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ABSTRACT Capacity is an important numerical invari-
ant of symplectic manifolds. This paper studies when a subset
of a symplectic manifold is null, i.e., can be removed without
affecting the ambient capacity. After examples of open null
sets and codimension-2 non-null sets, geometric techniques
are developed to perturb any isotopy of a loop to a hamiltonian
flow; it follows that sets of dimension 0 and 1 are null. For
isotropic sets of higher dimensions, obstructions to the per-
turbation are found in homotopy groups of the orthogonal
groups.

Among all manifolds with geometric structures, symplectic
manifolds are singled out by the property that every dynamics
induced by a potential on them (hamiltonian dynamics) pre-
serves both the level of the potential and the underlying
structure. Symplectic capacity, defined in terms of hamiltonian
dynamics, has been instrumental in the progress of several
fields: its properties explain fundamental facts of symplectic
topology (nonsqueezing, symplectic rigidity, etc.) as well as
yield new qualitative information on hamiltonian systems (e.g.,
almost sure existence of a periodic orbit). But capacity is
notoriously hard to compute. A natural approach to making it
more computable is to study its behavior under various
operations on symplectic manifolds. The present paper out-
lines results (Corollaries 7–9) in the simplest case: what subsets
are null, i.e., can be removed from a manifold without affecting
the ambient capacity?

Definitions

Let (M, v) be a symplectic manifold. A function h on M
generates a vector field Xh such that iXh

v 5 2dh. The flow wt

of Xh is a hamiltonian flow, h is its hamiltonian. At each t a
hamiltonian flow is a symplectomorphism, i.e., (wt)*v 5 v. A
subset N of M is isotropic if vuN 5 0 and dim N , 1⁄2dim M. If
g is a contractible loop in M bounding a 2-disk D, the area of
g is *Dv. The area is independent of D mod p2(M); whenever
areas are mentioned, some choice of a class of D will be
implicit. A canonical example of a symplectic manifold is R2m

with coordinates pi, qi, and v 5 ( dpi ` dqi. B(r) and Z(r) stand
for the subsets defined, respectively, by ( pi

2 1 qi
2 # r2 and p1

2

1 q1
2 # r2.

Now we recall the definition of capacity (ref. 1). A hamil-
tonian h is admissible if h $ 0, h has compact support, h [ max
h on some open U and h [ 0 on some open V . ­ M, and Xh
has no periodic orbit of period #1. The numerical invariant
c(M, v) 5 sup{max h u h is admissible} is called the capacity
of (M, v). We call a subset N of M null if c(M\N) 5 c(M).

Examples of Null Sets

Null sets come in many shapes and dimensions. Open sets may
be null: Gromov’s nonsqueezing theorem (ref. 2) implies that

every subset of Z(r)\B(r) is null in Z(r). Sets of codimension 2
need not be null: c(S2(«) 3 R2m22) 5 `, but if we remove N 5
pt 3 R2m22, then c(S2(«) 3 R2m22\N) 5 4p«2. Every algebraic
subvariety is null in CPm; this follows from ref. 3.

Isotropic Isotopy and Obstructions

One method for proving a set null consists of using a hamil-
tonian flow to move the set into a region that goes unnoticed
by capacity. The existence of such a region is guaranteed by the
admissible type of hamiltonians whose heights approximate
the capacity: their graphs have open zero-levels (V, above) that
can accommodate the boundary resulting from the removal of
the moved set.

LEMMA 1. If N , M can be isotoped by a hamiltonian flow into
an arbitrarily small ball or neighborhood of ­M, then N is null.

In view of applying Lemma 1, we devise geometric tricks for
extending an isotopy of a submanifold to an ambient hamil-
tonian flow.

PROPOSITION 2. Let Nt be an isotopy of an isotropic submani-
fold N , M. It extends to an ambient hamiltonian flow on M if
and only if: (i) Nt remains isotropic for all t; and (ii) the areas of
cycles generating H1(Nt) are constant.

An isotopy that satisfies Proposition 2, (i) and (ii), is called
an isotropic isotopy. When dim N 5 0 or 1, (i) is automatic. Item
(ii) is controlled by

THEOREM 3. When dim M $ 4, an isotopy between loops of
equal area can always be perturbed so as to keep the area constant
during the isotopy.

The proof is in two parts. First, the ‘‘relative Darboux
theorem’’ (ref. 4) reduces the problem to perturbing a
segment in R2m. Second, we perform the perturbation as
depicted.

In (c), the segment has acquired the additional shaded area.
By stacking enough such ‘‘wiggles’’ along the p1-direction, we
can compensate for any variation in area, while confining the
perturbation inside a C0-small neighborhood.

When dim N $ 2, Proposition 2, (i), is no longer automatic.
An inductive procedure for achieving Proposition 2, (i), reveals
an obstruction that we now describe.

Let N0, N1 be isotropic submanifolds in the same isotopy
class and with the same areas of 1-cycles. Take isotopic
triangulations on them. Isotope the 1-skeleton of N0 onto the
1-skeleton of N1 and perturb it so that the isotopy extends to
an ambient hamiltonian flow; along this f low, drag the rest of
N0. Now the inductive step takes the form

PROBLEM 4. Given a pair of isotropic n-cells sharing an
isotropic boundary (n 2 1)-sphere, find an isotropic isotopy of
one cell to the other relative to the boundary.
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Problem 4, as well as the discussion below, are amenable to
an h-principle as follows. Weinstein’s isotropic neighborhood
theorem realizes near each cell L a symplectic copy of an open
neighborhood U of the zero section of T*L. The problem then
is to isotope the symplectic embeddings U 3 M. This is an
exercise in ref. 5: ‘‘Prove the parametric h-principle for iso-
metric embeddings . . . ’’ Although the answer is unwritten, it
certainly seems well known to experts. Here, however, we
adopt an elementary method.

For simplicity we proceed under the assumption that the
cells lie within a chart symplectomorphic to a topological ball
in R2m. The problem splits into the problem on the boundary
jet and the homotopy problem for the interior of the cell.

Counting dimensions, we find that the first of these is
solvable provided the dimension of the isotropic submanifold
is moderately low. Let N , M be isotropic. A section X of TNM
is an isotropic normal field on N if it is everywhere independent
of TN and RX 1 TN is isotropic.

THEOREM 5. Let S , M be an isotropic (n 2 1)-sphere, dim
M 5 2 m, and X0, X1 be isotropic normal fields on S. If n ,
2⁄3(m11), then X0 and X1 are homotopic through isotropic
normal fields Xt.

This reduces Problem 4 to the case where the n-cells are the
two hemispheres of an immersed n-sphere S9, R2m folded
along the equator. Let us denote by I(n, 2m) the space of all
isotropic n-planes in R2m. The Gauss map g : S9 3 I(n, 2m)
associates to each x [ S9 the isotropic tangent plane of S9 at
x. The obstruction to our problem lies in pn[I(n, 2m)]. An
explicit homotopy along a conic shows

PROPOSITION 6. I(n, 2m) is homotopy-equivalent to U(m)y
[O(n)3 U(m 2 n)].

Since U(m)yU(m 2 n) is aspherical up to high enough
dimensions, the obstructions in fact arise from pn21[O(n)].

Applications to Null Sets

Return to null sets. The tactics is always to reduce to the
situation of Lemma 1.

COROLLARY 7. Every set that lies in a lagrangian disk is null.
Indeed, Proposition 2 applies to the retraction of the disk

along itself to a point. A lagrangian disk is a disk of dimension
51⁄2dim M on which v vanishes.

In particular, points and segments are null. Moreover, from
Theorem 3 we deduce

COROLLARY 8. If dim M $ 4, then every loop contractible in
M is null.

It suffices to note that an arbitrarily small ball can include
a loop of any prescribed area:

Remark. The product of such a ‘‘spring’’ in R4 with another
copy is an isotropic 2-torus; forming the connect-sum of such
tori, we can construct, inside an arbitrarily small ball, an
isotropic 2-manifold of any genus and with any areas for its
1-cycles.

COROLLARY 9. If N , M is isotropic, lies in a chart symp-
lectomorphic to a star-shaped subset of R2m, and H1(N) 5 0, then
N is null.

In this case the homothetic retraction to the origin of the
chart satisfies the conditions of Proposition 2.
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