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Abstract
Aims—The basis for individual variation in gastroduodenal vulnerability to NSAIDs is not well
understood. We aimed to assess whether a gene expression signature was associated with
susceptibility to gastroduodenal ulcerations.

Methods—Twenty-five H pylori negative adults were treated for 7 days with naproxen 500 mg
BID. Subjects underwent baseline and post-treatment endoscopy, during which biopsies were taken
from antrum and duodenum. RNA extraction and cDNA synthesis were performed, followed by PCR
of 23 genes relevant to mucosal injury and repair. Fold changes in gene expression were compared
between subjects who developed ulcers and those who did not.

Results—Compared to subjects who did not develop ulcers (n=18), subjects who developed antral
ulcers (n=7) had significantly greater mucosal up-regulation of interleukin-8 [Fold change = 33.5
(SEM = 18.5) versus −7.7 (3.2)] and of cyclo-oxygenase-2 [2.3 (1.7) versus −10.8 (2.2)]. Conversely,
non-ulcer subjects had significantly greater up-regulation of toll-like receptor-4, cyclo-oxygenase-1,
and hepatocyte growth factor [14.0 (2.2) vs. −0.8 (1.0), 9.8 (2.4) vs. 0.0 (0.7), and 8.2 (2.6) vs. −2.2
(0.3), respectively].

Conclusions—NSAID-induced antral ulcers are associated with a specific pattern of
gastroduodenal mucosal gene expression. These patterns may provide insight into the molecular basis
of individual susceptibility to mucosal injury.

INTRODUCTION
NSAID-induced gastroduodenal injury remains an important cause of morbidity and mortality
(1). Strategies to minimize NSAID-related adverse events include the use of lower drug doses
or of less toxic NSAIDs such as COX-2-selective inhibitors, the co-administration and co-
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packaging of NSAIDs with gastro-protective agents, and the stratification of patients based on
risk factors for bleeding (2–8). Unfortunately, these strategies have been only partially
effective: patient and physician adherence with experts’ prescribing recommendations is only
fair (9), while the GI-safety advantage of the COX-2 inhibitors is mitigated by such factors as
concurrent aspirin use (10) and cardiovascular safety concerns (11).

It has been observed across different studies and in clinical practice that individuals vary in
their vulnerability to gastroduodenal NSAID injury. Although certain individuals tolerate many
different non-selective NSAIDs, others experience repeated adverse events with different
agents. Clinical characteristics such as age and co-morbidity only partly explain these
differences. Animal models have suggested several molecular pathways that may influence
NSAID-related mucosal injury and repair (12–15). In humans, certain polymorphisms in
common cytochrome P450 genes may increase NSAID-related adverse events (16). However,
there exist few studies in humans regarding the molecular mechanisms underlying the observed
differences in individual vulnerability to NSAID injury (16–18).

We hypothesized that mucosal gene expression during NSAID treatment differs between
individuals who develop mucosal injury and those who do not, and that these differences may
help explain ulcer pathogenesis. To test our hypothesis, we preselected for analysis a panel of
23 genes that encode proteins that are important in mucosal inflammation and repair. The
primary aim of this study was to compare changes in mucosal expression of these 23 genes
during one week of naproxen treatment in healthy volunteers who developed antral ulcers
versus those who did not.

SUBJECTS AND METHODS
Study Population

The current gene expression study was performed in a sub-group of patients who participated
in a clinical study of the effectiveness of omeprazole in preventing naproxen-induced injury
(19).

In the clinical study, 70 subjects were divided into two treatment arms (naproxen plus placebo,
naproxen plus omeprazole), and 4 subjects were treated with placebo alone. Major inclusion
criteria included: age 50 to 75 years; generally good health; willingness to sign the informed
consent. Major exclusion criteria included: (1) use of any NSAID (including aspirin) within
past 2 weeks, or history of chronic NSAID use; (2) use of antacids, H-2 blocker within past 2
weeks, or PPI within past 30 days; (3) use of any corticosteroid within past 60 days; (4) history
of bleeding tendencies or warfarin use within past 60 days; (5) history of previous bleeding
ulcer; (6) consumption of 3 or more alcoholic beverages a day; (7) hypersensitivity or allergy
to NSAIDs or other contraindications to their use; (8) baseline abdominal pain, nausea and/or
cramping; and (9) the presence of one or more gastroduodenal mucosal breaks (erosions or
ulcerations) at a baseline endoscopy. As part of the clinical trial, patients provided consent for
biopsies. The demographics for the study population are presented in Table 2.

For the current primary analysis, subjects treated with omeprazole and/or infected with H
pylori (n=41) were excluded in order to eliminate confounding by these two variables. All
other subjects from the clinical study were eligible for inclusion in the current study.

In the exploratory analysis of gene regulation at the ulcer margin, we studied tissue from 6
subjects from the sub-population described above, plus tissue from 1 H pylori infected subject.
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Study Design
The study was approved by an independent institutional review board. The study consisted of
three visits:

Visit 1, Screening
During Visit 1 (Day -10 to -1), subjects read and signed the informed consent, underwent a
physical exam, and were screened for inclusion and exclusion criteria.

Visit 2, Baseline Endoscopy
During Visit 2 (Day 0), upper GI endoscopy was performed using standard methods by one of
three investigators (JA, LC, and KM). Biopsies were taken for H pylori analysis (HPFast, GI
SUPPLY, Windcrest, TX). If the subject had no evidence of gastroduodenal mucosal breaks
(erosions or ulcers, see definition below) or of H pylori infection the subject was eligible for
the study.

To assess baseline gene expression, 4 forceps biopsies were obtained from normal-appearing
mucosa in the duodenal bulb, gastric antrum, and the gastric body (12 biopsies in total). In
order to help distinguish healing biopsy sites from NSAID-related lesions during the final
endoscopy, the antral biopsies were taken approximately one cm proximal to the pyloric orifice
at the 12, 3, 6 and 9 o’clock positions. In addition, a “washout” period of 7 days was provided
before the study drug was started in order to allow the biopsy sites heal. All biopsies were
obtained utilizing a standard biopsy forceps (Olympus FB 36K-1). Samples were immediately
submerged in Trizol, snap frozen with liquid nitrogen, and stored at −80° C until processing
for RNA extraction.

Treatment
Study medication was started 7 days after baseline endoscopy (Day 8). Subjects included in
the primary analysis underwent a 6.5 day treatment of naproxen (NPX) 500 mg BID (n=25).
In order to provide an indication of background gene variation, four subjects were treated with
placebo. Investigators were blinded to which treatment subjects received. Subjects were given
a dosing diary to record daily dosages of medication taken. We chose the one-week duration
of treatment based on considerations regarding patient safety, patient compliance, and the
known kinetics of naproxen-related mucosal injury.

Visit 3, Post-Treatment Endoscopy
Subjects returned within 2–4 hours of the last study drug dose (day 14) for clinical and
endoscopic evaluation. Compliance was assessed by counting the number of pills returned and
by reviewing the subject’s dosing diary. The follow-up endoscopy was then performed.

Ulcers, defined as any mucosal break ≥ 3mm with unequivocal depth (20), were counted
individually and localized to the duodenum, gastric antrum, or gastric body. When necessary
for scoring, the endoscopist performed a side-by-side comparison of the lesion’s size with the
size of a biopsy forceps passed through the endoscope working channel during the procedure.

At the post-treatment endoscopy, 4 biopsies for molecular analysis were again obtained from
the duodenal bulb, gastric antrum, and the gastric body. In order to minimize the potential for
tissue degradation, biopsies for the primary analysis were obtained from endoscopically
normal-appearing mucosa (i.e. not from endoscopically inflamed or ulcerated mucosa). In an
exploratory analysis, a group of subjects also underwent biopsy of ulcer margins. To assess
background variability in intra-individual gene expression, we took biopsies from healthy-
appearing antrum in 4 subjects who received only placebo.
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At the conclusion of the study, a committee comprised of one gastroenterologist and two
research assistants adjudicated the endoscopic findings by reviewing high-resolution digital
video-recordings of each subject’s final endoscopy. For the purposes of the primary analysis,
each subject was adjudicated as either “ulcer” or “non-ulcer.” The judgments of the committee
were binding.

Quantitative Real Time PCR for Measuring Gene Expression (QPCR)
Total RNA was isolated from gastric and duodenal samples using RNA Bee (Tel-Test, Inc.,
Friendwood, TX) according to the manufacturer’s instructions. RNA quality from all samples
was evaluated using the Agilent Bioanalyzer 2100 with a RNA Integrity Score (RIN) assigned
to each sample tested. Samples with a RIN score of less than 6.5 were removed from analysis
based on degradation based bias in the QPCR results (< 5% of antral samples).1 μg of total
RNA was used as the template for single-strand complementary DNA (cDNA) synthesis using
the Transcriptor Fast Strand cDNA Synthesis Kit (Roche, Indianapolis, IN) according to the
manufacturer’s instructions. Quantitative real-time PCR (QPCR) reactions were performed in
triplicate for 23 genes using TaqMan chemistry (Applied Biosystems [ABI], Foster City, CA)
on preconfigured TaqMan Low Density Arrays (TLDA) utilizing ABI Assay on Demand
assays. The 23 targets chosen by the investigators (Table 1) represent a panel of genes that
from previous studies have demonstrated to be important in the mucosal response to injury.
(21). More specifically, these individual gene targets have found to be either up- or down-
regulated in rodent models of gastro-duodenal ulcer formation or healing (21). The primers
and probes are commercially available through ABI’s Assay on Demand program (Applied
Biosystems, Foster City, CA), and can be found online. Quantitative real time PCR was
performed using ABI Master Mix on an ABI Prism 7900HT sequence detection system
(Applied Biosystems, Foster City, CA), programmed for 95°C for 10 minutes, then 40 cycles
of 95°C for 15 seconds and 60°C for 1 minute. The plates were configured to provide duplicate
reactions for each sample (for every assay) to account for pipetting and well-to-well variation.

All raw data was analyzed using sequence detection systems (SDS) 2.3 software (Applied
Biosystems). Differential gene expression was calculated using the “delta-delta CT (cycle
threshold)” method (22). In brief, first the average of the triplicate results for the cycle threshold
(CT) for each gene was calculated. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
gene expression CT value (also run in triplicate) was then used to calculate a normalized Ct
(delta CT ) value for each target gene. The fold change (FC) of expression between baseline
and post-treatment biopsy specimens was then calculated as previously described for each test
gene in each subject (22). For each of the 23 genes studied, the differences between baseline
and post-treatment expression were compared between the ulcer population and the non-ulcer
populations.

Real time PCR data is represented both numerically (Tables 3 and 4) and using a “heat
map” (Figure 1), which visually depicts patterns in gene expression for individual subjects
across multiple genes. Briefly, a color scale is created using the largest gene expression fold
changes as the low and high settings of the color scale. Red colors represent genes that are up-
regulated, with the warmer color corresponding to more strongly up-regulated signals; green
colors represent genes that are down-regulated, with the cooler colors corresponding to more
strongly down-regulated signals. Each individual subject is depicted in one column and each
individual gene is depicted in one row. This representation allows for the visual detection of
gene expression patterns in individual subjects that otherwise might not be observed if
represented in table format as statistical average of all subjects being measured.
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Endpoints
For the primary endpoint, we calculated fold changes in individual target genes in normal-
appearing antral mucosa in healthy subjects treated with 7 days of naproxen.

Our primary objective was to compare gene fold changes in naproxen-treated healthy subjects
in the antral ulcer versus the non-ulcer populations. Our secondary objectives were to evaluate:
(1) fold changes in subjects treated with placebo; (2) fold changes in duodenal mucosa in
patients with antral ulcers compared to fold changes in the duodenum in non-ulcer subjects;
and (3) fold changes at the ulcer margin.

Statistical Analysis
The statistical methods utilized for the clinical study have been previously reported (19). The
sample size for the current pilot study was determined by available resources and by the number
of the subjects in the clinical study who qualified for inclusion. Statistical analysis of the real
time PCR data was performed using methodology described previously (23–25). For all CT
value triplicates, a mean and standard error was calculated. For each gene analyzed, a student’s
T-test was used in order to test the significance of the differences in regulation in response to
treatment (normalized delta CT value) between the ulcer and non-ulcer populations. The
descriptive statistics for only the genes for which the fold change differences between the ulcer
and non-ulcer populations had a p-value <0.05 by the student’s T-test are reported. Aggregate
statistics for each gene (mean and standard error of mean) across subjects were calculated, and
compared between the ulcer and non-ulcer groups. Additionally, a Wilcoxon matched pairs
signed ranks test was performed to address the small and unequal sample sizes for the groups
compared. The results of this analysis yielded a p-value of 0.042 in the naproxen treated
baseline vs. post-treatment group and a p-value of 0.038 in the same treatment group in
duodenal samples (see Results). The significant p-value rejects the hypothesis that the
differences measured are coincidence.

RESULTS
Demographics and Endoscopic Findings

A total of 25 naproxen-treated subjects met the inclusion and exclusion criteria. Of these
subjects, 7/25 (28%) developed an antral ulcer. Two of these 7 subjects developed a duodenal
ulcer in addition to an antral ulcer. No subject developed a duodenal ulcer alone. All subjects
in the antral ulcer and the non-ulcer groups developed small erosions. No patient developed
clinically evident bleeding or other significant adverse events. The demographic characteristics
were similar between the groups (Table 2).

Antral Gene Expression in Placebo-Treated Subjects
None of the 4 placebo-treated subjects had mucosal breaks at the follow-up endoscopy. When
comparing gene expression in antral and duodenal tissue obtained at the baseline and post-
treatment endoscopies in subjects who received placebo, no significant changes were detected
for the 23 genes tested (selected data included in Table 3). These data demonstrate that changes
in gene expression are not due to background intra-individual variation due to other causes.

Antral Gene Expression in the Naproxen-Treated Subjects
The primary endpoint was the change in gene expression in tissue obtained from biopsies of
normal-appearing antral mucosa after 7 days of naproxen treatment. Significant differences in
gene expression between the ulcer and non-ulcer groups were detected for five of the 23 genes
tested (Table 3). Specifically, IL-8 and COX-2 were significantly up-regulated in the ulcer
group compared to the non-ulcer group. Indeed, the expression of these two genes was down-
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regulated in the non-ulcer group. Conversely, COX-1, TLR4 and HGF were significantly up-
regulated in the non-ulcer group relative to the ulcer group.

Gene Expression in Tissue Obtained from the Antral Ulcer Margin
In an exploratory analysis, gene expression at the ulcer margins was tested in 7 subjects who
developed antral ulcers after 7 days of treatment. RNA quality in tissue obtained from biopsies
of the ulcer margins was found to be comparable to RNA quality from tissue obtained from
biopsies of normal-appearing mucosa. In the biopsies from the ulcer margins, up-regulation of
IL-8 (FC=14.7, SEM=4.1) and COX-2 (FC=3.8, SEM=1.0) was detected. Significant fold
changes were not detected for the other 21 genes tested (data not shown).

Gene Expression in Duodenum after Naproxen Treatment
Based on the antral results, we subsequently analyzed expression of IL-8, COX-2, COX-1,
TLR-4, and HGF genes in normal-appearing duodenal mucosa after naproxen treatment. In 6
of 25 cases, RNA quality was inadequate.

In naproxen-treated patients, significant up-regulation of IL-8 and COX-2 was observed (Table
4). Unlike in the antrum, there were no significant differences between the ulcer and non-ulcer
groups. In 3 subjects who also developed duodenal ulcers, the trends in duodenal mucosal gene
expression were similar to results in subjects who did not develop duodenal ulcers (data not
shown).

Gene Expression in Individual Subjects after Treatment with Naproxen
In order to detect patterns of gene expression, fold changes were next analyzed subject-by
subject. In the non-ulcer group, it was noted that the 7 subjects who had strong up-regulation
of HGF also had strong up-regulation of COX-1 and TLR4 (Figure 1a). Conversely, none of
the other non-ulcer patients (n=11) had up-regulation (FC>2.0) of any of these three genes. Of
the 7 subjects who strongly up-regulated HGF, COX-1 and TLR-4, 5 strongly down-regulated
COX-2. In the subject-by-subject analysis, we did not observe any significant correlation
between gene expression in the antrum and duodenum (data not shown).

When NSAID-associated antral expression of different genes was compared within individual
subjects in the ulcer group, it was noted that that 4/5 subjects who had antral up-regulation of
IL-8 also had strong up-regulation of COX-2 (Figure 1b). Of the other two ulcer patients, one
had up-regulation of COX-2 but not IL-8, while the other had up-regulation of neither.

DISCUSSION
NSAIDs injure the gastrointestinal mucosa by direct topical toxicity and by blocking the
activity of mucosal COX, the rate-limiting enzyme in prostaglandin production (26).
Prostaglandins mediate mucosal protection by decreasing acid production, increasing mucus
and bicarbonate secretion, enhancing mucosal blood flow, and regulating genes that are
important to mucosal homeostasis (27). In addition to injuring the mucosa, NSAIDs inhibit
mucosal healing (28,29). The chemistry, duration and dose of the NSAID as well as clinical
characteristics of the patient influence the susceptibility to ulcer development (3–7). However,
the biological basis for individual-to-individual differences in vulnerability to NSAID injury
is poorly understood. Rodent studies suggest that analyzing mucosal gene expression during
NSAID treatment may yield insights into the pathogenesis of injury (30,31).

Given the frequency of NSAID-related ulcers and the limitations to methods of ulcer
prevention, we aimed to identify molecular markers associated with ulceration. Ideally, we
could identify patterns of gene expression that predict who will develop an ulcer. The principal
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finding in the current study is that healthy human subjects who develop antral ulcers during
treatment with a non-selective COX inhibitor display a distinct pattern of mucosal gene
expression. Specifically, subjects who developed antral ulcers up-regulated COX-2 and IL-8,
compared with subjects who did not develop ulcers. Conversely, individuals who did not
develop NSAID injury showed increased expression of TLR-4, COX-1, and HGF.

IL-8, a member of the CXC family of chemokines, induces neutrophils to adhere to the
endothelium at areas of tissue injury, translocate across the endothelium, and perform
phagocytosis and local tissue destruction (32). Crabtree et al have shown that in rodents
neutrophils mediate H pylori-related gastroduodenal injury (33). Wallace et al have shown that
NSAID-related injury causes adherence of neutrophils to gastric venules, and that NSAID
injury is decreased in neutropenic rats (34,35). Several signals have been proposed to mediate
neutrophil recruitment by IL-8, including prostaglandins, TNF-alpha, and leukotrienes (36).
In humans, up-regulation of IL-8 may be associated with H pylori-related ulcer disease (37),
while proton pump inhibitors suppress IL-8 production by cell lines and abrogate IL-8-
mediated actions (38). Our data demonstrating striking IL-8 up-regulation in individuals who
developed ulcers suggest that IL-8 dependent pathways are also important in human NSAID-
related injury and repair.

TLR-4, an innate immune receptor, has been identified in non-inflamed human gastric
epithelium and in gastric mucosal leukocytes and dendritic cells (39,40). Hold et al
demonstrated that in H pylori infection a polymorphism in the TLR-4 gene increases risk of
gastric carcinoma (41). Rodent studies suggest that TLR-4 activation increases intestinal
susceptibility to NSAID-related injury (15,42). Up-regulation of TLR-4 in the stomach during
NSAID treatment may result from topical injury (43), or from exposure of injured mucosa to
luminal bacteria or to the by-products of tissue injury (44). In the current study subjects who
did not develop ulcers up-regulated TLR-4. In previous studies, we have shown that TLR-4 is
required for colonic mucosal healing, and that a relationship exists between TLR-4 activation
and COX activation (45), Although is plausible that a similar pathway exists during NSAID-
induced damage, the mechanism by which TLR-4 activation favors in this setting is unknown.

After gastric injury, damaged cells are sloughed and replaced by healthy cells that proliferate,
migrate, and organize into glands. In vitro studies have shown that HGF mediates restitution
(46,47). In vivo human studies have suggested that HGF expression is increased in hypertrophic
gastritis, ulcerative colitis, and H pylori gastritis (48–50). Production of HGF by lamina propria
macrophages, neutrophils, and fibroblasts has been shown to be up-regulated by mucosal
prostaglandins (13,46). In our study, HGF was up-regulated in response to naproxen in
individuals who did not develop ulcers, suggesting that it may mediate protection or repair in
certain individuals. In the H pylori infected stomach, IL-1β has been shown to increase HGF
release (48), but in the current study IL-1β was not found to be up-regulated. Unlike in vitro
studies by Takahashi (46), our experiments did not detect HGF up-regulation at the ulcer
margin, which may be relevant to failure of restitution.

Previous studies investigating the impact of NSAID administration on COX biosynthesis and
enzymatic activity have produced heterogeneous results (51–53). In electron microscopic
studies, Jackson et al showed strong COX-1 and COX-2 staining in parietal cells of the normal
human stomach, and increased COX-2 at the rims of ulcers (54). In rats, “compensatory” up-
regulation of COX-2 in the stomach mucosa has been shown in response to COX-1 inhibition
(12,55). McCarthy et al showed that COX-2 immunostaining was present in epithelial cells
and parietal cells in H pylori infected individuals (56). In our study subjects who did not develop
ulcers up-regulated COX-1 and down-regulated COX-2. The finding of COX-1 up-regulation
in a feedback response to blockade of COX-1 by naproxen corroborates the finding of Bhandari
et al (57). Although early studies suggested that in the normal stomach COX-2 is not
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constitutively expressed (58), our findings and those of several other groups suggest that in
certain populations COX-2 is constitutively present (54,59). Our data demonstrating up-
regulation of COX-2 at the margin of ulcers, presumably promoting ulcer healing, is consistent
with previous studies (54,57). In our study the non-ulcer population down-regulated COX-2,
suggesting that resistance to injury was not COX-2-mediated. Further studies measuring
COX-2 protein, prostaglandins, and RNA copy number will address this question further.

Like prostaglandins, nitric oxide (NO) mediates mucosal protection, via its effects on mucosal
blood flow, leukocyte adherence, and other properties (60). NO is released from vascular
endothelial cells, epithelial cells and sensory nerves in gut mucosa, and is regulated by
constitutive and inducible nitric oxide synthetase (NOS). Because of its importance in mucosal
protection, NO donating NSAIDs are currently in human trials (61). Multiple studies have
suggested that COX inhibition results in an increase in local production of NO. For example,
two recent healthy human volunteer studies showed a local increase in inducible NOS at the
protein level in the gastric corpus in subjects treated with ibuprofen or aspirin for three days
(51,52). A parallel increase in constitutive NOS was not seen, and in one of these studies up-
regulation of inducible NOS was noted only in subjects with adverse reactions or endoscopic
lesions related to NSAIDs. Up-regulation was greater in H. pylori-infected subjects. We did
not demonstrate up-regulation of inducible NOS in response to COX inhibition. This
discrepancy likely reflects methodological differences. For example, we utilized 7-day rather
than 3-day treatment, and naproxen rather than aspirin or ibuprofen. In addition, we obtained
tissue from the gastric antrum, which is the predominant site of mucosal NSAID damage, rather
than the gastric corpus. Lastly, we measured gene expression rather than protein expression.
Focused and detailed molecular analysis of the impact of NSAID treatment on constitutive and
inducible NOS under a variety of study conditions will be required to clarify these differences.

A subject-by-subject analysis of the non-ulcer population showed that the same individuals
induced HGF, COX-1 and TLR4 (Figure 1a). It is unclear whether or not these changes are
regulated dependently or independently. However, previous animal studies have shown a
relationship between TLR-4 and COX gene regulation in colitis (45) as well as of prostaglandin
biosynthesis and HGF regulation (13).

There are several limitations to this pilot study. First, the number of subjects in each arm is
small, and the findings require confirmation in larger populations. Second, in order to minimize
risk to our healthy volunteer subjects, we limited the treatment duration to 1 week. It is
unproven that molecular changes seen after one week mirror changes occurring during long-
term NSAID treatment. This question can be addressed in studies of patients requiring chronic
analgesic use. Third, the value of endoscopic ulcers as a “surrogate marker” for adverse clinical
events remains controversial, although widely accepted (20). Of note, the antral and duodenal
ulcer rates were 28% and 8% respectively in our study, somewhat higher than those reported
in the literature. We believe this reflects the fact that this was a single site study and that we
enforced a strict width definition by sizing lesions with the biopsy forceps and by using blinded
adjudication. As expected, no subjects in the placebo group developed ulcers. Also
reassuringly, no significant gene changes occurred in the placebo-treated population,
suggesting that neither meals nor other environmental factors on the gastric mucosa
confounded our results.

The results of our pilot study suggest future directions for research. First, our findings require
corroboration in other, larger populations. Second, studies of protein expression will help
clarify the functional significance of the genetic changes that we observed. Third, studies of
gene copy number can provide absolute quantitative data for gene activation. Fourth, studies
of gene families (e.g. using microarrays) can help delineate molecular pathways of gene
activation in the stomach in response to NSAIDs.
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In conclusion, our results suggest that NSAID-induced antral ulcers are associated with a
specific pattern of mucosal gene regulation. Up-regulation of HGF-1, COX-1, and TLR-4 are
associated with decreased NSAID injury, while up-regulation of IL-8 may represent a
mechanism of injury. Detailed analysis of pathways involving HGF-1, COX-1, COX-2, TLR-4,
and IL-8 using tissue obtained from endoscopic biopsy specimens may yield useful information
regarding the mechanisms of NSAID-related injury.
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Figure 1.
“Heat maps” depicting a subject-by-subject comparison of antral gene fold changes. Each
subject is depicted by one column. Each gene is depicted by one row. Only the five genes for
which significant differences between ulcer and non-ulcer populations were noted are depicted.
Data are presented on a scale from strong up-regulation (bright red) to strong down regulation
(bright green) (see more detailed description in Methods).
Figure 1a. Non-ulcer subjects
Figure 1b. Ulcer subjects.
“Heat map” depicting a subject-by-subject comparison of gene fold changes for subjects who
developed ulcers.
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Table 2

Subject Demographics

Subject Characteristics Ulcer (N=7) No Ulcer (N=18)

Age, y

 Mean (SD) 57.4 (7.25) 57.6 (8.19)

 Range 50–68 50–75

Sex, no. (%)

 Male 2 (28.6) 8 (44.4)

Race, no (%)

  White 5 (71.4) 14 (77.8)

  Black 0 (0) 2 (11.1)

  Hispanic 2 (28.6) 1 (5.6)

  Asian 0 (0) 1 (5.6)
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Table 3

A comparison of fold changes (baseline versus post-treatment) in genes in naproxen-treated patients between the
ulcer and the non-ulcer populations. Tissue samples were obtained from normal-appearing antral mucosa. The
5/23 genes are presented for which significant differences between the ulcer and non-ulcer groups were observed.
In one non-ulcer patient, RNA degradation in the post-endoscopy specimen prevented analysis of gene
expression, and this patient was excluded from the analysis.

Gene Ulcer (N = 7) No Ulcer (N = 17) Placebo (N=4)

Hepatocyte Growth Factor −2.2 (0.3) 8.2 (2.6) −0.9 (0.7)

Cyclo-oxygenase 1 0.0 (0.7) 9.8 (2.4) 0.3 (0.8)

Toll-Like Receptor-4 −0.8 (1.0) 14.0 (2.2) −0.2 (1.4)

Cyclo-oxygenase-2 2.3 (1.7) −10.8 (2.2) −0.7 (1.2)

Interleukin-8 33.5 (18.5) −7.7 (3.2) −1.8 (1.1)

Data are expressed as mean (SEM). P= 0.042 by Wilcoxon matched pairs signed ranks test.
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Table 4

A comparison of fold changes (baseline versus post-treatment) in genes in duodenal mucosa in naproxen-treated
patients between antral ulcer and the non antral-ulcer populations. Unlike in antral tissue, differences between
the ulcer and non-ulcer populations are not significant. All biopsies were taken from normal-appearing mucosa.
Six subjects were excluded because of lost sample/poor RNA quality. PCR assays for inducible nitric oxide
synthetase and endothelial growth factor (EGF) did not produce interpretable data.

Gene Ulcer (N = 5) No Ulcer (N = 14)

Hepatocyte Growth Factor −3.40 (2.95) −0.49 (2.15)

Cyclo-oxygenase 1 −0.27 (1.24) 2.10 (1.52)

Toll-Like Receptor-4 −0.34 (2.59) −1.01 (1.76)

Cyclo-oxygenase-2 3.46 (0.57) 4.23 (1.53)

Interleukin-8 57.05 (38.46) 21.03 (10.7)

Data are expressed as mean (SEM). P= 0.038 by Wilcoxon matched pairs signed ranks test.
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