that integrates volition and
expectation (Gutierrez et al., 2006), whereas delivering tastants
via IOCs, produces a passive stimulation. In agreement with our
results, previous findings in the somatosensory (Krupa et al.,
2004), auditory (Eliades and Wang, 2008), olfactory (Fuentes et
al.,, 2008), and also in the gustatory system (Wilkins and Bernstein,
2006) have clearly shown that sensory responses vary significantly
according to whether animals obtain a stimulus passively or actively.

One aspect of the subjects’ behavior in the cue compartment is
that, after receiving the cue, rats continued to lick the empty
sipper for an average of 1.2 s (or five to seven additional dry licks).
This suggests that, before emitting a behavioral response, the
subjects used this self-imposed time to continue accumulating
information. In this regard, we found that the delay epoch con-
tains information about the acquired predictive value of cues
(Fig. 7), which may explain why rats favor accuracy over speed in
a go/no-go discrimination task (Abraham et al., 2004; Friedrich,
2006).

Based on the fact that licking produces a quasiperiodic input
into the CNS (4-9 Hz) (Halpern, 1983), we hypothesized that,
like whisking or sniffing (Nicolelis et al., 1995; Kepecs et al., 2006;
Kleinfeld et al., 2006), licking may act to fragment the flow of
sensory information into discrete chunks during each rhythmic
cycle. In the present study, we found neurons with activity that
was phase-locked with respect to the licking rhythm (Figs. 2—4).
This is in agreement with previous results in which licking-related
activity was reported in the IC, AMY, and OFC (Yamamoto et al.,
1988; Nishijo et al., 1998; Gutierrez et al., 2006). Some of these neu-
rons may encode oromotor information, as they fire in synchrony
with licking, independently of whether water or a cue was delivered
(Fig. 4A). However, for the majority of such neurons, phase-
locked activity did not arise from pure oromotor input since the
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Figure 11.  Licking-induced neural synchronization improves spike-timing precision and this effect is potentiated after learn-
ing. A plots the coherence value against the SD exponential curve in which the larger the coherence the smaller the SD phase.
Shown are two examples from both extremes. One extreme is one in which the cell fired with the largest variability (high SD phase,
topraster plot) and a small coherence. This cell fired in coherence with the lick cycle, but since its SD phase is higher, its spikes (black
tick marks) are neither reliable (constant) across trials nor precise with regard to the phase of the lick cycle. On the other extreme
is a coherent neuron that had a smaller SD phase and a larger coherence (right raster plot). This cell tended to fire with high
precision with regard to the lick cycle and greater reliability across trials. Thus, the SD phase is an indicator of how precisely and
reliably (spike timing precision) a cell will fire in a lick cycle. Under this scheme, the lower the SD firing phase, the greater the spike
timing precision with regard to the lick cycle. B shows the SD phase of coherent and noncoherent AC cue-selective cells for the first
16 licks in the cue compartment. The first four panels at the left are for the prelearing phase, and the right four panels are for the
postlearning phase. Note that, in all 16 licks, coherent cells tend to fire with a smaller SD phase than noncoherent cells, but
especially during the delay epoch (lick cycles 11-16; gray bands; see €). In this regard, noncoherent cells most frequently displayed
a high SD phase. Cplots the SD phase during the delay epoch as a function of learning. For visualization purposes, error bars (left
panel) are truncated. The noncoherent neurons showed no significant difference between prelearning and postlearning phases
(Wilcoxon’s rank sum test, p > 0.05, NS). In contrast, the coherent neurons, in the postlearning phase, further improved their
spike-timing precision by significantly reducing the SD phase (Wilcoxon's rank sum test, p << 0.001). The panel at the right
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neuronal activity was commonly found to
be in synchrony with licking only during
specific epochs of the trial. Moreover, the
proportion of neurons with licking-
coherent activity increased after learning.
These results showed that licking behavior
has a more dynamic function than previ-
ously expected. Under this new scheme,
neurons in the taste-reward circuit may
use a lick cycle as an internal temporal
frame, and thus licking may serve to coor-
dinate (“phase-lock”) the activity of neu-
rons distributed across multiple brain
structures.

During the task presented here, the an-
imal is licking the entire time; however,
particular ensembles of neurons, distrib-
uted over the four recorded areas, track
various states of the task (Fig. 2). It follows
that the distributed neural activity gener-
ates a continuous flow of information that
reflects all sensorimotor transformations
required to solve the task, from cue expec-
tation, to cue detection and identification,
to just before the initiation and execution
of a go/no-go response. In summary, to-
gether with the anticipatory activity (BC)
and phasic neurons (UC), AC neurons
can completely characterize each salient
epoch of the trial. We propose that, in a
well rehearsed behavioral sequence, in
which rats lick continuously, neuronal
ensembles throughout the taste-reward
circuit can represent the state-to-state
transitions of the behavioral task (Sutton
and Barto, 2000; Jones et al., 2007; Belova
et al., 2008).

The presence of neurons with cue-
expectant activity (BC) in the OFC indicates
that this area has a role in monitoring rel-
evant task events (Feierstein et al., 2006).
UC neurons displayed both rapid and
transient (<150 ms) responses. Although
most of them were uninformative about
the identity of the cue, they may be in-
volved in cue detection. Moreover, the
responses of the non-cue-selective UC neu-
rons were modulated by learning. The func-
tional reorganization of phasic responses
observed during learning may reflect
different levels of attentional processing
to the cues (Ifuku et al., 2003). To-
gether, these results indicate that phasic

<«

compared the SD of the firing phase of licking-coherent neu-
rons during lick cycles 1-10 versus lick cycles in the delay ep-
och (11-16) and found a significant difference between
epochs (Wilcoxon's rank sum test; Z = —4.21, p < 0.0001).
This suggests that, during the delay epoch, in which these co-
herent neurons discriminated the cues also corresponded to
the epoch with the smallest spike-timing variability.
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responses in the taste—reward network are dynamically reor-
ganized by learning.

We found that cue selectivity could arise even after brief taste
stimuli presentation and continue for ~1 s (in the subsequent
empty licks). Therefore, our results further extend previous stud-
ies (Schoenbaum et al., 1998; Setlow et al., 2003) by showing that
the predictive reward value of the cues can be rapidly encoded in
one single lick cycle. That is, in <150 ms, the firing of a subpopu-
lation of phasic neurons contains sufficient information to per-
mit subjects to obtain a reward and avoid punishment.

With respect to the neural changes that occurred with learn-
ing, the cue-selective AC responses were the most intriguing. This
is because after the animal had obtained the tastants (cues), their
activity contained information that may be used to discriminate
among the cues. Yet animals continued to lick without getting
any fluid before making the decision of whether or not to go. The
OFC and the AMY contained more neurons with cue selectivity
in the delay epoch followed by NAcc. In contrast, the IC, which
contains the primary gustatory cortex, had the smallest propor-
tion of cue-selective AC neurons, perhaps as a consequence of its
role in gustatory processing (Ifuku et al., 2003). Thus, despite the
small proportion, IC neurons also represented information
about the predictive value of the cues (Fig. 7D) (Stapleton et al.,
2007; Lara et al., 2009). Therefore, the predictive reward value of
gustatory cues appears to be widely distributed in the OFC—
AMY-NAcc-IC circuit. However, different degrees of specializa-
tion occur in this network.

We identified two types of cue-selective AC neurons: one that
synchronizes with some phase of the licking cycle and a second
that does not (Fig. 8). In general, cue-selective AC neurons that
synchronize their activity with licking were significantly better at
decoding the cue identity than noncoherent neurons (Fig. 9A).
Subsequent analysis indicated that coherent cells fire with higher
spike timing precision than noncoherent neurons (Fig. 11 B), and
it is this greater degree of spike timing that conveys the extra cue
information of licking-coherent and cue-selective AC neurons
(Fig. 10). In fact, after learning, the spike-timing precision of
coherent, cue-selective AC-cells increased (Fig. 11C), suggesting
that learning reduces spike timing variability, allowing licking-
induced oscillations to enhance cue discrimination. In this regard, it
has been shown that sniffing-induced neuronal oscillations (at theta
rhythm) enhance stimulus discrimination by ensuring action poten-
tial precision in the olfactory system (Schaefer et al., 2006). There-
fore, rhythmic behaviors associated with the two chemical senses
seem to share several neuronal coding mechanisms.

The rat orbitofrontal cortex is composed exclusively of
agranular cortical areas, similar to the caudal regions of monkey
OFC (Ongiir and Price, 2000). However, rats lack a clear ho-
molog of the medial and rostral regions of monkeys OFC, which
contain a dysgranular and granular layer IV, respectively. Based
on this cytoarchitectonic evidence, it has been suggested recently
that the rat OFC may be a model to study the function of the
agranular most caudal region of monkey OFC (Wise, 2008),
which receives inputs from olfactory and gustatory cortices
(Cavada et al., 2000). In this regard, in rats, we found that licking
rhythmically induced phase-locked activity across several brain
regions, including the OFC. At present, it is not clear whether
licking induces neuronal synchrony in nonhuman primates.
However, we note that monkeys masticate rhythmically (<3 Hz),
and they have cortical neurons whose firing is phase-locked to
mastication and to chewing rhythms (Yao et al., 2002).

In summary, we characterized the neurophysiological corre-
lates of a large component of the taste—reward circuit during
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learning of a taste-guided behavioral task. Our results suggest
that, to compute the acquired predictive value throughout this
circuit, appetitive and aversive associative learning appears to use
synchronous activity distributed among neuronal ensembles. As
such, we propose that, to understand the meaning of gustatory stim-
uliand to make behavioral decisions based on them, like sniffingand
whisking, licking constitutes another type of active exploratory
rhythmic behavior that rats use to synchronize neuronal activity
across multiple brain structures.
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